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MAXIMUM PRINCIPLE AND EXISTENCE RESULTS FOR
NONLINEAR COOPERATIVE SYSTEMS ON A BOUNDED

DOMAIN

LIAMIDI LEADI, ABOUBACAR MARCOS

Abstract. In this work we give necessary and sufficient conditions for having
a maximum principle for cooperative elliptic systems involving p-Laplacian
operator on a bounded domain. This principle is then used to yield solvability
for the considered cooperative elliptic systems by an approximation method.

1. Introduction

This article studies the general nonlinear cooperative elliptic system

−∆pu = am(x)|u|p−2u+ bm1(x)h(u, v) + f in Ω

−∆qv = dn(x)|v|q−2v + cn1(x)k(u, v) + g in Ω
u = v = 0 on ∂Ω

(1.1)

where Ω is an bounded domain of class C2,ν of RN (N ≥ 1). Here ∆pu :=
div(|∇u|p−2∇u), 1 < p < +∞, is the p-Laplacian operator. The parameters
a, b, c, d are nonnegative real numbers. The functions h, k : R2 → R are contin-
uous and have like the weight functions m,m1, n, n1, some properties which will be
specified later.

Our aim is to construct a Maximum Principle with inverse positivity assumptions
which means that if f , g are nonnegative functions then any solution (u, v) of (1.1)
obey u ≥ 0; v ≥ 0 on Ω.

Many works have been devoted to the study of linear and nonlinear elliptic
cooperative systems either on a bounded domain or an unbounded domain of RN

(cf. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15]). Most of those works deal with Maximum
Principle for a certain class of functions h an k. In this work, we deal with a more
general class of functions h, k. For specific interest for our purposes is the work in
[4] where a study of problems such as (1.1) was carried out in the particular case
where the weights m = m1 = n = n1 = 1; h(s, t) = |s|α|t|βt and k(s, t) = |s|αs|t|β ,
α and β are some nonnegative real parameters. Clearly, our work extends the work
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in [4] first by considering a problem with weights and next by dealing with a more
general class of functions h, k. For instance our result can apply for the case

h(s, t) =

{
| sin s|α| arctan t|βt for t ≥ 0, s ∈ R
|s|α|t|βt for t ≤ 0, s ∈ R.

k(s, t) =

{
| sin s|αs| arctan t|β for s ≥ 0, t ∈ R
|s|αs|t|β for s ≤ 0, t ∈ R.

which is not taking into account in [4].
The remainder of this article is organized as follows: in the preliminary Section

2, we specify the required assumptions on the data of our problem and we collect
some known results relative to the principal positive eigenvalue of the p-Laplacian
operator. In Section 3, the Maximum Principle for (1.1) is given and is shown to
be proven full enough to yield existence of solution for (1.1) in Section 4.

2. Preliminaries

Throughout this work we assume that:
(B1) α, β ≥ 0; p, q > 1 and α+1

p + β+1
q = 1;

(B2) b, c ≥ 0, f ∈ Lp′(Ω), g ∈ Lq′(Ω) with 1
p + 1

p′ = 1
q + 1

q′ = 1;
(B3) m,m1, n, n1 are smooth weights such that m,n ∈ L∞(Ω) and 0 < m1,

n1 ≤ m(α+1)/pn(β+1)/q.
(B4) The functions h and k satisfy the sign conditions: th(s, t) ≥ 0, sk(s, t) ≥ 0

for (s, t) ∈ R2 and there exits Γ > 0 such that

h(s,−t) ≤ −h(s, t) for t ≥ 0, s ∈ R

h(s, t) = Γα+β+2−p|s|α|t|βt for t ≤ 0, s ∈ R

and

k(−s, t) ≤ −k(s, t) for s ≥ 0, t ∈ R

k(s, t) = Γα+β+2−q|s|αs|t|β for s ≤ 0, t ∈ R

Here and henceforth the Lebesgue norm in Lp(Ω) will be denoted by ‖ · ‖p and
the usual norm of W 1,p

0 (Ω) by ‖ · ‖. The positive and negative part of a function
u are defined respectively as u+ := max{u, 0} and u− := max{−u, 0}. Equalities
(and inequalities) between two functions must be understood a.e. in Ω.

Let us recall some results on eigenvalue problems with weight (cf [1, 2]) useful
in the sequel for this work. Given g ∈ L∞(Ω), it was known that the eigenvalue
problem

−∆pu = λg(x)|u|p−2u in Ω
u = 0 on ∂Ω

(2.1)

admits, an unique positive first eigenvalue λ1(g, p) with a nonnegative eigenfunc-
tion. Moreover, this eigenvalue is isolated, simple and as a consequence of its
variational characterization one has

λ1(g, p)
∫

Ω

g(x)|u|p ≤
∫

Ω

|∇u|p ∀u ∈W 1,p
0 (Ω).

