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PULLBACK ATTRACTORS FOR A SINGULARLY
NONAUTONOMOUS PLATE EQUATION

VERA LÚCIA CARBONE, MARCELO JOSÉ DIAS NASCIMENTO,
KARINA SCHIABEL-SILVA, RICARDO PARREIRA DA SILVA

Abstract. We consider the family of singularly nonautonomous plate equa-
tion with structural damping

utt + a(t, x)ut −∆ut + (−∆)2u + λu = f(u),

in a bounded domain Ω ⊂ Rn, with Navier boundary conditions. When the
nonlinearity f is dissipative we show that this problem is globally well posed
in H2

0 (Ω) × L2(Ω) and has a family of pullback attractors which is upper-
semicontinuous under small perturbations of the damping a.

1. Introduction

We are concerned with the nonautonomous plate equation

utt + aε(t, x)ut −∆ut + (−∆)2u + λu = f(u) in Ω,

u = ∆u = 0 on ∂Ω,
(1.1)

where Ω is a bounded smooth domain in Rn, λ > 0 and f : R → R is a dissipative
nonlinearity with growth conditions which will be specified later. The map R 3 t 7→
aε(t, ·) ∈ L∞(Ω) supposed to be Hölder continuous with exponent 0 < β < 1 and
constant C, uniformly in ε ∈ [0, 1]. Moreover, we suppose that there are positive
constants α0, α1 ∈ R such that α0 6 aε(t, x) 6 α1, for (t, x) ∈ R×Ω, ε ∈ [0, 1], and
we assume the convergence aε(t, x) → a0(t, x) as ε → 0, uniformly in R× Ω.

The object of this paper is to analyze the asymptotic behavior of the equation
(1.1), in the energy space H2

0 (Ω) × L2(Ω), from the pullback attractors theory
point of view, [2, 8], and also to derive some stability properties for the “pullback
structures” for small values of the parameter ε.

The investigation of the asymptotic behavior of nonlinear dissipative equations
subjected to perturbations on parameters has been extensively studied in the last
two decades, with the goal of understanding how the variation of some parameters
in the models of the natural sciences can determine the evolution of their state.
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In the literature the asymptotic behavior and regularity properties of solutions
of second order differential equations

utt + Aut + Bu = f(t, u), (1.2)

where A and B are self-adjoint operators in a Hilbert space X and satisfy some
monotonicity properties, has been subject of recent and intense research. Such
problems arise on models of vibration of elastic systems and was extensively studied
in [6, 7, 9, 10, 11, 12, 13, 14, 16, 17] and in the references given there. It is important
to observe that in such works the linear operators it is not time dependent. However,
to study the problem (1.1) we will deal with equations where the linear operators
are time dependent in the form

utt + A(t)ut + B(t)u = f(t, u). (1.3)

We emphasize this particularity using the term singularly non-autonomous. To deal
with such equations we will need a concise existence theory as well continuation
results of solutions that will be done in the Section 2. In the Section 3 we obtain
some energy estimates necessary to guarantee that the solution operator for (1.1)
defines an evolution process which is strongly bounded dissipative. In the Section
4 we present basic definitions and the abstract framework of the theory of pullback
attractors and we prove existence of pullback attractors for the problem (1.1) as
well their upper-semicontinuity is ε = 0.

2. Problem set up

If A := (−∆)2 denote the biharmonic operator with domain D(A) = {u ∈
H4(Ω) ∩ H1

0 (Ω) : ∆u|∂Ω = 0}, it is well known that A is a positive self-adjoint
operator in L2(Ω) with compact resolvent and therefore −A generates a compact
analytic semigroup in L(L2(Ω)). Let us to consider, for α > 0, the scale of Hilbert
spaces Eα :=

(
D(Aα), ‖Aα · ‖L2(Ω) + ‖ · ‖L2(Ω)

)
. It is of special interest the case

α = 1
2 , where −A1/2 is the Laplace operator with homogeneous Dirichlet boundary

conditions, ie, A1/2 = −∆ with domain E1/2 = H2(Ω) ∩H1
0 (Ω) endowed with the

norm ‖u‖E1/2 = ‖∆u‖L2(Ω) + ‖u‖L2(Ω).
Setting the Hilbert space X0 := E1/2 × E0, let A : D(A) ⊂ X0 → X0 be the

elastic operator

A :=
[

0 −I
A + λI A1/2

]
,

with domain D(A) := E1 × E1/2. It is well known that this operator generates
a compact analytic semigroup in X0, see for instance [4, 7, 11]. Writing Aε(t) :=
A+ Bε(t), where Bε(t) is the uniformly bounded operator given by

