\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2012 (2012), No. 139, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2012 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2012/139\hfil Semilinear elliptic equations] {Semilinear elliptic equations with dependence on the gradient} \author[G. Liu, S. Shi, Y. Wei \hfil EJDE-2012/139\hfilneg] {Guanggang Liu, Shaoyun Shi, Yucheng Wei} % in alphabetical order \address{Guanggang Liu \newline College of Mathematics, Jilin University, Changchun 130012, China} \email{lgg112@163.com} \address{Shaoyun Shi \newline College of Mathematics, Jilin University, Changchun 130012, China} \email{shisy@jlu.edu.cn} \address{Yucheng Wei \newline College of Mathematics, Jilin University, Changchun 130012, China\newline Department of Mathematics, Hechi University, Yizhou 546300, China} \email{ychengwei@126.com} \thanks{Submitted April 17, 2012. Published August 19, 2012.} \subjclass[2000]{35J20, 35J25, 35J60} \keywords{Semilinear equation; Morse theory; critical group; iterative method} \begin{abstract} In this article we consider elliptic equations whose nonlinear term depends on the gradient of the unknown. We assume that the nonlinearity has a asymptotically linear growth at zero and at infinity with respect to the second variable. By applying Morse theory and an iterative method, we prove the existence of nontrivial solutions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \newtheorem{proposition}[theorem]{Proposition} \allowdisplaybreaks \section{Introduction} In this article we consider the following elliptic equation with dependence on the gradient, \begin{equation}\label{cc} \begin{gathered} -\Delta u=f(x,u,\nabla u) , \quad \text{in }\Omega,\\ u=0, \quad \text{on }\partial\Omega, \end{gathered} \end{equation} where $\Omega\subset\mathbb{R}^N$ $(N\geq3)$ is a bounded domain with smooth boundary. Since the nonlinearity $f$ depends on the gradient of the solution, solving \eqref{cc} is not variational. In fact the well developed critical point theory cannot be applied directly. There have been several works on this equation, using sub and supersolution, topological degree, fixed point theorems and Galerkin method; see, for instance, \cite{Alves, Amann,Figueiredo2,Pohozaev,Wang,Xavier,Yan}. In \cite{Figueiredo1}, de Figueiredo, Girardi and Matzeu developed a quite different method of variational type. Under the assumptions that $f$ has a superlinear subcritical growth at zero and at infinity with respect to the second variable, they obtained the existence of a positive and a negative solutions of \eqref{cc} by using the mountain pass theorem and iterative technique. Later, this method was applied to quasilinear elliptic equations \cite{Giovany,Girardi1,Servadei}, Hamiltonian systems \cite{Girardi2} and impulsive differential equations \cite{Teng}. In general the above papers which used mountain pass technique assume that the nonlinearity has a superlinear subcritical growth at zero and at infinity with respect to the second variable. Here we show that Morse theory and iterative method can be used to find solutions to \eqref{cc} under the assumption that $f$ has a