Now we denote by Φ (respectively Ψ) the positive eigenfunction associated with
λ1(m, p) (respectively λ1(n, q)) normalized by

∫
Ω
m(x)|Φ|p = 1 (resp

∫
Ω
n(x)|Ψ|q =
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1). The functions φ and ψ belong to C1,α(Ω̄) (see [16, 17]) and by the weak
maximum principle (see [18])

∂Φ
∂ν

< 0 and
∂Ψ
∂ν

< 0 on ∂Ω,

where ν is the unit exterior normal. Finally, let us define

Θ :=
infΩk1(x)
supΩk2(x)

,

where

k1(x) := [
n1(x)
n(x)

](β+1)/q[
Φ(x)p

Ψ(x)q
]

α+1
p

β+1
q , k2(x) := [

m(x)
m1(x)

](α+1)/p[
Φ(x)p

Ψ(x)q
]

α+1
p

β+1
q .

3. A Maximum Principle for system (1.1)

We say that a Maximum Principle holds for system (1.1) if f ≥ 0 and g ≥ 0
implies u ≥ 0 and v ≥ 0.

By a solution (u, v) of (1.1), we mean a weak solution; i.e., (u, v) ∈ W 1,p
0 (Ω) ×

W 1,q
0 (Ω) such that∫

Ω

|∇u|p−2∇u.∇w =
∫

Ω

[am(x)|u|p−2uw + bm1(x)h(u, v)w + fw]∫
Ω

|∇v|q−2∇v.∇z =
∫

Ω

[dn(x)|v|q−2vz + cn1(x)k(u, v)z + gz]
(3.1)

for all (w, z) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω).
Note that by assumptions (B1)–(B4), the integrals in (3.1) are well-defined. We

are now ready to state the validity of the Maximum Principle for (1.1).

Theorem 3.1. Assume (B1)–(B4). Then the Maximum Principle holds for (1.1)
if

(C1) λ1(m, p) > a,
(C2) λ1(n, q) > d,
(C3) (λ1(m, p)− a)(α+1)/p(λ1(n, q)− d)(β+1)/q > b(α+1)/pc(β+1)/q.

Conversely if the Maximum Principle holds, then conditions (C1)–(C4) are satisfied,
where

(C4) (λ1(m, p)− a)(α+1)/p(λ1(n, q)− d)(β+1)/q > Θb(α+1)/pc(β+1)/q

Proof. The proof is partly adapted from [4, 12]
The condition is necessary. Assume that the Maximum Principle holds for

system (1.1). If λ1(m, p) ≤ a then the functions f := (a − λ1(m, p))m(x)Φp−1

and g := 0 are nonnegative, however (−Φ, 0) satisfies (1.1), which contradicts the
Maximum Principle.

Similarly, if λ1(n, q) ≤ d then f := 0 and g := (d − λ1(n, q))n(x)Ψq−1 are
nonnegative functions and (0,−Ψ) satisfies (1.1), which is a contradiction with the
Maximum Principle.

Now, assume that λ1(m, p) > a, λ1(n, q) > d and that (C4) does not hold; that
is,

(C4’) (λ1(m, p)− a)(α+1)/p(λ1(n, q)− d)(β+1)/q < Θb(α+1)/pc(β+1)/q
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Set

A =
(λ1(m, p)− a

b

)(α+1)/p

, B =
(λ1(n, q)− d

c

)(β+1)/q

,

then (C4’) becomes AB ≤ Θ which implies

AΘ2 ≤
Θ1

B
, where Θ1 = inf

Ω
k1(x), Θ2 = sup

Ω
k2(x). (3.2)

Hence there exists ξ > 0 such that

AΘ2 ≤ ξ ≤ Θ1

B
.

Let c1, c2 be two positive real numbers such that

ξ =
( cq2Γq

cp1Γp

)α+1
p

β+1
q

.

Using (3.2), (B1) and the above expression of ξ, we have

[λ1(m, p)− a]m(x)[c1Φ(x)]p−1 ≤ Γα+β+2−pbm1(x)[c1Φ(x)]α[c2Ψ(x)]β+1

a.e, for x ∈ Ω and

[λ1(n, q)− d]n(x)[c2Ψ(x)]q−1 ≤ Γα+β+2−qcn1(x)[c1Φ(x)]α+1[c2Ψ(x)]β

a.e, for x ∈ Ω. Furthermore, using the inequalities in (B4), we obtain

−[λ1(m, p)− a]m(x)[c1Φ(x)]p−1 − bm1(x)h(−c1Φ,−c2Ψ) ≥ 0 a.e, for x ∈ Ω

and

−[λ1(n, q)− d]n(x)[c2Ψ(x)]q−1 − cn1(x)k(−c1Φ,−c2Ψ) ≥ 0 a.e, for x ∈ Ω.