Bε(t) :=
[
0 0
0 aε(t, ·)I

]
;

it follows that Aε(t) is also a sectorial operator in X0, with domain D(Aε(t)) =
D(A) (as a vector space) independent of t and ε. We observe that from the definition
ofAε(t), it follows easily from Open Mapping Theorem that X1 := (D(A), ‖A·‖X0+
‖ ·‖X0) is isomorphic to the space X1(t) := (D(A), ‖Aε(t) · ‖X0 +‖ ·‖X0), uniformly
in t ∈ R and ε ∈ [0, 1], since we have∥∥Aε(t)

[
u
v

] ∥∥
X0 +

∥∥ [
u
v

] ∥∥
X0 6

∥∥A [
u
v

] ∥∥
X0 + (α1 + 1)

∥∥ [
u
v

] ∥∥
X0 '

∥∥ [
u
v

] ∥∥
X1 .
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Next we introduce another scale of Hilbert spaces in order to rewrite the equation
(1.1) as an ordinary differential equation in a suitable space. We consider Xα :=(
D(Aα), ‖Aα ·‖X0+‖·‖X0

)
, so by complex interpolation we have Xα = [X0, X1]α =

E(α+1)/2×Eα/2, and the α-realization Aεα(t) of Aε(t) in Xα is an isometry of Xα+1

onto Xα. Also, the sectorial operator Aεα(t) : Xα+1 ⊂ Xα → Xα in Xα generates
a compact analytic semigroup {e−Aεα (t)s : s > 0} in L(Xα) which is the restriction
(or extension if α < 0) of {e−Aε(t)s : s > 0} to Xα. For more details we refer the
reader to [1, 15]. To shorten notation, we drop the index α and we write Aε(t) for
all different realizations of this operator.

In this framework the problem (1.1) can be rewritten as an ordinary differential
equation

d

dt

[
u
v

]
+Aε(t)

[
u
v

]
= F

( [
u
v

])
, (2.1)

with F
( [

u
v

])
=

[
0

fe(u)

]
, where fe is the Nemitskĭı operator associated with f .

To obtain solutions of (2.1) we will need some information about the solution
operator associated with the linear homogeneous problem

d

dt

[
u
v

]
+Aε(t)

[
u
v

]
=

[
0
0

]
,

[
u(t)
v(t)

]
t=t0

=
[
u0

v0

]
∈ Xα, (2.2)

and to do this we introduce the following definitions:

Definition 2.1. Let X be a Banach space and assume that for all t ∈ R the linear
operators A(t) : D ⊂ X → X are closed and densely defined (with D independent
of t).

(a) We say that A(t) is uniformly sectorial (in X ) if there is a constant M > 0
(independent of t) such that

‖(A(t) + µI)−1‖L(X ) 6
M

|µ|+ 1
, ∀ µ ∈ C, Re(µ) > 0. (2.3)

(b) We say that the map t 7→ A(t) is uniformly Hölder continuous (in X ), if
there are constants C > 0 and 0 < β < 1, such that for any t, τ, s ∈ R,

‖[A(t)−A(τ)]A(s)−1‖L(X ) 6 C(t− τ)β . (2.4)

(c) We say that a family of linear operators {S(t, τ) : t > τ ∈ R} ⊂ L(X ) is a
linear evolution process if
(1) S(τ, τ) = I,
(2) S(t, σ)S(σ, τ) = S(t, τ), for any t > σ > τ ,
(3) (t, τ) 7→ S(t, τ)v is continuous for all t > τ and v ∈ X .

Note that the requirements on aε, ε ∈ [0, 1] and the characterization of the
resolvent operator

Aε(t)−1 =
[
(A + λ)−1(A1/2 + aε(t, ·)I) (A + λ)−1

−I 0

]
guarantee that the operators Aε(t) are uniformly sectorial, and the map t 7→ Aε(t)
is uniformly Hölder continuous in X0, uniformly in ε. Therefore, following [5], it is
possible to construct a family {Lε(t, τ) : t > τ ∈ R} ⊂ L(X0) of linear evolution
process that solves (2.2), for each ε ∈ [0, 1].
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Definition 2.2. Let F : Xα → Xβ , α ∈ [β, β + 1), be a continuous function. We
say that a continuous function x : [t0, t0 + τ ] → Xα is a (local) solution of (2.1)
starting in x0 ∈ Xα, if x ∈ C([t0, t0 + τ ], Xα) ∩ C1((t0, t0 + τ ], Xα), x(t0) = x0,
x(t) ∈ D(Aε(t)) for all t ∈ (t0, t0 + τ ] and (2.1) is satisfied for all t ∈ (t0, t0 + τ).

We can now state the following result, proved in [5, Theorem 3.1]

Theorem 2.3. Suppose that the family of operators A(t) is uniformly sectorial and
uniformly Hölder continuous in Xβ. If F : Xα → Xβ, α ∈ [β, β +1), is a Lipschitz
continuous map in bounded subsets of Xα, then, given r > 0, there is a time τ > 0
such that for all x0 ∈ BXα(0, r) there exists a unique solution of the problem (2.1)
starting in x0 and defined in [t0, t0 + τ ]. Moreover, such solutions are continuous
with respect the initial data in BXα(0, r).

