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HYERS-ULAM STABILITY FOR SECOND-ORDER LINEAR
DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS

PASC GĂVRUŢĂ, SOON-MO JUNG, YONGJIN LI

Abstract. We prove the Hyers-Ulam stability of linear differential equations
of second-order with boundary conditions or with initial conditions. That is,
if y is an approximate solution of the differential equation y′′ + β(x)y = 0
with y(a) = y(b) = 0, then there exists an exact solution of the differential
equation, near y.

1. Introduction and preliminaries

In 1940, Ulam [17] posed the following problem concerning the stability of func-
tional equations:

Give conditions in order for a linear mapping near an approximately
linear mapping to exist.

The problem for approximately additive mappings, on Banach spaces, was solved
by Hyers [2]. The result by Hyers was generalized by Rassias [13]. Since then,
the stability problems of functional equations have been extensively investigated
by several mathematicians [3, 12, 13].

Alsina and Ger [1] were the first authors who investigated the Hyers-Ulam sta-
bility of a differential equation. In fact, they proved that if a differentiable function
y : I → R satisfies |y′(t) − y(t)| ≤ ε for all t ∈ I, then there exists a differentiable
function g : I → R satisfying g′(t) = g(t) for any t ∈ I such that |y(t)− g(t)| ≤ 3ε
for every t ∈ I.

The above result by Alsina and Ger was generalized by Miura, Takahasi and
Choda [11], by Miura [8], also by Takahasi, Miura and Miyajima [15]. Indeed, they
dealt with the Hyers-Ulam stability of the differential equation y′(t) = λy(t), while
Alsina and Ger investigated the differential equation y′(t) = y(t).

Miura et al [10] proved the Hyers-Ulam stability of the first-order linear differ-
ential equations y′(t) + g(t)y(t) = 0, where g(t) is a continuous function, while
Jung [4] proved the Hyers-Ulam stability of differential equations of the form
ϕ(t)y′(t) = y(t).

Furthermore, the result of Hyers-Ulam stability for first-order linear differential
equations has been generalized in [5, 6, 10, 16, 18, 19].
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Let us consider the Hyers-Ulam stability of the y′′ + β(x)y = 0, it may be not
stable for unbounded intervals. Indeed, for β(x) = 0, ε = 1/4 and y(x) = x2/16
condition −ε < y′′ < −ε is fulfilled and the function y0(x) = C1x + C2, for which
|y(x)− y0(x)| = |x

2

16 − C1x + C2| is bounded, does not exist.
The aim of this paper is to investigate the Hyers-Ulam stability of the second-

order linear differential equation

y′′ + β(x)y = 0 (1.1)

with boundary conditions
y(a) = y(b) = 0 (1.2)

or with initial conditions
y(a) = y′(a) = 0, (1.3)

where y ∈ C2[a, b], β(x) ∈ C[a, b], −∞ < a < b < +∞.
First of all, we give the definition of Hyers-Ulam stability with boundary condi-

tions and with initial conditions.

Definition 1.1. We say that (1.1) has the Hyers-Ulam stability with boundary
conditions (1.2) if there exists a positive constant K with the following property:
For every ε > 0, y ∈ C2[a, b], if

|y′′ + β(x)y| ≤ ε,

and y(a) = y(b) = 0, then there exists some z ∈ C2[a, b] satisfying

z′′ + β(x)z = 0

and z(a) = z(b) = 0, such that |y(x)− z(x)| < Kε.

Definition 1.2. We say that (1.1) has the Hyers-Ulam stability with initial con-
ditions (1.3) if there exists a positive constant K with the following property: For
every ε > 0, y ∈ C2[a, b], if

|y′′ + β(x)y| ≤ ε,

and y(a) = y′(a) = 0, then there exists some z ∈ C2[a, b] satisfying

z′′ + β(x)z = 0

and z(a) = z′(a) = 0, such that |y(x)− z(x)| < Kε.