Hence

0 ≤ −[λ1(m, p)− a]m(x)[c1Φ(x)]p−1 − bm1(x)h(−c1Φ,−c2Ψ) = f,

0 ≤ −[λ1(n, q)− d]n(x)[c2Ψ(x)]q−1 − cn1(x)k(−c1Φ,−c2Ψ) = g

are nonnegative functions and (−c1Φ,−c2Ψ) is a solution of (1.1). This is a con-
tradiction with the Maximum Principle.

The condition is sufficient. Assume that the conditions (C1)–(C3) are sat-
isfied. So for f ≥ 0, g ≥ 0, suppose that there exists a solution (u, v) of system
(1.1). Multipling the first equation in (1.1) by u− and the second one by v− and
integrating over Ω we have∫

Ω

|∇u−|p = a

∫
Ω

m(x)|u−|p − b

∫
Ω

m1(x)h(u, v)u− −
∫

Ω

fu−∫
Ω

|∇v−|q = d

∫
Ω

n(x)|v−|q − c

∫
Ω

n1(x)k(u, v)v− −
∫

Ω

gv−.

Then, using the sign conditions in (B4) we obtain∫
Ω

|∇u−|p ≤ a

∫
Ω

m(x)|u−|p − b

∫
Ω

m1(x)h(u,−v−)u−∫
Ω

|∇v−|q ≤ d

∫
Ω

n(x)|v−|q − c

∫
Ω

n1(x)k(−u−, v)v−.

Recalling the conditions in (B4), we derive that

h(u,−v−)u− = −Γα+β+2−p(u−)α+1(v−)β+1,
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k(−u, v)v− = −Γα+β+2−q(u−)α+1(v−)β+1

and hence∫
Ω

|∇u−|p ≤ a

∫
Ω

m|u−|p + bΓα+β+2−p

∫
Ω

m1(x)(u−)α+1(v−)β+1∫
Ω

|∇v−|q ≤ d

∫
Ω

n|v−|q + cΓα+β+2−q

∫
Ω

n1(x)(u−)α+1(v−)β+1.

Combining the variational characterization of λ1(m, p) and λ1(n, q) with the Hölder
inequality and assumption (B3), we have

(λ1(m, p)− a)
∫

Ω

m(x)|u−|p

≤ bΓα+β+2−p
( ∫

Ω

m(x)|u−|p
)(α+1)/q( ∫

Ω

(n(x)|v−|q)
)(β+1)/p

,

(λ1(n, q)− d)
∫

Ω

n(x)|v−|q

≤ cΓα+β+2−q
( ∫

Ω

m(x)|u−|p
)(α+1)/q( ∫

Ω

(n(x)|v−|q)
)(β+1)/p

,

which implies( ∫
Ω

m(x)|u−|p
)(α+1)/p[

(λ1(m, p)− a)
( ∫

Ω

m(x)|u−|p
)(β+1)/q

− bΓα+β+2−p
( ∫

Ω

n(x)|v−|q
)(β+1)/q]

≤ 0,( ∫
Ω

n(x)|v−|q
)(β+1)/q[

(λ1(n, q)− d)
( ∫

Ω

n(x)|v−|q
)(α+1)/p

− cΓα+β+2−q
( ∫

Ω

m(x)|u−|p
)(α+1)/p]

≤ 0.

(3.3)

Let us show that u− = v− = 0.
• If

∫
Ω
m(x)|u−|p = 0 or

∫
Ω
n(x)|v−|q = 0 then, using the fact that m > 0,

n > 0, and (3.3), we obtain u− = v− = 0, which implies that the Maximum
Principle holds.
• If,

∫
Ω
m(x)|u−|p 6= 0 and

∫
Ω
n(x)|v−|p 6= 0, then we have

(λ1(m, p)− a)
( ∫

Ω

m(x)|u−|p
)(β+1)/q

≤ bΓα+β+2−p

(∫
Ω

n(x)|v−|q
)(β+1)/q

(λ1(n, q)− d)
( ∫

Ω

n(x)|v−|q
)(α+1)/p

≤ cΓα+β+2−q
( ∫

Ω

m(x)|u−|p
)(α+1)/p

,

which implies (
λ1(m, p)− a

)(α+1)/p( ∫
Ω

m(x)|u−|p
)α+1

p
β+1

q

≤ b
α+1

p Γ(α+β+2−p) α+1
p

( ∫
Ω

n(x)|v−|q
)α+1

p
β+1

q

,
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(λ1(n, q)− d)(β+1)/q
( ∫

Ω

n(x)|v−|q
) β+1

q
α+1

p

≤ c(β+1)/qΓ(α+β+2−q) β+1
q

( ∫
Ω

m(x)|u−|p
) β+1

q
α+1

p

.