Next we present the class of nonlinearities that we will consider.

Lemma 2.4. Let f ∈ C1(R) be a function such that there exist constants c > 0
and ρ > 1 such that |f ′(s)| 6 c(1 + |s|ρ−1), for all s ∈ R. Then

|f(s)− f(t)| 6 2ρ−1c |t− s|
(
1 + |s|ρ−1 + |t|ρ−1

)
, ∀ s, t ∈ R.

Proof. For a, b, s > 0, one has (a+ b)s 6 2s max{as, bs} 6 2s(as + bs). Hence, given
s, t ∈ R, it follows from Mean Value’s Theorem the existence of θ ∈ (0, 1) such that

|f(s)− f(t)| = |s− t||f ′
(
(1− θ)s + θt

)
| 6 c|s− t| (1 + |(1− θ)s + θt|ρ−1)

6 2ρ−1c|s− t| (1 + |(1− θ)s|ρ−1 + |θt|ρ−1)

6 2ρ−1c|s− t| (1 + |s|ρ−1 + |t|ρ−1).

�

Lemma 2.5. Assume that 1 < ρ < n+4
n−4 and let f ∈ C1(R) be a function such

that there exists a constant c > 0 such that |f ′(s)| 6 c(1 + |s|ρ−1), for all s ∈ R.
Then there exists α ∈ (0, 1) such that the Nemitskĭı operator fe : E1/2 → E−α/2 is
Lipschitz continuous in bounded subsets of E1/2.

Proof. Let be α ∈ (0, 1) such that

ρ 6
n + 4α

n− 4
. (2.5)

Since Eγ ↪→ H4γ(Ω), we have E1/2 ↪→ Eα/2 ↪→ H2α(Ω) ↪→ L2n/(n−4α)(Ω). There-
fore L2n/(n+4α)(Ω) ↪→ E−α/2. Now by Lemma 2.4 and Hölder’s Inequality we
obtain

‖fe(u)− fe(v)‖E−α/2

6 c̃ ‖fe(u)− fe(v)‖L2n/(n+4α)(Ω)

6 c̃
( ∫

Ω

[2ρ−1c |u− v|(1 + |u|ρ−1 + |v|ρ−1)]2n/(n+4α)
)(n+4α)/(2n)

6 ˜̃c ‖u− v‖L2n/(n−4α)(Ω)

( ∫
Ω

(
1 + |u|ρ−1 + |v|ρ−1

)n/(4α)
)4α/n

6 ˜̃̃c ‖u− v‖L2n/(n−4α)(Ω)

(
1 + ‖u‖ρ−1

Ln(ρ−1)/(4α)(Ω)
+ ‖v‖ρ−1

Ln(ρ−1)/(4α)(Ω)

)
,

where c̃ is the embedding constant from L2n/(n+4α)(Ω) to E−α/2.
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From Sobolev embeddings E1/2 ↪→ Eα/2 ↪→ H2α(Ω) ↪→ Ln(ρ−1)/(4α)(Ω) for all
1 < ρ 6 (n + 4α)/(n− 4), it follows that

‖fe(u)− fe(v)‖E−α/2 6 C1‖u− v‖E1/2

(
1 + ‖u‖ρ−1

E1/2 + ‖v‖ρ−1
E1/2

)
,

for some constant C1 > 0. �

Remark 2.6. Since L2n/(n+4)(Ω) ↪→ L2(Ω), it follows from the proof of the Lemma
2.5 that fe : E1/2 → L2(Ω) is Lipschitz continuous in bounded subsets; that is,

‖fe(u)− fe(v)‖L2(Ω) 6 c̃ ‖fe(u)− fe(v)‖L2n/(n+4)(Ω) 6 ˜̃c‖u− v‖E1/2 .

Corollary 2.7. If f is as in the Lemma 2.5 and α ∈ (0, 1) satisfies (2.5), the

function F : X0 → X−α, given by F
( [

u
v

])
=

[
0

fe(u)

]
, is Lipschitz continuous in

bounded subsets of X0.

Now, Theorem 2.3 guarantees the local well posedness for the problem 2.5 in the
energy space H2

0 (Ω)× L2(Ω).

Corollary 2.8. If f, F are like in the Corollary 2.7 and α ∈ (0, 1) satisfies (2.5),
then given r > 0, for each ε ∈ [0, 1] there is a time τε = τε(r) > 0, such that for all
x0 ∈ BX0(0, r) there exists a unique solution xε : [t0, t0 + τε] → X0 of the problem
(2.1) starting in x0. Moreover, such solutions are continuous with respect the initial
data in BX0(0, r).

Since τε can be chosen uniformly in bounded subsets of X0, the solutions which
do not blow up in X0 must exist globally.