asymptotically linear growth at zero and at infinity with respect to the second variable. Let $0<\lambda_1<\lambda_2\leq\lambda_3\leq\dots \leq\lambda_{k} \leq\dots $ be the eigenvalues associated with the eigenvectors $\varphi_1, \varphi_2, \varphi_3, \varphi_4,\dots $ of $-\Delta$ with Dirichlet boundary condition, and we make the following assumptions: \begin{itemize} \item[(H0)] $f: \overline{\Omega}\times \mathbb{R}\times \mathbb{R}^N\to \mathbb{R}$ is continuous; \item[(H1)] $f(x,t,\xi)=\lambda t+g_0(x,t,\xi)$, where $\lambda_{j}<\lambda<\lambda_{j+1}, g_0(x,t,\xi)=o(|t|)$ as $t\to 0$ uniformly for $x\in \overline{\Omega}, \xi\in \mathbb{R}^N$ ; \item[(H2)] $f(x,t,\xi)=\mu t+g(x,t,\xi)$, where $\lambda_{k}<\mu<\lambda_{k+1}, k\neq j, k\geq1, g(x,t,\xi)=o(|t|)$ as $|t|\to\infty$ uniformly for $x\in \overline{\Omega}, \xi\in \mathbb{R}^N$; \item[(H3)] $f(x,t,\xi)=\mu t+g(x,t,\xi)$, where $\mu=\lambda_{k}$ and $\lambda_{k-l-1}<\lambda_{k-l}=\lambda_{k-l+1}=\dots =\lambda_{k-1}=\lambda_{k}<\lambda_{k+1}$, $k\neq j$, $k\geq l+1$, $|g(x,t,\xi)|\leq C$ and $G(x,t,\xi)\to -\infty$ as $|t|\to\infty$ uniformly for $x\in \overline{\Omega}$, $\xi\in \mathbb{R}^N$, where $C>0$ is a constant, $G(x,t,\xi)=\int_0^{t}g(x,s,\xi)ds$; \item[(H4)] For any $x\in\overline{\Omega}$, $t_1,t_2\in \mathbb{R}$, $\xi_1, \xi_2\in \mathbb{R}^N$, $f(x,t,\xi)$ satisfies the Lipschitz condition $$ |f(x,t_2,\xi_2)-f(x,t_1,\xi_1)| \leq L(|t_2-t_1|+|\xi_2-\xi_1|), $$ where $L>0$ is a constant. \end{itemize} By (H1), zero is a solution of \eqref{cc}, called trivial solution. The purpose of this article is to find nontrivial solutions. Our main results as as follows: \begin{theorem}\label{thm1.1} Assume that {\rm (H0), (H1), (H2), (H4)} hold. If $0<\frac{L\sqrt{\lambda_1}}{\lambda_1-L}<1$, then \eqref{cc} has at least a nontrivial weak solution. \end{theorem} \begin{theorem}\label{thm1.2} Assume that {\rm (H0), (H1), (H3), (H4)} hold. If $0<\frac{L\sqrt{\lambda_1}}{\lambda_1-L}<1$, then \eqref{cc} has at least a nontrivial weak solution. \end{theorem} This article is organized as follows. In section 2 we give a simple revisit to Morse theory. In section 3 we prove Theorem \ref{thm1.1} and Theorem \ref{thm1.2} by using Morse theory and iterative method. An example will be given in section 4. \section{Preliminaries about Morse theory}\label{prelim} Let $H$ be a real Hilbert space and $J\in C^{1}(H,\mathbb{R})$ be a functional satisfying the (PS) condition. Denote by $H_q(A,B)$ the $q$-th singular relative homology group of the topological pair with coefficients in a field $G$. Let $u$ be an isolated critical point of $J$ with $J(u)=c$. The group $$ C_q(J,u):=H_q(J^{c},J^{c}\setminus\{u\}),\quad q\in \mathbb{Z}, $$ is called the $q$-th critical group of $J$ at $u$, where $J^{c}=\{u\in H\mid J(u)\leq c\}$. Denote $K=\{u\in H \setminus J'(u)=0\}$. Assume that $K$ is a finite set. Take $a<\inf J(K)$. The critical groups of $J$ at infinity are defined by $$ C_q(J,\infty):=H_q(H,J^{a}\setminus\{u\}),\quad q\in \mathbb{Z}. $$ The following result is important in proving the existence of nontrivial critical points. \begin{proposition}[{\cite[Proposition 