Multiplying the two inequalities above and using the fact that

(α+ β + 2− p)
α+ 1
p

+ (α+ β + 2− q)
β + 1
q

= (α+ β + 2)(
α+ 1
p

+
β + 1
q

)− (α+ 1)− (β + 1) = 0
(3.4)

one has

(λ1(m, p)− a)(α+1)/p(λ1(n, q)− d)(β+1)/q

×
[( ∫

Ω

m(x)|u−|p
)( ∫

Ω

n(x)|v−|q
)]α+1

p
β+1

q

≤ b
α+1

p c(β+1)/q
[( ∫

Ω

m(x)|u−|p
)( ∫

Ω

n|v−|q
)]α+1

p
β+1

q

and then [
(λ1(m, p)− a)(α+1)/p(λ1(n, q)− d)(β+1)/q − b

α+1
p c(β+1)/q

]
×

[( ∫
Ω

m(x)|u−|p
)( ∫

Ω

n(x)|v−|q
)
]

α+1
p

β+1
q ≤ 0

Since (C1)–(C3) are satisfied, the inequality above is not possible. Consequently
u− = v− = 0 and the Maximum Principle holds. �

When p = q and m = n, the number θ is equal to 1 and as a consequence of
Theorem 3.1, we have the following result.

Corollary 3.2. . Consider the cooperative system (1.1) with p = q > 1 and m = n.
Then the Maximum Principle holds if and only if (C1)–(C3) are satisfied.

Remark 3.3. Our result is reduced to the one in [4] when h(s, t) = |s|α|t|βt,
k(s, t) = |s|αs|t|β and m = n = 1. When p = q and α = β = p − 2, we obtain the
result in [10].

4. Existence of Solutions

We prove in this section that, under some conditions, system (1.1) admits at
least one solution.

Theorem 4.1. Assume (B1), (B2), (C1), (C2), (C3) are satisfied. Then for f ∈
Lp′(Ω) and g ∈ Lq′(Ω), system (1.1) admits at least one solution in W 1,p

0 (Ω) ×
W 1,q

0 (Ω).

The proof will be given in several steps. It borrows some ideas from [4, 12], and
requires the Lemmas state below.

We choose r > 0 such that a+ r > 0 and d+ r > 0. Hence (1.1) reads as follows:

−∆pu+ rm(x)|u|p−2u = (a+ r)m(x)|u|p−2u+ bn1(x)h(u, v) + f in Ω

−∆qv + rn(x)|v|p−2v = cn1k(u, v) + (d+ r)n(x)|v|p−2v + g in Ω
u = v = 0 on ∂Ω

(4.1)
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Following [3] and [4], for 0 < ε < 1, we introduce the system

−∆puε + rm(x)|uε|p−2uε = ĥ(x, uε, vε) + f in Ω

−∆qvε + rn(x)|vε|q−2vε = k̂(x, uε, vε) + g in Ω
uε = vε = 0 on ∂Ω

(4.2)

where

ĥ(x, s, t) = (a+ r)m(x)|s|p−2s(1 + ε
1
p |s|p−1)−1 + bm1(x)h(s, t)(1 + ε|h(s, t)|)−1,

k̂(x, s, t) = (d+ r)n(x)|t|p−2t(1 + ε1/q|t|q−1)−1 + cn1k(s, t)(1 + ε|k(s, t)|)−1

Lemma 4.2. System (4.2) has a solution in W 1,p
0 (Ω)×W 1,q

0 (Ω)

Proof. Let ε > 0 be fixed
• Construction of sub-solution and super-solution for system

−∆pu+ rm(x)|u|p−2u = ĥ(x, u, v) + f in Ω

−∆qv + rn(x)|v|p−2v = k̂(x, u, v) + g in Ω
u = v = 0 on ∂Ω

(4.3)

From (B3), the functions ĥ and k̂ are bounded; that is, there exists a positive
constant M such that

|ĥ(x, u, v)| < M, |k̂(x, u, v)| < M ∀(u, v) ∈W 1,p
0 (Ω)×W 1,q

0 (Ω)