3. Existence of global solution

In the previous section we showed that if the nonlinearity f ∈ C1(R) satisfies

|f ′(s)| 6 c(1 + |s|ρ−1), ∀ s ∈ R, with 1 < ρ <
n + 4
n− 4

, (3.1)

then the equation (1.1) has a unique (local) solution

uε = uε(·, u0) ∈ C([t0, t0 + τε],H2(Ω) ∩H1
0 (Ω)) ∩ C1((t0, t0 + τε],H2(Ω) ∩H1

0 (Ω)),

for each ε ∈ [0, 1], each initial data u0 ∈ H2(Ω) ∩H1
0 (Ω), and τε = τε(t0, u0).

In this section, to establish global existence for uε(·, u0), besides of the assump-
tion (3.1), we also suppose the dissipativeness condition

lim sup
|s|→∞

f(s)
s

6 0. (3.2)

To achieve this purpose, with the same abstract framework introduced in the Sec-
tion 2, we will get a priori estimates for the solutions of the system (2.1) with initial
data in the space X0 = H2(Ω) ∩H1

0 (Ω) × L2(Ω). The choice of X0 is suitable to
study the asymptotic behaviour of (1.1), since we may exhibit an energy functional
in this space.

We consider the norms

‖u‖1/2 := [‖∆u‖2L2(Ω) + λ‖u‖2L2(Ω)]
1/2,∥∥ [

u
v

] ∥∥
X0 =

[
‖u‖21/2 + ‖v‖2L2(Ω)

]1/2
,
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which are equivalent to the usual ones in E1/2 = H2(Ω)∩H1
0 (Ω) and X0 = H2(Ω)∩

H1
0 (Ω)× L2(Ω), respectively.
For any 0 < b 6 1

4 , using Young’s and Cauchy-Schwarz Inequality, we obtain

−1
4
[‖u‖21/2 + ‖v‖2L2(Ω)] 6 −b[λ‖u‖2L2(Ω) + ‖v‖2L2(Ω)] 6 2bλ1/2〈u, v〉L2(Ω)

6 b[λ‖u‖2L2(Ω) + ‖v‖2L2(Ω)] 6
1
4
[‖u‖21/2 + ‖v‖2L2(Ω)],

(3.3)

which leads to
1
4

∥∥ [
u
v

] ∥∥2

X0 6
1
2

∥∥ [
u
v

] ∥∥2

X0 + 2bλ1/2〈u, v〉L2(Ω) 6
3
4

∥∥ [
u
v

] ∥∥2

X0 . (3.4)

First of all, we deal with the homogeneous problem (2.2). In fact, we ensure
that its solutions are uniformly exponentially dominated for initial data in bounded
subsets of X0.

Theorem 3.1. Let B ⊂ X0 be a bounded set. If x : [t0, t0 + τ ] → X0 is the
solution of the problem (2.2) starting in x0 ∈ B, then there exist positive constants
M = M(B) and ζ = ζ(B) such that

‖x(t)‖2X0 6 Me−ζ(t−t0), t ∈ [t0, t0 + τ ].

Proof. We denote by x =
[
u
v

]
: [t0, t0 + τ ] → X0 the solution of problem (2.2)

starting in x0 =
[
u0

v0

]
∈ X0. In this case u = u(t) is the solution (local in time) of

the homogeneous problem

utt + aε(t, x)ut + (−∆ut) + (−∆)2u + λu = 0 in Ω,

u = ∆u = 0 on ∂Ω.
(3.5)

Defining the functional W : X0 → R by

W
( [

u
v

])
=

1
2

∥∥ [
u
v

] ∥∥2

X0 + 2bλ1/2〈u, v〉L2(Ω), (3.6)

and putting v = ut in (3.6), it follows from the regularity of u, established in
Corollary 2.8, and from Young’s inequality that

d

dt
W

( [
u
ut

])
= 〈∆u, ∆ut〉L2(Ω) + λ〈u, ut〉L2(Ω) + 〈ut, utt〉L2(Ω) + 2bλ1/2〈ut, ut〉L2(Ω)

+ 2bλ1/2〈u, utt〉L2(Ω)

= 〈∆u, ∆ut〉L2(Ω)

+ λ〈u, ut〉L2(Ω) + 〈ut,−aε(t, x)ut − (−∆)2u− (−∆)ut − λu〉L2(Ω)

+ 2bλ1/2〈ut, ut〉L2(Ω) + 2bλ1/2〈u,−aε(t, x)ut − (−∆)2u− (−∆)ut − λu〉L2(Ω)

6 −(α0 − 2bλ1/2)‖ut‖2L2(Ω) + 2bα1λ
1/2 〈−u, ut〉L2(Ω) − 2bλ1/2〈u, (−∆)2u〉L2(Ω)

− 2bλ1/2〈u,−∆ut〉L2(Ω) − 2bλ
3
2 ‖u‖2L2(Ω)

6 −(α0 − 2bλ1/2 − bλ1/2)‖ut‖2L2(Ω) + 2bα1λ
1/2‖u‖L2(Ω)‖ut‖L2(Ω)