3.6]{Bar}}] \label{prop1} Suppose $J$ satisfies the (PS) condition. If $K=\emptyset$, then $C_q(J,\infty)\cong 0$, $q\in \mathbb{Z}$. If $K=\{u_0\}$, then $C_q(J,\infty)\cong C_q(J, u_0)$, $q\in \mathbb{Z}$. \end{proposition} Let $A_{\infty}$ and $A_0$ be bounded self-adjoint operators defined on $H$. According to their spectral decomposition, $H=H^{+}\oplus H^0\oplus H^{-}$, where $H^{+}$, $H^0$, $H^{-}$ are invariant subspaces corresponding to the positive, zero and negative spectrum of $A_{\infty}$, respectively, similarly, $H=H_0^{+}\oplus H_0^0\oplus H_0^{-}$, where $H_0^{+}$, $H_0^0$, $H_0^{-}$ are invariant subspaces corresponding to the positive, zero and negative spectrum of $A_0$, respectively. Let $P_0:H\to H^0$ be the orthogonal projector. Consider the functionals $$ \Phi(u)=\frac{1}{2}\langle A_{\infty}u,u\rangle+\varphi(u),\quad \Phi_0(u)=\frac{1}{2}\langle A_0u,u\rangle+\varphi_0(u). $$ We make the following assumptions: \begin{itemize} \item[(A1)] $(A_{\infty})_{\pm}:=A_{\infty}|_{H^{\pm}}$ has a bounded inverse on $H^{\pm}$. \item[(A2)] $\gamma:=\dim(H^{-}\oplus H^0)<\infty$. \item[(A3)] $\varphi\in C^{1}(H,\mathbb{R})$ has a compact gradient mapping $\nabla\varphi(u)$, and $\nabla\varphi(u)=o(\|u\|)$ as $\|u\|\to\infty$. In addition, if $\operatorname{dim}H_0\neq0$, we assume $$ \|\nabla\varphi(u)\|\leq C, \forall u\in H, \quad \varphi(P_0u)\to-\infty \quad\text{as } \|P_0u\|\to\infty. $$ \item[(A4)] $(A_0)_{\pm}:=(A_0)|_{H_0^{\pm}}$ has a bounded inverse on $H_0^{\pm}$. \item[(A5)] $\beta:=\dim(H_0^{-})<\infty$, and $\operatorname{dim}H_0^0=0$. \item[(A6)] $\varphi_0\in C^{1}(H,\mathbb{R})$ has a compact gradient mapping $\nabla\varphi_0(u)$, and $$ \nabla\varphi_0(u)=o(\|u\|)\quad\text{as } \|u\|\to0. $$ \end{itemize} Also we use the following results. \begin{theorem}[{\cite[Lemma 5.1]{Cha}}]\label{thm2.2} Assume that {\rm (A1)--(A3)} hold, then $\Phi$ satisfies the (PS) condition, and \[ C_q(\Phi, \infty)=\begin{cases} G, &q=\gamma, \\ 0, &q\neq \gamma. \end{cases} \] \end{theorem} \begin{theorem}[{\cite[Theorem 4.1]{Cha}}]\label{thm2.3} Assume that {\rm (A4)--(A6)} hold, then \[ C_q(\Phi_0, 0)=\begin{cases} G, &q=\beta, \\ 0, &q\neq \beta. \end{cases} \] \end{theorem} \section{Proof of Theorems \ref{thm1.1} and \ref{thm1.2}} \label{proof} Let $H_0^{1}(\Omega)$ be the usual Sobolev space with the inner product $$ \langle u,v\rangle=\int_{\Omega}\nabla u(x)\cdot\nabla v(x)\,dx, \quad \forall u, v\in H_0^{1}(\Omega). $$ For $w\in H_0^{1}(\Omega)$, consider the problem \begin{equation}\label{ccccc} \begin{gathered} -\Delta u=f(x,u,\nabla w), \quad \text{in }\Omega,\\ u=0, \quad \text{on }\partial\Omega \end{gathered} \end{equation} and the associated functional $I_w: H_0^{1}(\Omega)\to \mathbb{R}$, $$ I_w(v)=\frac{1}{2}\int_{\Omega}|\nabla v(x)|^{2}\,dx -\int_{\Omega}F(x,v(x),\nabla w(x))\,dx. $$ By (H0) (H2) or (H0) (H3), $I_w\in C^{1}(H_0^{1}(\Omega),\mathbb{R})$, and the weak solutions of the problem \eqref{ccccc} corresponds to the critical points of the functional $I_w$, see \cite{Rab}. Define the operators $L_{\infty}, L_0: H_0^{1}(\Omega)\to H_0^{1}(\Omega)$ by $L_{\infty}u=u-\mu(-\triangle)^{-1}u$ and $L_0u=u-\lambda(-\triangle)^{-1}u$. Obviously, $L_{\infty}$ and $L_0$ are bounded self-adjoint operators. Let $$ \phi_w(u)=\int_{\Omega}g(x,u(x),\nabla w(x))\,dx,\quad \phi_{w0}(u)=\int_{\Omega}g_0(x,u(x),\nabla w(x))\,dx. $$ It is well known that $\nabla \phi_w, \nabla \phi_{w0}$ are compact mappings. By (H1), (H2) or (H1), (H3), $\nabla \phi_w(u)=o(\|u\|)$ as $\|u\|\to\infty$, and $\nabla \phi_{w0}=o(\|u\|)$ as $\|u\|\to0$. We can rewrite the functional $I_w$ by $$ I_w(u)=\frac{1}{2}\langle L_{\infty}u,u \rangle-\phi_w(u)= \frac{1}{2}\langle L_0u,u \rangle-\phi_{w0}(u). $$ According to the spectral decomposition of the operator $L_{\infty}$, $H_0^{1}(\Omega)=H^{+}\oplus H^0\oplus H^{-}$, where $H^{+}, H^0, H^{-}$ are invariant subspaces corresponding to the positive, zero and negative spectrum of $L_{\infty}$ respectively. If (H2) holds, then $H^{-}=\operatorname{span}\{\varphi_1,\varphi_2,\dots \varphi_{k}\}$, $H^{+}=(H^{-})^{\perp}$. If (H3) holds, then $H^{-}=\operatorname{span}\{\varphi_1,\varphi_2,\dots \varphi_{k-l-1}\}$, $H^0=\operatorname{span}\{\varphi_{k-l}, \dots \varphi_{k}\}$, $H^{+}=(H^0\oplus H^{-})^{\perp}$. Similarly, according to the spectral decomposition of the operator $L_0$, $H_0^{1}(\Omega)=H_0^{+}\oplus H_0^0\oplus H_0^{-}$, where $H_0^{+}, H_0^0, H_0^{-}$ are invariant subspaces corresponding to the positive zero and negative spectrum of $L_0$ respectively. If (H1) holds, then $L_0$ is invertible and $H_0^{-}=\operatorname{span}\{\varphi_1,\varphi_2,\dots \varphi_{j}\}$, $H_0^{+}=(H_0^{-})^{\perp}$. \begin{lemma}\label{l1} Assume that {\rm (H0)--(H2)} hold. Then for any $w\in H_0^{1}(\Omega)$, \eqref{ccccc} has at least a nontrivial weak solution. \end{lemma} \begin{proof} By (H2), $\operatorname{dim}H^0=0$, $L_{\infty}|_{H^{\pm}}$ has a bounded inverse on $H^{\pm}$ and $\operatorname{dim}H^{-}=k$, thus (A1), (A2) and (A3) hold. So by Theorem \ref{thm2.2}, $I_w$ satisfies (PS) condition and \[ C_q(I_w, \infty)=\begin{cases} G, &q=k, \\ 0, &q\neq k. \end{cases} \] By (H1), $\operatorname{dim}H^0=0$, $L_0|_{H_0^{\pm}}$ has a bounded inverse on $H_0^{\pm}$ and $\operatorname{dim}H^{-}=j$, thus (A4), (A5) and (A6) hold. By Theorem \ref{thm2.3} \[ C_q(I_w, 0)=\begin{cases} G, &q=j, \\ 0, &q\neq j. \end{cases} \] Since $k\neq j$, $C_q(I_w, \infty)\neq C_q(I_w, 0)$ for some $q\in\mathbb{Z}$, hence by Proposition \ref{prop1}, $I_w$ has at least a nontrivial critical point and \eqref{ccccc} has at least a nontrivial weak solution. \end{proof} \begin{lemma}\label{l3} Assume that {\rm (H0), (H1), (H3)} hold. Then for any $w\in H_0^{1}(\Omega)$, \eqref{ccccc} has at least a nontrivial weak solution. \end{lemma} \begin{proof} By (H3), $L_{\infty}|_{H^{\pm}}$ has a bounded inverse on $H^{\pm}$, and $\operatorname{dim}(H^{-}\oplus H^0)=k$, so (A1), (A2) hold. On the other hand, $\operatorname{dim}H^0>0$, but it can be checked that $\|\nabla \phi_w(u)\|\leq C'$ for any $u\in H_0^{1}(\Omega)$ and a constant $C'>0$, and $\phi_w(u)\to-\infty$ with $u\in H^0$ as $\|u\|\to\infty$. Indeed, by (H3), H\"older inequality and Sobolev inequality, for any $u,v\in H_0^{1}(\Omega)$, we have $$ | \langle\nabla \phi_w(u),v\rangle| \leq \int_{\Omega}|g(x,u,\nabla w)||v| \,dx \leq C(\int_{\Omega}|v|^{2})^{1/2} \leq C'\|v\|, $$ where $C,C'>0$ are constants, this implies $\|\nabla \phi_w(u)\|\leq C'$ for all $u\in H_0^{1}(\Omega)$. We claim that $\phi_w(u)\to-\infty$ with $u\in H^0$ as $\|u\|\to\infty$. If this is not true, then there exists a sequence $\{u_{n}\}$ and constant $M>0$ such that $u_{n}\in H^0$, $\|u_{n}\|\to\infty$ as $n\to\infty$, and $\phi_w(u_{n})\geq-M$. Let $\tilde{u}_{n}=\frac{u_{n}}{\|u_{n}\|}$, then $\tilde{u}_{n}\in H^0$ and $\|\tilde{u}_{n}\|=1$. By $\dim H^0<\infty$, there exists a subsequence of $\{\tilde{u}_{n}\}$ still denoted by $\{\tilde{u}_{n}\}$, and $\tilde{u}$ such that $\tilde{u}_{n}$ converges strongly to $\tilde{u}\in H^0$ as $n\to\infty$, then $\tilde{u}$ satisfies the equation \begin{equation} \begin{gathered} -\Delta \tilde{u}=\lambda_{k}\tilde{u} , \quad \text{in }\Omega,\\ \tilde{u}=0, \quad \text{on }\partial\Omega. \end{gathered} \end{equation} Since $\tilde{u}\neq0$, by the unique continuation property as in \cite{Heinz}, $\tilde{u}\neq0$ a.e. in $\Omega$, which implies $u_{n}\to\infty$ a.e. in $\Omega$. Hence by (H3), $G(x,u_{n}(x),\nabla w(x))\to-\infty$ a.e. in $\Omega$, then $$ \phi_w(u_{n})=\int_{\Omega}G(x,u_{n}(x),\nabla w(x)) \,dx\to-\infty $$ as $n\to\infty$, we obtain a contradiction. Therefore, (A3) holds. Next by using the argument used in the proof of Lemma \ref{l1} we complete the proof. \end{proof} \begin{lemma}\label{l4} There exists a constant $c_1>0$ independent of $w$ such that $\|u_w\|\geq c_1$ for all solutions $u_w$ obtained in Lemma \ref{l1} or Lemma \ref{l3}. \end{lemma} \begin{proof} First we decompose $u_w$ as $u_w=u_w^{+}+u_w^{-}\in H_0^{+}\oplus H_0^{-}$. Since $u_w$ is a weak solution of the problem \eqref{ccccc}, one has \begin{equation}\label{e2} \int_{\Omega}\nabla u_w\cdot \nabla \phi \,dx =\int_{\Omega}(\lambda u_w+g_0(x,u_w,\nabla w))\phi \,dx, \quad \forall \phi\in H_0^{1}(\Omega). \end{equation} Particularly, take $\phi=u_w^{+}-u_w^{-}$ into \eqref{e2}, we have \begin{equation}\label{a} \int_{\Omega}\nabla u_w\cdot\nabla (u_w^{+}-u_w^{-})-\lambda u_w(u_w^{+}-u_w^{-}) \,dx =\int_{\Omega}g_0(x,u_w,\nabla w)(u_w^{+}-u_w^{-})\,dx. \end{equation} By (H1), $\lambda_{j-1}<\lambda<\lambda_{j}$, then we have \begin{equation} \begin{split} &\int_{\Omega}\nabla u_w(x)\cdot\nabla (u_w^{+}-u_w^{-})-\lambda u_w(x)(u_w^{+}-u_w^{-}) \,dx \\ &= \int_{\Omega}(|\nabla u_w^{+}|^{2}-\lambda |u_w^{+}|^{2}) -(|\nabla u_w^{-}|^{2}-\lambda |u_w^{-}|^{2})\,dx \\ &\geq (1-\frac{\lambda}{\lambda_{j}})\int_{\Omega}|\nabla u_w^{+}|^{2}\,dx +(\frac{\lambda}{\lambda_{j-1}}-1)\int_{\Omega}|\nabla u_w^{-}|^{2}\,dx\\ &\geq m\int_{\Omega}|\nabla u_w|^{2}\,dx, \end{split}\label{aa} \end{equation} where $m=\min\{(1-\frac{\lambda}{\lambda_{j}}), (\frac{\lambda}{\lambda_{j-1}}-1)\}>0$. Fix $(N+2)/(N-2)>p>1$, by (H1) (H2) or (H1) (H3), for any $\epsilon>0$, there exists constant $k_{\epsilon}>0$ such that $|g_0(x,t,\xi)|\leq\epsilon|t|+k_{\epsilon}|t|^{p}$. By H\"older inequality and Sobolev inequality \begin{equation} \begin{split} &\int_{\Omega}g_0(x,u_w(x),\nabla