Let u0 ∈W 1,p
0 (Ω) (respectively v0 ∈W 1,q

0 (Ω)) be a solution of

−∆pu
0 + rm(x)|u0|p−2u0 = M + f

(resp. −∆pv
0 + rn(x)|v0|q−2v0 = M + g)

and u0 ∈W 1,p
0 (Ω) (resp v0 ∈W 1,q

0 (Ω)) be a solution of equation

∆pu0 + rm(x)|u0|p−2u0 = −M + f(resp−∆pv0 + rn(x)|v0|q−2v0 = −M + g)

The existence of u0, u
0, v0, v

0 is proved in [14]. Moreover we have

−∆pu0 + rm(x)|u0|p−2u0 − ĥ(x, u0, v)− f ≤ 0 ∀v ∈ [v0, v0],

−∆pu
0 + rm(x)|u0|p−2u0 − ĥ(x, u0, v)− f ≥ 0 ∀v ∈ [v0, v0],

−∆qv0 + rn(x)|v0|q−2v0 − k̂(x, u, v0)− g ≤ 0 ∀u ∈ [u0, u
0],

−∆qv
0 + rn(x)|v0|q−2v0 − k̂(x, u, v0)− g ≥ 0 ∀u ∈ [u0, u

0]

So (u0, u
0) and (v0, v0) are sub-super solutions of (4.3).

• Let K = [u0, u
0]× [v0, v0] and let T : (u, v) 7→ (w, z) the operator such that

−∆pw + rm(x)|w|p−2w = ĥ(x, u, v) + f in Ω

−∆qz + rn(x)|z|q−2z = k̂(x, u, v) + g in Ω
u = v = 0 on ∂Ω.

(4.4)

• Let us prove that T (K) ⊂ K. If (u, v) ∈ K, then

− (∆pw −∆pξ
0) + rm(x)(|w|p−2w − |ξ0|p−2ξ0) = [ĥ(x, u, v)−M ]) (4.5)

Taking (w − ξ0)+ as test function in (4.5), we have∫
Ω

(|∇w|p−2∇w − |∇ξ0|p−2∇ξ0)∇(w − ξ0)+
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+ r

∫
Ω

m(x)(|w|p−2w − |ξ0|p−2ξ0)(w − ξ0)+

=
∫

Ω

[(h(x, u, v)−M)](w − ξ0)+ ≤ 0.

Since the weight m is positive, by the monotonicity of the function s 7→ |s|p−2s
and that of the p-Laplacian, we deduce that the last integral equal zero and then
(w − ξ0)+ = 0; that is, w ≤ ξ0. Similarly we obtain ξ0 ≤ w by taking (w − ξ0)−

as test function in (4.5). So we have ξ0 ≤ w ≤ ξ0 and η0 ≤ z ≤ η0 and the step is
complete.
• To show that T is completely continuous we need the following Lemma.

Lemma 4.3. If (un, vn) → (u, v) in Lp(Ω)× Lq(Ω) as n→∞, then

(1) Xn = m(x) |un|p−2un

1+|ε1/pun|p−1 converges to X = m(x) |u|p−2u
1+|ε1/pu|p−1 in Lp′(Ω) as

n→∞.
(2) Yn = m1(x)

h(un,vn)
1+ε|h(un,vn)| converges to Y = m1(x)

h(u,v)
1+ε|h(u,v)| in Lq′(Ω) as

n→∞.

Proof. Since un → u in Lp(Ω), there exists a subsequence still denoted (un) such
that

un(x) → u(x) a.e. on Ω,

|un(x)| ≤ η(x) a.e. on Ω with η ∈ Lp(Ω)
(4.6)

Let

Xn = m(x)
|un|p−2un

1 + |ε1/pun|p−1
.

Then

Xn(x) → X(x) = m(x)
|u(x)|p−2u(x)

1 + |ε1/pu(x)|p−1
a.e. on Ω,

|Xn| ≤ ‖m‖∞|un|p−1 ≤ ‖m‖∞|η|p−1

in Lp′(Ω). Thus, from Lebesgue’s dominated convergence theorem one has

Xn → X = m(x)
|u|p−2u

1 + |ε1/pu|p−1
in Lp′(Ω) as n→∞

So (1) is proved.
Moreover, since vn → v in Lq(Ω), there exists a subsequence still denoted (vn)

such that
vn(x) → v(x) a.e onΩ,

|vn(x)| ≤ ζ(x) a.e on Ω withζ ∈ Lq(Ω)
(4.7)

Using (B4), one has

|Yn| ≤ ‖m1‖∞|h(un, vn)| ≤ Γα+β+2−p‖m1‖∞|η|α|ζ|β+1

in Lp′(Ω), since α
p + β+1

q = 1
p′ . Let

Yn = m1(x)
h(un, vn)