− (2bλ1/2 − bλ1/2)‖∆u‖2L2(Ω) − 2bλ
3
2 ‖u‖2L2(Ω)
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6 −(α0 − 2bλ1/2 − bλ1/2)‖ut‖2L2(Ω) +
bα1λ

1/2

η
‖ut‖2L2(Ω) + bα1λ

1/2η‖u‖2L2(Ω)

− (2bλ1/2 − bλ1/2)‖∆u‖2L2(Ω) − 2bλ
3
2 ‖u‖2L2(Ω)

6 −(α0 − 2bλ1/2 − bλ1/2 − bα1λ
1/2

η
)‖ut‖2L2(Ω) + λ1/2(bα1η − bλ)‖u‖2L2(Ω)

− bλ1/2(‖∆u‖2L2(Ω) + λ‖u‖2L2(Ω)),

for all η > 0. The choice η = λ/α1 leads to

d

dt
W

( [
u
ut

])
6 −(α0 − 2bλ1/2 − bλ1/2 − bα2

1

λ1/2
)‖ut‖2L2(Ω) − bλ1/2(‖∆u‖2L2(Ω) + λ‖u‖2L2(Ω)).

Choosing 0 < b 6 1/4 such that α0 − 2bλ1/2 − bελ1/2 − bα2
1

λ1/2 > 0, and taking

δ = min{α0 − 2bλ1/2 − bλ1/2 − bα2
1

λ1/2 , bλ1/2} > 0, then (3.4) implies that

d

dt
W

( [
u
ut

])
6 −δ[‖u‖21/2 + ‖ut‖2L2(Ω)] 6 −4δ

3
W

( [
u
ut

])
.

Therefore,

1
4
‖x(t)‖2X0 6 W

( [
u0

v0

])
e−4δ(t−t0)/3 6 3

∥∥ [
u0

v0

] ∥∥2

X0e
−4δ(t−t0)/3,

for all t ∈ [t0, t0 + τ ]. �

As in the homogeneous case, we can conclude, under some assumptions on the
nonlinear term, that the solutions of the semilinear problem (2.1) are uniformly
exponentially dominated for initial data in bounded subsets of X0.

Theorem 3.2. Let B ⊂ X0 a bounded set. If x : [t0, t0 + τ ] → X0 is the solution
of (2.1) starting in x0 ∈ B, with f ∈ C1(R) satisfying (3.1) and (3.2), then there
exist positive constants ω̄, K = K(B) and K1, such that

‖x(t)‖2X0 6 Ke−ω̄(t−t0) + K1, t ∈ [t0, t0 + τ ]. (3.7)

Proof. Let x =
[
u
v

]
: [t0, t0 + τ ] → X0 be the solution of (2.1) starting in x0 =[

u0

v0

]
∈ X0. Therefore, u = u(t) is a solution (local in time) of the equation

utt + aε(t, x)ut + (−∆ut) + (−∆)2u + λu = f(u) in Ω,

u = ∆u = 0 on ∂Ω.

We consider the functional W : X0 → R,

W
( [

u
v

])
= W

( [
u
v

])
−

∫
Ω

[
0

Fe(u)

]
dx, (3.8)

where Fe is the Nemitskĭı map associated to a primitive of f , F(s) =
∫ s

0
f(t) dt.

Similarly to the homogeneous case, for all η > 0, we have

d

dt
W

( [
u
ut

])
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= 〈∆u, ∆ut〉L2(Ω) + λ〈u, ut〉L2(Ω) + 〈ut, utt〉L2(Ω) + 2bλ1/2〈ut, ut〉L2(Ω)

+ 2bλ1/2〈u, utt〉L2(Ω) −
∫

Ω

f(u)utdx

= 〈∆u, ∆ut〉L2(Ω) + λ〈u, ut〉L2(Ω) + 〈ut,−aε(t, x)ut − (−∆)2u

− (−∆)ut − λu + f(u)〉L2(Ω) + 2bλ1/2〈ut, ut〉L2(Ω)

+ 2bλ1/2〈u,−aε(t, x)ut − (−∆)2u− (−∆)ut − λu + f(u)〉L2(Ω) −
∫

Ω

f(u)utdx

6 −(α0 − 2bλ1/2 − bλ1/2 − bα1λ
1/2

η
)‖ut‖2L2(Ω) + λ1/2(bα1η − bλ)‖u‖2L2(Ω)

− bλ1/2(‖∆u‖2L2(Ω) + λ‖u‖2L2(Ω)) + 2bλ1/2

∫
Ω

f(u)udx.

To deal with the integral term, just notice that from dissipativeness condition
(3.2), for all ν > 0 given, there exists Rν > 0 such that for |s| > Rν one has
f(s)s 6 νs2. Moreover being the function f(s)s bounded in the interval |s| 6 Rν

there exists a constant Mν such that f(s)s 6 Mν + νs2 for all s ∈ R. Therefore,
given ν > 0 there exists Cν > 0 such that∫

Ω

f(u)u dx 6 ν‖u‖2L2(Ω) + Cν .