w(x))(u_w^{+}-u_w^{-})\,dx \\ &\leq \int_{\Omega}(\epsilon|u_w(x)|+k_{\epsilon}|u_w(x)|^{p})(|u_w^{+}|+|u_w^{-}|)\,dx \\ &\leq \epsilon\|u_w\|_{L^{2}(\Omega)}\|u_w^{+}\|_{L^{2}(\Omega)} +\epsilon\|u_w\|_{L^{2}(\Omega)}\|u_w^{-}\|_{L^{2}(\Omega)} \\ &\quad +k_{\epsilon}\|u_w\|_{L^{p+1}(\Omega)}^{p}\|u_w^{+}\|_{L^{p+1}(\Omega)} +k_{\epsilon}\|u_w\|_{L^{p+1}(\Omega)}^{p}\|u_w^{-}\|_{L^{p+1}(\Omega)}\\ &\leq \frac{\epsilon}{\lambda_1}\|u_w\|\|u_w^{+}\|+\frac{\epsilon}{\lambda_1}\|u_w\|\|u_w^{-}\| +Ck_{\epsilon}\|u_w\|^{p}\|u_w^{+}\| +Ck_{\epsilon}\|u_w\|^{p}\|u_w^{-}\|\\ &\leq \frac{2\epsilon}{\lambda_1}\|u_w\|^{2}+2Ck_{\epsilon}\|u_w\|^{p+1}. \end{split} \label{aaa} \end{equation} Combining \eqref{a}, \eqref{aa} and \eqref{aaa} we obtain $(m-\frac{2\epsilon}{\lambda_1})\| u_w(x)\|^{2} \leq 2Ck_{\epsilon}\| u_w(x)\|^{p+1}$. Since $m>0$, we can take $\epsilon>0$ sufficiently small such that $m-\frac{2\epsilon}{\lambda_1}>0$, note that $p+1>2$, thus there exists a constant $c_1>0$ independent of $w$ such that $\|u_w\|\geq c_1$. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.1}] First take $u_0\in H_0^{1}(\Omega)$, by Lemma \ref{l1} we can construct a sequence $\{u_{n}\}$ such that for $n\geq1$ $u_{n}$ is a nontrivial solution of the equation \begin{equation}\label{cccc} \begin{gathered} -\Delta u_{n}=f(x,u_{n},\nabla u_{n-1}) , \quad \text{in }\Omega,\\ u_{n}=0, \quad \text{on }\partial\Omega. \end{gathered} \end{equation} From \eqref{cccc}, $u_{n+1}$ and $u_{n}$ satisfy \begin{gather}\label{e3} \int_{\Omega}\nabla u_{n+1}(\nabla u_{n+1}-\nabla u_{n})=\int_{\Omega}f(x,u_{n+1},\nabla u_{n})(u_{n+1}-u_{n}) , \\ \label{e4} \int_{\Omega}\nabla u_{n}(\nabla u_{n+1}-\nabla u_{n})=\int_{\Omega}f(x,u_{n},\nabla u_{n-1})(u_{n+1}-u_{n}) , \end{gather} By \eqref{e3}, \eqref{e4}, (H4), Sobolev inequality, and H\"older inequality, we obtain \begin{align*} &\|u_{n+1}-u_{n}\|^{2}\\ &=\int_{\Omega}(f(x,u_{n+1},\nabla u_{n})-f(x,u_{n},\nabla u_{n-1}))(u_{n+1}-u_{n})\,dx \\ &\leq \int_{\Omega}L(|u_{n+1}-u_{n}|+|\nabla u_{n}-\nabla u_{n-1}|)|u_{n+1}-u_{n}|\,dx\\ &\leq \int_{\Omega}\frac{L}{\lambda_1}|\nabla (u_{n+1}-u_{n})|^{2}\,dx +L(\int_{\Omega}|\nabla (u_{n}- u_{n-1})|^{2}\,dx)^{1/2} (\int_{\Omega}|u_{n+1}-u_{n}|^{2}\,dx)^{1/2} \\ &\leq \frac{L}{\lambda_1}\|u_{n+1}-u_{n}\|^{2}+\frac{L}{\sqrt{\lambda_1}}\|u_{n}- u_{n-1}\|\|u_{n+1}-u_{n}\|; \end{align*} thus $$ \|u_{n+1}-u_{n}\|\leq \frac{L\sqrt{\lambda_1}}{\lambda_1-L}\|u_{n}- u_{n-1}\|. $$ Since $0<\frac{L\sqrt{\lambda_1}}{\lambda_1-L}<1$, $\{u_{n}\}$ is a Cauchy sequence in $H_0^{1}(\Omega)$, so $\{u_{n}\}$ converges strongly to some $u^{\ast}\in H_0^{1}(\Omega)$. We claim that $u^{\ast}$ is a weak solution of \eqref{cc}. Indeed for any $\phi\in C_0^{\infty}(\Omega)$, by (H4), \begin{align*} &\int_{\Omega}(f(x,u_{n},\nabla u_{n-1})-f(x,u^{\ast},\nabla u^{\ast}))\phi \,dx\\ &\leq L\|\phi\|_{L^{\infty}(\Omega)}\int_{\Omega}(|u_{n}-u^{\ast}| +|\nabla u_{n-1}-\nabla u^{\ast}|)\,dx\\ &\leq C_{\phi}(\|u_{n}-u^{\ast}\|+\|u_{n-1}-u^{\ast}\|) \to 0 \end{align*} as $n\to\infty$; thus by Lemma \ref{l1}, \begin{align*} 0&=\lim_{n\to\infty}\int_{\Omega}\nabla u_{n}\nabla\phi -f(x,u_{n},\nabla u_{n-1})\phi \,dx\\ &=\int_{\Omega}\nabla u^{\ast}\nabla\phi-f(x,u^{\ast},\nabla u^{\ast})\phi \,dx. \end{align*} Hence the claim is proved. By Lemma \ref{l4}, $\|u_{n}\|\geq c_1$; thus $\|u^{\ast}\|\geq c_1$. Therefore, $u^{\ast}$ is a nontrivial weak solution of the problem \eqref{cc}. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.2}] By Lemma \ref{l3} and using the argument as used in the proof of Theorem \ref{thm1.1} we complete the proof. \end{proof} \section{Examples} Consider the equation \begin{equation}\label{c} \begin{gathered} -\Delta u=mu-\frac{au}{1+u^{2}}-\frac{u^{3}}{1+u^{4}}\sin^{2}|\nabla u|, \quad \text{in }\Omega,\\ u=0, \quad \text{on }\partial\Omega, \end{gathered} \end{equation} where $\Omega\subset\mathbb{R}^N(N\geq3)$ is a bounded domain with smooth boundary. Suppose that $a>0$, $m-a<\lambda_{k}\leq m$ for some $k\geq 1$, $m-a\neq \lambda_{j}$ for any $j\in \mathbb{N}$, and $0<\frac{(m+a+3)\sqrt{\lambda_1}}{\lambda_1-(m+a+3)}<1$. We will show that \eqref{c} has at least one nontrivial weak solution. Let $$ f(t,\xi)=mt-\frac{at}{1+t^{2}}-\frac{t^{3}}{1+t^{4}}\sin^{2}|\xi|. $$ Then $f\in C(\mathbb{R}\times\mathbb{R}^N,\mathbb{R})$, so (H0) holds. Let $$ g_0(t,\xi)=at(1-\frac{1}{1+t^{2}})-\frac{t^{3}}{1+t^{4}}\sin^{2}|\xi|. $$ Then $f(t,\xi)=(m-a)t+g_0(t,\xi)$. It is not difficult to see that $g_0(t,\xi)=o(|t|)$ as $t\to0$. Since $m-a\neq \lambda_{j}$ for any $j\in \mathbb{N}$, then (H1) holds. Let $$ g(t,\xi)=-\frac{at}{1+t^{2}}-\frac{t^{3}}{1+t^{4}}\sin^{2}|\xi|. $$ Then $f(t,\xi)=mt+g(t,\xi)$. It is not difficult to see that $g(t,\xi)=o(|t|)$ as $|t|\to\infty$. Note that $m-a<\lambda_{k}\leq m$ for some $k\geq 1$. If $m\neq\lambda_{k+l}$ for any $l\geq0$, then (H2) holds. If $m=\lambda_{k+l}$ for some $l\geq0$, then (H3) holds, in fact, since $a>0$, we have $$ |g(t,\xi)|\leq|\frac{at}{1+t^{2}}|+|\frac{t^{3}}{1+t^{4}}\sin^{2}|\xi|| \leq\frac{a}{2}+1 $$ and \begin{align*} G(t,\xi) &=-\int_0^{t}\frac{as}{1+s^{2}}ds-\int_0^{t}\frac{s^{3}}{1+s^{4}}\sin^{2}|\xi|ds\\ &=-\frac{a}{2}\ln(1+t^{2})-\frac{1}{4}\ln(1+t^{4})\sin^{2}|\xi| \to-\infty \end{align*} as $|t|\to\infty$, uniformly in $\xi\in\mathbb{R}^{n}$. Finally, we show that (H4) holds. By Lagrange mean value theorem, for any $ t_1,t_2\in \mathbb{R},\xi_1, \xi_2\in \mathbb{R}^N$ we have \begin{align*} &|f(t_2,\xi_2)-f(t_1,\xi_1)|\\ &=|(mt_2-\frac{at_2}{1+t_2^{2}}-\frac{t_2^{3}}{1+t_2^{4}}\sin^{2}|\xi_2|) -(mt_1-\frac{at_1}{1+t_1^{2}}-\frac{t_1^{3}}{1+t_1^{4}}\sin^{2}|\xi_1|)|\\ &\leq m|t_2-t_1|+\big|\frac{at_2}{1+t_2^{2}}-\frac{at_1}{1+t_1^{2}}| +|(\frac{t_2^{3}}{1+t_2^{4}}-\frac{t_1^{3}}{1+t_1^{4}})\sin^{2}|\xi_2|\big| \\ &\quad +|\frac{t_1^{3}}{1+t_1^{4}}(\sin^{2}|\xi_2|-\sin^{2}|\xi_1|)|\\ &\leq m|t_2-t_1|+a|t_2-t_1|+3|t_2-t_1|+2|\xi_2-\xi_1|\\ &\leq (m+a+3)(|t_2-t_1|+|\xi_2-\xi_1|), \end{align*} so (H4) holds. By Theorem \ref{thm1.1} and Theorem \ref{thm1.2}, Equation \eqref{c} has at least one nontrivial weak solution. \subsection*{Acknowledgments} This research is supported by the following grants: 11071098 from NSFC, 2012CB821200 from National 973 project of China, 20060183017 from SRFDP. Also supported by the Program for New Century