1 + ε|h(un, vn)|
Then

Yn(x) → Y (x) = m1(x)
h(u(x), v(x))

1 + ε|h(u(x), v(x))|
a.e in Ω
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So, we can apply the Lebesgue’s dominated convergence theorem and then we
obtain

Yn(x) → Y (x) = m1(x)
h(u(x), v(x))

1 + ε|h(u(x), v(x))|
in Lp′(Ω).

as n→∞. �

Remark 4.4. We can similarly prove that, as n→∞,

n(x)|vn|q−2vn(1 + |ε1/qvn|q−1)−1 → n(x)|v|q−2v(1 + |ε1/qv|q−1)−1 inLq′(Ω),

n1(x)k(un, vn)(1 + ε|k(un, vn)|)−1 → n1(x)k(u, v)(1 + ε|k(u, v)|)−1 in Lq′(Ω)

• To complete the continuity of T . Let us consider a sequence (un, vn) such
that (un, vn) → (u, v) in Lp(Ω)× Lq(Ω) as n→∞. We will prove that (wn, zn) =
T (un, vn) → (w, z) = T (u, v). Note that (wn, zn) = T (un, vn) if only if

(−∆pwn + rm(x)|wn|p−2wn)− (−∆pw + rm(x)|w|p−2w)

= ĥ(x, un, vn)− ĥ(x, u, v)

= (a+ r)[m(x)
|un|p−2un

1 + |ε1/pun|p−1
−m(x)

|u|p−2u

1 + |ε1/pu|p−1
]

+ bm1(x)[
h(un, vn)

1 + ε|h(un, vn|
− h(u, v)

1 + ε|h(u, v)|
]

= (a+ r)(Xn −X) + b(Yn − Y )

(4.8)

Multiplying by (wn − w) and integrating over Ω one has∫
Ω

(|∇wn|p−2∇wn − |∇w|p−2∇w)∇(wn − w)

+ r

∫
Ω

m(x)(|wn|p−2wn − |w|p−2w).(wn − w)

= (a+ r)
∫

Ω

(Xn −X)(wn − w) + b

∫
Ω

(Yn − Y )(wn − w)

≤ (a+ r)
( ∫

Ω

|Xn −X|p
′
)1/p′( ∫

Ω

|wn − w|p)1/p

+ b
( ∫

Ω

|Yn − Y |p
′
)1/p′( ∫

Ω

|wn − w|p
)1/p

Combining Lemma 4.3 and the inequality

‖x− y‖p ≤ c[(‖x‖p−2x− ‖y‖p−2y)(x− y)]s/2[‖x‖p + ‖y‖p]1−s/2, (4.9)

where x, y ∈ RN, c = c(p) > 0 and s = 2 if p ≥ 2, s = p if 1 < p < 2 (cf. e.g. [13]),
we can conclude that wn → w in W 1,p

0 (Ω) when n→∞.
Similarly we show that zn → z in W 1,q

0 (Ω) as n → ∞ and then, the continuity
of T is proved
• Compactness of the operator T . Suppose (un, vn) a bounded sequence in K

and let (wn, zn) = T (un, vn). Multiplying the first equality in the definition of T
by wn and integrating by parts on Ω, we notice the boundness of wn in W 1,p

0 (Ω)
and then we use the compact imbedding of W 1,p

0 (Ω) in Lp(Ω) to conclude.
The same argument is valid with (zn) in Lq(Ω). Thus T is completely continuous.

Since the set K is convex, bounded and closed in Lp(Ω) × Lq(Ω), the Schauder’s
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fixed point theorem, yields existence of a fixed point for T and accordingly the
existence of solution of system (4.2). So Lemma 4.2 is proved. �

Proof of Theorem 4.1. The proof will be given in three steps.
Step 1. Let us first prove that (uε, vε) is bounded in W 1,p

0 (Ω)×W 1,q
0 (Ω). Indeed

assume that ‖uε‖ → ∞ or ‖vε‖ → ∞ as ε→ 0. Let

tε = max{‖uε‖; ‖vε‖}, wε =
uε

t
1/p
ε

, zε =
vε

t
1/q
ε

We have ‖wε‖ ≤ 1 and ‖zε‖ ≤ 1 with either ‖wε‖ = 1 or ‖zε‖ = 1. Dividing the
first equation in (4.2) by (tε)

1
p′ we obtain

−∆pwε + rm(x)|wε|p−2wε

= (a+ r)m(x)|wε|p−2wε(1 + |ε
1
puε|p−1)−1

+ t−1/p′

ε bm1(x)h(tε1/pwε, tε
1
q zε)(1 + ε|h(uε, vε)|)−1 + t−1/p′

ε f.