Therefore,

d

dt
W

( [
u
ut

])
6 −(α0 − 2bλ1/2 − bλ1/2 − bα1λ

1/2

η
)‖ut‖2L2(Ω) + λ1/2(bα1η − bλ)‖u‖2L2(Ω)

− bλ1/2(‖∆u‖2L2(Ω) + λ‖u‖2L2(Ω)) + 2bλ1/2(ν‖u‖2L2(Ω) + Cν)

6 −(α0 − 2bλ1/2 − bλ1/2 − bα1λ
1/2

η
)‖ut‖2L2(Ω) + λ1/2(bα1η − bλ + 2bν)‖u‖2L2(Ω)

− bλ1/2(‖∆u‖2L2(Ω) + λ‖u‖2L2(Ω)) + 2bλ1/2Cν .

Now, fixing ν ∈ (0, λ/2) and taking η = (λ− 2ν)/α1 > 0, we have

d

dt
W

( [
u
ut

])
6 −(α0 − 2bλ1/2 − bλ1/2 − bα1λ

1/2

η
)‖ut‖2L2(Ω)

− bλ1/2(‖∆u‖2L2(Ω) + λ‖u‖2L2(Ω)) + 2bλ1/2Cν .

Choosing 0 < b < α0/(λ1/2(2η + η + α1)) and ω = min{α0 − 2bλ1/2 − bλ1/2 −
bα1λ

1/2/η, bλ1/2} > 0, we have

d

dt
W

( [
u
ut

])
6 −ω

∥∥ [
u
ut

] ∥∥2

X0 + 2bλ1/2Cν .

Now we observe that if ξ ∈ H2(Ω) ↪→ L2n/(n−4)(Ω), then

|ξ|ρ+1 ∈ L2n/
(
(n−4)(ρ+1)

)
(Ω) ↪→ L1(Ω)

for all 1 < ρ < (n + 4)/(n − 4), and our hypothesis on f implies that |f(s)| 6
c(1 + |s|ρ), s ∈ R. Therefore, we can find a constant c̄ > 1 such that for all
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ξ ∈ E1/2,

−
∫

Ω

∫ ξ(x)

0

f(s)dsdx 6 c̄‖ξ‖21/2(1 + ‖ξ‖ρ−1
1/2 ),

and therefore

− d

∫
Ω

∫ ξ(x)

0

f(s)dsdx 6 ‖ξ‖21/2, (3.9)

whenever ‖ξ‖1/2 6 r and considering d = 1
c̄(1+rρ−1) < 1.

Hence from (3.9) we obtain

−ω

2

∥∥ [
u
ut

] ∥∥2

X0 = −ω

2
‖u‖21/2 −

ω

2
‖ut‖2L2(Ω) 6 −ω

2
‖u‖21/2 6

ωd

2

∫
Ω

∫ u

0

f(s)dsdx

and
d

dt
W

( [
u
ut

])
6 −ω

2

∥∥ [
u
ut

] ∥∥2

X0 +
dω

2

∫
Ω

∫ u

0

f(s)dsdx + 2bλ1/2Cν

6 −ω

2

[
4 W

( [
u
ut

])
+ d

∫
Ω

∫ u

0

f(s)dsdx
]

+ 2bλ1/2Cν

6 −ω̄W
( [

u
ut

])
+ 2bλ1/2Cν

where ω̄ = min{2ω, dω/2}. The rest of the proof is as in the previous Theorem. �

Remark 3.3. Estimate (3.7) and Corollary 2.8 allow us to consider for each initial
data x0 ∈ X0 and each initial time τ ∈ R, the global solution xε = xε(·, τ, x0) :
[τ,∞) → X0 of the equation (2.1) starting in x0. This arises an evolution pro-
cess {Sε(t, τ) : t > τ} in the state space X0 defined by Sε(t, τ)x0 = xε(t, τ, x0).
According to [5]

Sε(t, τ)x0 = Lε(t, τ)x0 +
∫ t

τ

Lε(t, s)F (Sε(s, τ)x0) ds, ∀ t > τ ∈ R, (3.10)

where {Lε(t, τ) : t > τ ∈ R} is the linear evolution process associated to the
homogeneous problem (2.2).

4. Existence of pullback attractors

In this section we prove the existence of pullback attractors for the problem
(1.1) and the upper-semicontinuity of the family of pullback attractors when the
parameter ε goes to 0. For the sake of completness we will present basic definitions
and results of the theory of pullback attractors. For more details the reader is
invited to look [8, 2, 3].

We start remembering the definition of Hausdorff semi-distance between two
subsets A and B of a metric space (X, d):

distH(A,B) = sup
a∈A

inf
b∈B

d(a, b).

