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SIMILARITY SOLUTIONS TO EVOLUTION EQUATIONS IN
ONE-DIMENSIONAL INTERFACES

MOHAMMED BENLAHSEN, AYMAN ELDOUSSOUKI, MOHAMMED GUEDDA,
MUSTAPHA JAZAR

Abstract. In this note, we study the evolution equation

∂th = −ν∂2
xh−K∂4

xh + λ1(∂xh)2 − λ2∂2
x(∂xh)2.

which was introduced by Muñoz-Garcia [9] in the context of erosion by ion
beam sputtering. We obtain an analytic solution that has the similarity form,
which is used in obtaining the coarsening behavior. This solution has ampli-

tude and wavelength that increase like ln(t) and
p

t ln(t), respectively.

1. Results

Muñoz-Garcia, Cuerno and Castro [9] derived and analyzed numerically a one-
dimensional class of unstable surface growth models in the context of erosion by
ion beam sputtering. They showed that the surface morphology is described by the
“interfacial height” equation

∂th = −ν∂2
xh−K∂4

xh + λ1(∂xh)2 − λ2∂
2
x(∂xh)2, (1.1)

or, after some rescaling,

∂th = −∂2
xh− ∂4

xh + (∂xh)2 − r∂2
x(∂xh)2, (1.2)

where ν > 0, K > 0, λ1 and λ2 are real parameters and r = νλ2/(Kλ1). The
parameters λ1 and λ2 have the same sign; i.e., r > 0, for mathematical well-
posedeness and are positive.

The above equations are referred to as the mixed Kuramoto-Sivashinsky equa-
tion. Equation (1.1) was also proposed for amorphous thin films in the presence
of potential density variations [14]. This equation is also referred to as the snow
equation. Under some conditions on the parameters, (1.1) models a snow surface
growth based on solar radiation [15].

The first linear term on the right-hand side of (1.1) is the instability term.
This term is balanced by the classical stabilizing linear term ∂4

xh. The nonlinear
term ∂2

x(∂xh)2 is responsible for the coarsening dynamics; i.e., the amplitude and
wavelength, or the lateral width, increase with time without bound (see below),
while the nonlinear term (∂xh)2 interrupts the coarsening process [9, 15]. For
λ2 = 0, or r = 0 (1.1) reduces to the famous Kuaramoto-Sivashinsky equation
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which is known to produce a spatio-temporal chaos and no coarsening. For λ1 = 0
(r →∞), (1.1) reads

∂th = −ν∂2
xh−K∂4

xh− λ2∂
2
x(∂xh)2. (1.3)

Such an equation, referred to as the Conserved Kuaramoto-Sivashinsky (CKS) equa-
tion, appears in different physical contexts. Recently, the CKS equation has been
derived and used by Frisch and Verga [2] to study the step meandering instability on
a vicinal surface. The authors obtained a l(t) = t1/2 scaling, for large time (uninter-
rupted coarsening), and also demonstrated a linear time growth of the characteristic
meander amplitude (A(t) = t) (here the wavelength l(t) and the amplitude A(t) are
the mean lateral distance between two consecutive local minima and mean vertical
distance from a local minimum to the next local maximum, respectively). Moreover
it is shown that the solution of (1.3) is a periodic juxtaposition of parabolas of the
form (see also [13])

h(x) = a− 4a

b2
x2, (1.4)

where a and b are real parameters. In fact, (1.4) is a stationary solution to the
CKS equation for a/b2 = ν/(16λ2); h(x) = a−

(
νx2/(16λ2)

)
for any a, irrespective

of K [2].
Recently, using (1.4), a class of exact solutions to (1.3) are derived by Guedda

et al. [4]. To be more precise the authors obtained a family of exact solutions to
the CKS equation having the form

h(x, t) = − ν

4λ2
x2, for |x| ≤ y(t), (1.5)

and zero elsewhere, where the parabola edge y = l(t)/2 satisfies a nonlinear ordi-
nary differential equation. Different scenarios are found: the lateral coarsening l(t)
(i) grows with time like