Similarly dividing the second equation in (4.2) by (tε)1/q′ we obtain

−∆qzε + rn(x)|zε|q−2wε

= (d+ r)n(x)|wε|αwε(1 + |ε
1
puε|α+1)−1

+ t−1/q′

ε cn1(x)k(tε1/pwε, tε
1
q zε)(1 + ε|k(uε, vε)|)−1 + t−1/q′

ε g

Testing the first equation in the system above by wε and using (B4), we obtain∫
Ω

|∇wε|p ≤ a

∫
Ω

m(x)|wε|p + bΓα+β+2−p

∫
Ω

m(x)
α+1

p |wε|α+1n(x)(β+1)/q|zε|β+1

+ (tε)
−1
p′

∫
Ω

|f ||wε|.

which, by the Hölder inequality, implies∫
Ω

|∇wε|p ≤ a

∫
Ω

m|wε|p + bΓα+β+2−p
( ∫

Ω

m|wε|p
)(α+1)/p( ∫

Ω

n|wε|q
)(β+1)/q

+ (tε)−1/p′‖f‖(p∗)′‖zε‖p∗

Using the variational characterization of λ1(m, p) and the imbedding of W 1,p
0 (Ω) in

Lp(Ω). one has

‖wε‖p ≤ a

λ1(m, p)
‖wε‖p + bΓα+β+2−p ‖wε‖α+1

[λ1(m, p)](α+1)/p

‖zε‖β+1

[λ1(n, q)](β+1)/q

+ c(p,Ω)(tε)
−1
p′ ‖f‖(p∗)′‖zε‖,

where c(p,Ω) is the imbedding constant. So, one gets

(λ1(m, p)− a)
(‖wε‖p)(β+1)/q

λ1(m, p)

≤ bΓα+β+2−p(‖zε‖q)(β+1)/q

λ1(m, p)
α+1

p λ1(n, q)
(β+1)/q

+ (tε)−1/p′
( ∫

Ω

|f |p
′
)1/p′( ∫

Ω

|∇wε|p
)−α/p

,

(4.10)
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and accordingly

(λ1(m, p)− a)(α+1)/p (lim sup ‖wε‖p)
α+1

p
β+1

q

λ1(m, p)
α+1

p

≤ b
α+1

p
Γ(α+β+2−p)( α+1

p )(lim sup ‖zε|q)
α+1

p
β+1

q

λ1(m, p)(
α+1

p )2λ1(n, q)
α+1

p
β+1

q

.

(4.11)

In a similar way, we obtain

(λ1(n, q)− d)(β+1)/q (lim sup ‖zε‖q)
α+1

p
β+1

q

λ1(n, q)(β+1)/q

≤ c(β+1)/q Γ(α+β+2−q)( β+1
q )(lim sup ‖wε‖p)

α+1
p

β+1
q

λ1(n, q)(
β+1

q )2λ1(m, p)
α+1

p
β+1

q

.

(4.12)

Multiplying term by term the expressions in (4.11) and (4.12), and using (3.4), we
obtain

[(λ1(m, p)− a)
α+1

p (λ1(n, q)− d)(β+1)/q − b
α+1

p c(β+1)/q]

× (lim sup ‖wε‖p)
α+1

p
β+1

q (lim sup ‖zε‖p)
α+1

p
β+1

q

λ1(m, p)
α+1

p λ1(n, q)
(β+1)/q

≤ 0.

Since conditions (C1)–(C3) hold, one has

lim sup ‖wε‖p = lim sup ‖zε‖p = 0.

This yields a contradiction since ‖wε‖ = 1 or ‖zε‖ = 1, and consequently (uε, vε) is
bounded in W 1,p

0 (Ω)×W 1,q
0 (Ω).

Step 2. (ε1/puε; ε1/qvε) converges strongly in W 1,p
0 (Ω) ×W 1,q

0 (Ω) when ε ap-
proaches 0. It is obvious due to the boundness of (uε, vε) in W 1,p

0 (Ω)×W 1,q
0 (Ω).

Step 3. Let us prove that (uε, vε) converges strongly in W 1,p
0 (Ω) × W 1,q

0 (Ω)
when ε approaches 0. Since (uε, vε) is bounded in W 1,p

0 (Ω) × W 1,q
0 (Ω) we can

extract a subsequence still denoted (uε, vε) which converges weakly to (u0, v0) in
W 1,p

0 (Ω)×W 1,q
0 (Ω) and strongly in Lp(Ω)× Lq(Ω) when ε→ 0.