Definition 4.1. Let {S(t, τ) : t > τ ∈ R} be an evolution process in a metric space
X. Given A and B subsets of X, we say that A pullback attracts B at time t if

lim
τ→−∞

distH(S(t, τ)B,A) = 0,

where S(t, τ)B := {S(t, τ)x ∈ X : x ∈ B}.
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Definition 4.2. The pullback orbit of a subset B ⊂ X relatively to the evolu-
tion process {S(t, τ) : t > τ ∈ R} in the time t ∈ R is defined by γp(B, t) :=
∪τ6tS(t, τ)B.

Definition 4.3. An evolution process {S(t, τ) : t > τ} in X is pullback strongly
bounded if, for each t ∈ R and each bounded subset B of X, ∪τ6tγp(B, τ) is
bounded.

Definition 4.4. An evolution process {S(t, τ) : t > τ ∈ R} in X is pullback
asymptotically compact if, for each t ∈ R, each sequence {τn} in (−∞, t] with τn →
−∞ as n →∞ and each bounded sequence {xn} in X such that {S(t, τn)xn} ⊂ X
is bounded, the sequence {S(t, τn)xn} is relatively compact in X.

Definition 4.5. We say that a family of bounded subsets {B(t) : t ∈ R} of X is
pullback absorbing for the evolution process {S(t, τ) : t > τ ∈ R}, if for each t ∈ R
and for any bounded subset B of X, there exists τ0(t, B) 6 t such that

S(t, τ)B ⊂ B(t) for all τ 6 τ0(t, B).

Definition 4.6. We say that a family of subsets {A(t) : t ∈ R} of X is invariant
relatively to the evolution process {S(t, τ) : t > τ ∈ R} if S(t, τ)A(τ) = A(t), for
any t > τ .

Definition 4.7. A family of subsets {A(t) : t ∈ R} of X is called a pullback
attractor for the evolution process {S(t, τ) : t > τ ∈ R} if it is invariant, A(t) is
compact for all t ∈ R, and pullback attracts bounded subsets of X at time t, for
each t ∈ R.

In applications, to prove that a process has a pullback attractor we use the
Theorem 4.9, proved in [3], which gives a sufficient condition for existence of a
compact pullback attractor. For this, we will need the concept of pullback strongly
bounded dissipativeness.

Definition 4.8. An evolution process {S(t, τ) : t > τ ∈ R} in X is pullback strongly
bounded dissipative if, for each t ∈ R, there is a bounded subset B(t) of X which
pullback absorbs bounded subsets of X at time s for each s 6 t; that is, given a
bounded subset B of X and s 6 t, there exists τ0(s,B) such that S(s, τ)B ⊂ B(t),
for all τ 6 τ0(s,B).

Now we can present the result which guarantees the existence of pullback attrac-
tors for nonautonomous problems.

Theorem 4.9 ([3]). If an evolution process {S(t, τ) : t > τ ∈ R} in the metric space
X is pullback strongly bounded dissipative and pullback asymptotically compact, then
{S(t, τ) : t > τ ∈ R} has a pullback attractor {A(t) : t ∈ R} with the property that
∪τ6tA(τ) is bounded for each t ∈ R.

The next result gives sufficient conditions for pullback asymptotic compactness,
and its proof can be found in [3].

Theorem 4.10 ([3]). Let {S(t, s) : t > s} be a pullback strongly bounded evolution
process such that S(t, s) = T (t, s)+U(t, s), where U(t, s) is compact and there exist
a non-increasing function k : R+ × R+ → R, with k(σ, r) → 0 when σ → ∞, and
for all s 6 t and x ∈ X with ‖x‖ 6 r, ‖T (t, s)x‖ 6 k(t− s, r). Then, the family of
evolution process {S(t, s) : t > s} is pullback asymptotically compact.
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Theorem 4.11. Considering in X0, the family of operators

Uε(t, τ)(·) :=
∫ t

τ

Lε(t, s)F (Sε(s, τ)·) ds,

obtained from (3.10), the family of evolution process {Uε(t, τ) : t > τ} is compact
in X0.

Proof. The compactness of Uε follows easily from the fact that

E1/2 fe

−→ X−α/2 ↪→ E−1/2,

being the last inclusion compact, since that α < 1. �

From estimate (3.7) it is easy to check that the evolution process {S(t, τ) : t > τ}
associated with (2.1) is pullback strongly bounded.

Hence, applying Theorem 4.10, we obtain that the family of evolution process
{Sε(t, τ) : t > τ} is pullback asymptotically compact. Now, applying Theorem
4.9 we get that equation (1.1) has a pullback attractor {Aε(s) : s ∈ R} in X0 =
H2(Ω) ∩H1

0 (Ω)× L2(Ω) and that ∪s∈RAε(s) ⊂ X0 is bounded.

