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HYERS-ULAM STABILITY FOR SECOND-ORDER LINEAR
DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS

PASC GAVRUTA, SOON-MO JUNG, YONGJIN LI

ABSTRACT. We prove the Hyers-Ulam stability of linear differential equations
of second-order with boundary conditions or with initial conditions. That is,
if y is an approximate solution of the differential equation vy’ + 8(z)y = 0
with y(a) = y(b) = 0, then there exists an exact solution of the differential
equation, near y.

1. INTRODUCTION AND PRELIMINARIES

In 1940, Ulam [I7] posed the following problem concerning the stability of func-
tional equations:

Give conditions in order for a linear mapping near an approximately
linear mapping to exist.

The problem for approximately additive mappings, on Banach spaces, was solved
by Hyers [2]. The result by Hyers was generalized by Rassias [I3]. Since then,
the stability problems of functional equations have been extensively investigated
by several mathematicians [3], 12} [13].

Alsina and Ger [I] were the first authors who investigated the Hyers-Ulam sta-
bility of a differential equation. In fact, they proved that if a differentiable function
y : I — R satisfies |y/(t) — y(t)| < e for all t € I, then there exists a differentiable
function g : I — R satisfying ¢'(t) = g(¢) for any ¢ € I such that |y(t) — g(t)| < 3e
for every t € I.

The above result by Alsina and Ger was generalized by Miura, Takahasi and
Choda [11], by Miura [g], also by Takahasi, Miura and Miyajima [I5]. Indeed, they
dealt with the Hyers-Ulam stability of the differential equation y'(t) = Ay(¢), while
Alsina and Ger investigated the differential equation y'(t) = y(t).

Miura et al [10] proved the Hyers-Ulam stability of the first-order linear differ-
ential equations y'(t) + g(t)y(t) = 0, where g(t) is a continuous function, while
Jung [] proved the Hyers-Ulam stability of differential equations of the form
e(t)y'(t) = y(t).

Furthermore, the result of Hyers-Ulam stability for first-order linear differential
equations has been generalized in [5] [ 10, [16, 18, [19].
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Let us consider the Hyers-Ulam stability of the y” + B(x)y = 0, it may be not
stable for unbounded intervals. Indeed, for 8(z) = 0, ¢ = 1/4 and y(z) = 2%/16
condition —e < y” < —e is fulfilled and the function yo(z) = Cyz 4 Ca, for which
ly(x) —yo(x)| = \% — C12 + C5] is bounded, does not exist.

The aim of this paper is to investigate the Hyers-Ulam stability of the second-
order linear differential equation

y' + By =0 (1.1)
with boundary conditions
y(a) =y(b) =0 (1.2)
or with initial conditions
y(a) =y'(a) =0, (1.3)

where y € C?[a,b], B(z) € Cla,b], —00 < a < b < +oo.
First of all, we give the definition of Hyers-Ulam stability with boundary condi-
tions and with initial conditions.

Definition 1.1. We say that (1.1)) has the Hyers-Ulam stability with boundary
conditions ([1.2)) if there exists a positive constant K with the following property:
For every € > 0, y € C?[a, b], if

ly" + B(x)yl <e,
and y(a) = y(b) = 0, then there exists some z € C?[a, b] satisfying

2"+ B(x)z2=0
and z(a) = z(b) = 0, such that |y(x) — z(z)| < Ke.
Definition 1.2. We say that ([1.1)) has the Hyers-Ulam stability with initial con-
ditions (1.3)) if there exists a positive constant K with the following property: For
every € > 0, y € C?[a, b], if

ly" + Bx)y| <e,
and y(a) = y'(a) = 0, then there exists some z € C?|a, b] satisfying

2"+ B(x)z2=0
and z(a) = 2'(a) = 0, such that |y(z) — z(z)| < Ke.

2. MAIN RESULTS

In the following theorems, we will prove the Hyers-Ulam stability with boundary
conditions and with initial conditions.
Let f(z) =1, a =0, b =1, then it is easy to see that for any ¢ > 0, there exists

y(t) = % — =%, with H > 4, such that |y” + 8(z)y| < e with y(0) = y(1) = 0.
Theorem 2.1. If max |3(z)| < 8/(b—a)?. Then (1.1) has the Hyers-Ulam stability
with boundary conditions (1.2)).

Proof. For every € > 0, y € C?[a,b], if |y + B(z)y| < e and y(a) = y(b) = 0. Let
M = max{|y(z)| : « € [a,b]}, since y(a) = y(b) = 0, there exists ¢ € (a,b) such
that |y(xzo)| = M. By Taylor formula, we have

y(a) = y(xo) + v/ (z0)(x0 — a) +

y(0) = y(xo) + ¥/ (w0) (b — o) +
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thus
. _2M ,, . 2M
|y (£)| - (xO _ a)g’ |y (77)| - (xO _ b)2
On the case x¢ € (a, “;b], we have
2M 2M 8M

> =
(ro—a)* — (b—a)?/4  (b—a)?
On the case zg € [%F2,b), we have

2M 2M SM

(@002~ G—a/d (—ap
50 SM 8
max |y (z)] > (b—a)? - (b—a)? max |y(z)].
Therefore,
_q)?
max y(@) < L2 max (o).
Thus
(b B a)2 "
mase ly(2)] < " max |y () ~ B}y + max () | max |y ()],
—a)? —a)?
< 0= Ot 5o mae (o)

Let n = (b — a)?* max |3(z)|/8, K = (b— a)?/(8(1 —n)). Obviously, zo(z) =0 is a
solution of y” — B(z)y = 0 with the boundary conditions y(a) = y(b) = 0.

ly — 20| < Ke.
Hence (L.1)) has the Hyers-Ulam stability with boundary conditions (1.2]). O
Next, we consider the Hyers-Ulam stability of y”/ + 8(z)y = 0 in [a, b] with initial

conditions (|1.3]). For example, let 5(z) =1, a =0, b = 1, then for any £ > 0, there
exists y(t) = % with H > 3, such that |y” + B(x)y| < ¢ with y(0) = ¢'(0) = 0.

Theorem 2.2. Ifmax|3(z)| < 2/(b—a)?. Then (1.1 has the Hyers-Ulam stability
with initial conditions (L.3)).

Proof. For every ¢ > 0, y € C?[a,b)], if |y" + B(x)y| < e and y(a) = y'(a) = 0. By
Taylor formula, we have

y(@) = y(a) + v/ @)z — ) + L1 @ )
Thus 9
@) =12 (@ - 02 < max g ) OS2
so, we obtain
maxy(2)] < P2 fmax |y () — By + max |3(2)] max |y )]
(b—af O o |8(a) max ly(a)])-
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Let = (b—a)? max |3(z)|/2, K = (b—a)?/(2(1—n)). It is easy to see that zo(z) = 0
is a solution of ¥ — B(x)y = 0 with the initial conditions y(a) = y'(a) = 0.

ly — z0] < Ke.
Hence (L.1)) has the Hyers-Ulam stability with initial conditions (|1.3)). O
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