√
t, (ii) disappears, or (iii) does not change for all time,

depending on the initial lateral coarsening l(0).
Let us return to (1.2) which may present a transition or interpolation between

the chaotic behavior of the KS equation (as r → 0) and the coarsening behavior of
the CKS equation (as r →∞). From a mathematical point of view, since (1.1) can
be considered as a nonlinear perturbation of the CKS equation, we are concerned
wit the effect of the KPZ term λ1(∂xh)2 on the coarsening property of (1.1), or
(1.2). To be more precise, we will present an exact non stationary solution to (1.2)
with a logarithmic growth of the amplitude and unbounded wavelength (perpetual
coarsening) which indicates, in particular, that equation (1.2) may have different
behaviors.

As in [9] we take r = 50. The main line of argument used here is similar to the
one used in [2] and [4]. In fact we are looking for an exact non stationary solution
of (1.2) having the form

h(x, t) = A(t)
[
1− 4

l2(t)
x2

]
, (1.6)

for |x| ≤ l(t)/2 and zero elsewhere, presenting one individual cell, where A and l
are unknown functions to be determined explicitly. The form of the relation (1.6)
is instructive. Equation (1.2) may have a cell or a mound centered at the origin
with an amplitude or a height scale A(t) and a lateral width or a linear scale l(t).
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Ansatz (1.6) is typical. This means that the ratio h(x, t)/A(t) depends only on
a single variable η = x/l(t);

h(x, t)
A(t)

= ϕ(η), η = x/l(t). (1.7)

A class of solutions (1.7) are called invariant or similarity solutions and are com-
monly used for extracting the coarsening behavior from a nonlinear continuum
equation (see for example [6, 7, 10, 11]).

For a useful comparison, we first consider equation (1.2) where the KPZ term is
absent (i.e. CKS equation);

∂th = −∂2
xh− ∂4

xh− r∂2
x(∂xh)2. (1.8)

If in (1.6) we set

A(t) = 1 +
t

400
, l(t) = 2

√
400 + t,

we obtain an exact similarity solution to (1.8) with r = 50. Clearly A(t) ∼ t and
l(t) ∼

√
t, as t →∞, which agree with the result of [2].

Next, we study equation (1.2). Defining

A(t) = 7− 640q2t

1 + 16qt
+

1
2

ln(1 + 16qt), (1.9)

and

l(t) =
√

1200 + (112− 640q)t +
1
2q

(1 + 16qt) ln(1 + 16qt), (1.10)

where q = 7/1200, it can be verified that (1.6)-(1.10) is an exact solution to (1.2),
where r = 50, which begins with the cell defined by the truncated parabola

h(x, 0) = 7[1− 1
300

x2], (1.11)

for |x| ≤ 10
√

3, and zero elsewhere. The initial amplitude and lateral width are
A(0) = 7 and l(0) = 20

√
3.

We may deduce from this that equation (1.1), or (1.2), has solutions with am-
plitude and wavelength that tend to infinity with t, and behave like, as t →∞,

A(t) ∼ 1
2

ln(t), l(t) ∼ 2
√

2t ln(t). (1.12)

Interestingly, the above explicit solution reveals that the structure may undergo
logarithm-law coarsening. Similar behavior is obtained for the one dimensional
convective Cahn-Hilliard equation [3]. The dynamic is controlled not only by the
KPZ term, but also by the Conserved KPZ term ∂2

x(∂xh)2 (recall that the KS
equation produces a chaotic behavior without coarsening and the CKS equation
exhibits a coarsening behavior with the power-law l(t) ∼

√
t). Note that max |∂xh|2

and max |∂2
x(∂xh)2| go to zero as t tends to infinity and that

max |∂xh|2

max |∂2
x(∂xh)2|

= l2(t)/8, (1.13)

which approaches infinity with t. This indicates that ∂2
x(∂xh)2 is small compared

to (∂xh)2, for large t.
In summary, a solution which begins with the cell defined by (1.11) is found in

a closed form. This solution displays unbounded coarsening. An important and
interesting task for future investigation is to exhibit, for large r, different behaviors
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(if any) and to understand their dependence on the initial lateral coarsening or
initial amplitude.
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