4.1. Upper-semicontinuity of pullback attractors. For each value of the pa-
rameter ε ∈ [0, 1] we recall that Sε(t, τ) is the evolution process associated to semi-
linear problem (2.1). Now we prove that the family of pullback attractors {Aε(t)}
is upper-semicontinuous in ε = 0, ie, we show that

lim
ε→0

distH(Aε(t), A0(t)) = 0.

Let

Z
( [

u
v

])
=

1
2

(
‖u‖21/2 + ‖v‖2L2(Ω)

)
.

For each x0 ∈ X0 consider u = Sε(t, τ)x0 and v = S0(t, τ)x0. Let w = u− v. Then

wtt = a0(t, x)vt − aε(t, x)ut + ∆wt −∆2w − λw + f(u)− f(v) (4.1)

It follows from Remark 2.6 that f is Lipschitz continuous in bounded set from E1/2

to L2(Ω). Since u, v, ut and vt are bounded, Young’s Inequality leads to

d

dt
Z

( [
w
wt

])
= 〈w,wt〉E1/2 + 〈wt, wtt〉L2(Ω)

= 〈∆w,∆wt〉L2(Ω) + λ〈w,wt〉L2(Ω) + 〈wt, wtt〉L2(Ω)

= 〈∆2w + λw + wtt, wt〉L2(Ω)

= 〈a0(t, x)vt − aε(t, x)ut + ∆wt + f(u)− f(v), wt〉L2(Ω)

= 〈−a0(t, x)wt + (a0(t, x)− aε(t, x))ut, wt〉L2(Ω) − ‖∇wt‖2L2(Ω)

+ 〈f(u)− f(v), wt〉L2(Ω)

6 −α0‖wt‖2L2(Ω) + ‖a0 − aε‖L∞(R×Ω)‖ut‖L2(Ω)‖wt‖L2(Ω)

+ K(‖w‖2L2(Ω) + ‖wt‖2L2(Ω))

6 K̃Z
( [

w
wt

])
+ K̃‖a0 − aε‖L∞(R×Ω).

Therefore,

Z
( [

w(t)
wt(t)

])
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6 K̃

∫ t

τ

Z
( [

w(s)
ws(s)

])
ds + K̃(t− τ)‖a0 − aε‖L∞(R×Ω) + Z

( [
w(τ)
wt(τ)

])
6 ˜̃K

∫ t

τ

Z
( [

w(s)
ws(s)

])
ds + ˜̃K(t− τ)‖a0 − aε‖L∞(R×Ω),

where

˜̃K = max
{

K̃,

Z
( [

w(τ)
wt(τ)

])
(α1 − α0)

}
.

Hence, by Gronwall’s Inequality it follows that

‖w‖21/2 + ‖wt‖2L2(Ω) 6
˜̃̃
K‖a0 − aε‖L∞(R×Ω)

∫ t

τ

eK(t−s) ds → 0, (4.2)

as ε → 0 in compact subsets of R uniformly for x0 in bounded subsets of X0.
For δ > 0 given, let τ ∈ R be such that dist(S0(t, τ)B, A0(t)) < δ

2 , where
B ⊃ ∪s∈RAε(s) is a bounded set (whose existence is guaranteed by Theorem 4.9).

Now for (4.2), there exists ε0 > 0 such that

sup
aε∈Aε(t)

‖Sε(t, τ)aε − S0(t, τ)aε‖ <
δ

2
,

for all ε < ε0. Then

dist(Aε(t), A0(t))

6 dist(Sε(t, τ)Aε(τ), S0(t, τ)Aε(τ)) + dist(S0(t, τ)Aε(τ), S0(t, τ)A0(τ))

= sup
aε∈Aε(τ)

dist(Sε(t, τ)aε, S0(t, τ)aε) + dist(S0(t, τ)Aε(t), A0(t)) <
δ

2
+

δ

2
,

which proves the upper-semicontinuity of the family of attractors.
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[11] A. Haraux, M. Ôtani; Analyticity and regularity for a class of second order evolution equa-
tions, preprint.

[12] A. Haraux; Sharp estimates of bounded solutions to a second-order forced equation with
structural damping, Differential Equations & Applications, 1, (3), 341-347 (2009).

[13] F. Huang; On the mathematical model for linear elastic systems with analytic damping, SIAM
J. Control and Optimization, 126, (3) (1988).

[14] K. Liu; Analyticity and Differentiability of Semigroups Associated with Elastic Systems with
Damping and Gyroscopic Forces, Journal of Diff. Equations, 141, 340-355 (1997).

[15] H. Triebel; Interpolation Theory, Function Spaces, Differential Operators, North-Holland
Pub. Co. (1978).

[16] T. Xiao, J. Liang; Semigroups Arising from Elastic Systems with Dissipation, Computers
Math. Applic., 33, (10), 1-9 (1997).

[17] C. Zhong, Q. Ma, C. Sun; Existence of strong solutions and global attractors for the suspen-
sion bridge equations, Nonlinear Analysis, 67, 442-454 (2007).
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