As uε → u0 in Lp(Ω), vε → v0 in Lq(Ω) when ε→ 0 then there exists a function
η ∈ Lp(Ω), ζ ∈ Lq(Ω) such that

uε(x) → u0(x) a.e. as ε→ 0 and |uε| ≤ η in Lp(Ω).

vε(x) → v0(x) a.e. as ε→ 0 and |vε| ≤ ζ in Lq(Ω).

Hence we have

||uε|p−2uε(x)(1 + |ε
1
puε|p−1)−1| ≤ |uε|p−1 ≤ ηp−1 in Lp′(Ω),

||vε|p−2vε(1 + |ε1/qvε|q−1)−1| ≤ |vε|q−1 ≤ ζq−1 in Lq′(Ω).

Since (ε1/puε) → 0, (ε1/qvε) → 0 a.e. when ε→ 0, one can deduce that

|uε(x)|p−2uε(x)(1 + |ε
1
puε(x)|p−1)−1 → |u0(x)|p−2u0(x),

|vε(x)|q−2uε(x)(1 + |ε1/qvε(x)|q−1)−1 → |v0(x)|q−2v0(x),

a.e in Ω as ε→ 0.
Applying the dominated convergence theorem we obtain

|uε|p−2uε(1 + |ε1/puε|p−1)−1 → |u0|p−2u0,
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|vε|q−2vε(1 + |ε1/qvε|q−1)−1 → |v0|q−2v0

in Lp′(Ω) as ε→ 0. Similarly we have

|h(uε, vε)|
1 + ε|h(uε, vε)|

≤ Γα+β+2−p|η|α|ζ|β+1 in Lp′(Ω) since
α

p
+
β + 1
q

=
1
p′
,

|k(uε, vε)|
1 + ε|k(uε, vε)|

≤ Γα+β+2−q|η|α+1|ζ|β in Lq′(Ω) since
α+ 1
p

+
β

q
=

1
q′
,

and

h(uε(x), vε(x))
1 + ε|h(uε(x), vε(x))|

→ h(u0(x), v0(x)) a.e. as ε→ 0,

k(uε(x), vε(x))
1 + ε|k(uε(x), vε(x))|

→ k(u0(x), v0(x)) a.e. as ε→ 0.

Again using the dominated converge theorem we have

h(uε, vε)
1 + ε|h(uε, vε)|

→ h(u0, v0) in Lp′(Ω) as ε→ 0,

k(uε, vε)
1 + ε|k(uε, vε)|

→ k(u0, v0) in Lq′(Ω) as ε→ 0.

Now, we conclude the strong convergence of (uε, vε) in W 1,p
0 (Ω) × W 1,q

0 (Ω) by
applying (4.9).

Finally, using a classical result if nonlinear analysis (cf [14]), we obtain

−∆pu0 + rm(x)|u0|p−2u0 = (a+ r)m(x)|u0|p−2u0 + bm1(x)h(u0, v0) + f in Ω

−∆qv0 + rn(x)|v0|q−2v0 = (d+ r)n(x)|v0|q−2v0 + cn1(x)k(u0, v0) + g in Ω
u0 = v0 = 0 on ∂Ω

which can be written again as

−∆pu0+ = am(x)|u0|p−2u0 + bm1(x)h(u0, v0) + f in Ω

−∆qv0 = dn(x)|v0|q−2v0 + cn1(x)k(u0, v0) + gin Ω
u0 = v0 = 0 on ∂Ω

This completes the proof. �

Remark 4.5. One has the same results by interchanging the role of h and k in the
second part of the assumption (B4), namely

h(s, t) = Γα+β+2−p|s|α(t)β+1 for t ≥ 0, s ∈ R
h(s,−t) ≤ −h(s, t) for t ≤ 0, s ∈ R

and

k(s, t) = Γα+β+2−q(s)α+1|t|β for s ≥ 0, t ∈ R,
k(−s, t) ≤ −k(s, t) for s ≤ 0, t ∈ R.
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[8] J. Fleckinger, J. Hernandez and F. de Thélin; Principe du Maximum pour un Système Ellip-
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Dunod, Paris, 1969.

[15] H. M. Serag and E. A. El-Zahrani; Maximum principle and existence of positive solutions for
nonlinear systems on RN , Electron. J. Diff. Equa. (EJDE), Vol. 2005 (2005), No. 85, 1-12.

[16] J. Serrin; Local behavior of solutions of quasilinear equations, Acta Math., 111 (1964), 247-
302.

[17] P. Tolksdorf; Regularity for a more general class of quasilinear elliptic equations, J. Diff.
Equat., 51 (1984), 126-150.

[18] J. L. Vázquez; A strong maximum principle for some quasilinear elliptic equations, Appl.
Math. and Optimization 12 (1984) 191-202.

Liamidi Leadi
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