2. Main Results

In the following theorems, we will prove the Hyers-Ulam stability with boundary
conditions and with initial conditions.

Let β(x) = 1, a = 0, b = 1, then it is easy to see that for any ε > 0, there exists
y(t) = εx2

H − εx
H , with H > 4, such that |y′′ + β(x)y| < ε with y(0) = y(1) = 0.

Theorem 2.1. If max |β(x)| < 8/(b−a)2. Then (1.1) has the Hyers-Ulam stability
with boundary conditions (1.2).

Proof. For every ε > 0, y ∈ C2[a, b], if |y′′ + β(x)y| ≤ ε and y(a) = y(b) = 0. Let
M = max{|y(x)| : x ∈ [a, b]}, since y(a) = y(b) = 0, there exists x0 ∈ (a, b) such
that |y(x0)| = M . By Taylor formula, we have

y(a) = y(x0) + y′(x0)(x0 − a) +
y′′(ξ)

2
(x0 − a)2,

y(b) = y(x0) + y′(x0)(b− x0) +
y′′(η)

2
(b− x0)2;
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thus

|y′′(ξ)| = 2M

(x0 − a)2
, |y′′(η)| = 2M

(x0 − b)2

On the case x0 ∈ (a, a+b
2 ], we have

2M

(x0 − a)2
≥ 2M

(b− a)2/4
=

8M

(b− a)2

On the case x0 ∈ [a+b
2 , b), we have

2M

(x0 − b)2
≥ 2M

(b− a)2/4
=

8M

(b− a)2
.

So

max |y′′(x)| ≥ 8M

(b− a)2
=

8
(b− a)2

max |y(x)|.

Therefore,

max |y(x)| ≤ (b− a)2

8
max |y′′(x)|.

Thus

max |y(x)| ≤ (b− a)2

8
[max |y′′(x)− β(x)y|+ max |β(x)|max |y(x)|],

≤ (b− a)2

8
ε +

(b− a)2

8
max |β(x)|max |y(x)|].

Let η = (b − a)2 max |β(x)|/8, K = (b − a)2/
(
8(1 − η)

)
. Obviously, z0(x) = 0 is a

solution of y′′ − β(x)y = 0 with the boundary conditions y(a) = y(b) = 0.

|y − z0| ≤ Kε.

Hence (1.1) has the Hyers-Ulam stability with boundary conditions (1.2). �

Next, we consider the Hyers-Ulam stability of y′′ +β(x)y = 0 in [a, b] with initial
conditions (1.3). For example, let β(x) = 1, a = 0, b = 1, then for any ε > 0, there
exists y(t) = εx2

H with H > 3, such that |y′′ + β(x)y| < ε with y(0) = y′(0) = 0.

Theorem 2.2. If max |β(x)| < 2/(b−a)2. Then (1.1) has the Hyers-Ulam stability
with initial conditions (1.3).

Proof. For every ε > 0, y ∈ C2[a, b], if |y′′ + β(x)y| ≤ ε and y(a) = y′(a) = 0. By
Taylor formula, we have

y(x) = y(a) + y′(a)(x− a) +
y′′(ξ)

2
(x− a)2.

Thus

|y(x)| = |y
′′(ξ)
2

(x− a)2| ≤ max |y′′(x)| (b− a)2

2
;

so, we obtain

max |y(x)| ≤ (b− a)2

2
[max |y′′(x)− β(x)y|+ max |β(x)|max |y(x)|]

≤ (b− a)2

2
ε +

(b− a)2

2
max |β(x)|max |y(x)|].
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Let η = (b−a)2 max |β(x)|/2, K = (b−a)2/
(
2(1−η)

)
. It is easy to see that z0(x) = 0

is a solution of y′′ − β(x)y = 0 with the initial conditions y(a) = y′(a) = 0.

|y − z0| ≤ Kε.

Hence (1.1) has the Hyers-Ulam stability with initial conditions (1.3). �
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