Excellent Talents in University, 985 project of Jilin University, the outstanding young's project of Jilin University, and Graduate Innovation Fund of Jilin University (20111036). \begin{thebibliography}{00} \bibitem{Alves} C. O. Alves, P. C. Carri\~ao, L. F. O. Faria; Existence of solutions to singular elliptic equations with convection terms via the Galerkin method, \emph{Electronic Journal of Differential Equations} Vol. 2010, (2010), No.12, 1--12. \bibitem{Amann} H. Amann, M. G. Crandall; On some existence theorems for semilinear elliptic equations, \emph{Indiana Univ. Math. J} 27 (1978), 779--790. \bibitem{Bar} T. Bartsch, S. J. Li; Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, \emph{Nonlinear Analysis TMA} 28 (1997), 419--441. \bibitem{Cha} K.C. Chang; \emph{Infinite Dimensional Morse Theory and Multiple Solution Problem}, Birkh\"auser, Boston, 1993. \bibitem{Figueiredo1} D. G. de Figueiredo, M. Girardi, M. Matzeu; Semilinear ellptic equations with dependence on the gradient via mountain-pass techniques, \emph{Differential and Integral Equations} 17 (2004), 119--126. \bibitem{Figueiredo2} D. G. de Figueiredo, J. S\'anchez, P. Ubilla; Quasilinear equations with dependence on the gradient, \emph{Nonlinear Analysis} 71 (2009), 4862--4868. \bibitem{Giovany} G. M. de Figueiredo; Quasilinear equations with dependence on the gradient via Mountain Pass techniques in $\mathbb{R}^{N}$, \emph{Applied Mathematics and Computation} 203 (2008), 14--18. \bibitem{Girardi1} M. Girardi, M. Matzeu; A compactness result for quasilinear elliptic eqations by mountain pass techniques, \emph{Rend. Math. Appl.} 29 (2009), 83--95. \bibitem{Girardi2} M. Girardi, M. Matzeu; Existence of periodic solutions for some second order quasilinear Hamiltonian systems, \emph{Rend. Lincei. Mat. Appl.} 18 (2007), 1--9. \bibitem{Heinz} H. P. Heinz; On the number of solutions of nonlinear Schr\"odinger equations and on unique continuation, \emph{J. Differ. Equ.} 116 (1995), 149--171. \bibitem{Pohozaev} Pohozaev S; On equations of the type $\Delta u=f(x,u,Du)$, \emph{Mat. Sb.} 113 (1980), 324--338. \bibitem{Rab} P. Rabinowitz; \emph{Minimax Methods in Critical Point Theory with Applications to Differential Equations}, CBMS Regional Conf. Ser. Math., no. 65, Amer. Math. Soc., Providence, R. I., 1986. \bibitem{Servadei} R. Servadei; A semilinear elliptic PDE not in divergence form via variational methods, \emph{J. Math. Anal. Appl.} 383 (2011), 190--199. \bibitem{Teng} K. Teng, C. Zhang; Existence of solution to boundary value problem for impulsive differential equations, \emph{Nonlinear Anal. R.W.A.} 11 (2010), 4431--4441. \bibitem{Wang} X. Wang, Y. Deng; Existence of multiple solutions to nonlinear elliptic equations in nondivergence form, \emph{J. Math. Anal. and Appl.} 189 (1995), 617--630. \bibitem{Xavier} J. B. M. Xavier; Some existence theorems for equations of the form $-\Delta u=f(x,u,Du)$, \emph{Nonlinear Analysis T.M.A.} 15 (1990), 59--67. \bibitem{Yan} Z. Yan; A note on the solvability in $W^{2,p}(\Omega)$ for the equation $-\Delta u=f(x,u,Du)$, \emph{Nonlinear Analysis TMA} 24 (1995), 1413--1416. \end{thebibliography} \end{document}