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GENERALIZED FRAMEWORKS FOR FIRST-ORDER
EVOLUTION INCLUSIONS BASED ON YOSIDA

APPROXIMATIONS

RAM U. VERMA

Abstract. First, general frameworks for the first-order evolution inclusions
are developed based on the A-maximal relaxed monotonicity, and then using
the Yosida approximation the solvability of a general class of first-order non-
linear evolution inclusions is investigated. The role the A-maximal relaxed
monotonicity is significant in the sense that it not only empowers the first-
order nonlinear evolution inclusions but also generalizes the existing Yosida
approximations and its characterizations in the current literature.

1. Preliminaries

The notion of the A-maximal relaxed monotonicity [6] is not only limited to the
first-order evolution equations/inclusions in conjunction with Yosida approxima-
tions, but goes way beyond, including the fields of optimization and control theory,
variational inequality and variational inclusion problems, and unify a greater degree
of investigations relating to other fields as well. The obtained results seem to be
general in nature, and have a greater potential for applications. For more details,
we refer the reader to the references in this article. Consider a real separable Hilbert
space with the norm ‖ · ‖ and the inner product 〈·, ·〉.

We study a general class of first-order nonlinear evolution inhomogeneous inclu-
sions of the form

u′(t) + Mu(t) 3 f(t) for almost all t ∈ (0, T ),

u(0) = u0,
(1.1)

where M : X → 2X is a multivalued mapping on X, f ∈ W 1
2 (0, T ;X), T is fixed,

0 < T < ∞, and u : [0,∞) → X is a continuous function such that the above
inclusion problem holds.

Definition 1.1. Let M : X → 2X be a set-valued mapping on a real Hilbert space
X, and let A : X → X be (r)-strongly monotone. Then M is said to be accretive if
RM

ρ,A is single-valued and ( 1
r−ρm )-Lipschitz continuous for r−ρm > 0. Furthermore,
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M is m-accretive (or A-maximal accretive) if M is accretive and RM
ρ,A exists for

every ρ > 0 on X, where RM
ρ,A is the resolvent of M .

Lemma 1.2. Let M : X → 2X be a set-valued mapping on a real Hilbert space X.
Then following properties are equivalent:

(i) M is monotone.
(ii) M is accretive.

Lemma 1.3. Let M : X → 2X be a set-valued mapping on a real Hilbert space X.
Then we have the following implications equivalent:

(i) M is A-maximal relaxed monotone.
(ii) M is monotone and R(A + ρM) = X.
(iii) M is m-accretive.

We plan to explore the solvability of the inclusion problem (1.1) based on the
notion of the A-maximal relaxed monotonicity [6] and the generalized Yosida ap-
proximations. The generalized Yosida approximation turns out to be Lipschitz
continuous, while we explore the solvability of the inclusion problem (1.1). The
obtained results seem to be application-enhanced to problems arising from other
fields, including optimization theory, decision and management sciences, engineer-
ing science, variational inequality and variational inclusion problems. There are
also some detailed results that are investigated on the generalized Yosida approx-
imations to the context of the A-maximal relaxed monotonicity frameworks. For
more details, we refer the reader to the references in this article.

2. Auxiliary results

Definition 2.1. Let A : X → X be an (r)-strongly monotone single-valued map-
ping and M : X → 2X be a set-valued mappings. The map M : X → 2X is said to
be A-maximal relaxed monotone if

(i) M is (m)-relaxed monotone; i.e.,

〈u∗ − v∗, u− v〉 ≥ −m‖u− v‖2 ∀(u, u∗), (v, v∗) ∈ M,

(ii) R(A + ρM) = X for ρ > 0.

Definition 2.2. Let A : X → X be a single-valued mapping and M : X → 2X

be a set-valued mapping. Let A be (r)-strongly monotone. The map M is said to
be accretive iff (A + ρM)−1 is single-valued and (A + ρM)−1 is ( 1

r−ρm )-Lipschitz
continuous for all ρ > 0 and r − ρm > 0.

Proposition 2.3 ([6]). Let A : X → X be a single-valued mapping, and M :
X → 2X be a set-valued mapping such that D(A) ∩ D(M) 6= ∅. Let A be (r)-
strongly monotone, and let M be an A-maximal relaxed monotone mapping. Then
the generalized resolvent operator associated with M and defined by

RM
ρ,A(u) = (A + ρM)−1(u) ∀u ∈ X,

is ( 1
r−ρm )-Lipschitz continuous.

Next, we generalize the Yosida approximation Mρ by Mρ = ρ−1(I − ARM
ρ,A),

where A : X → X is an (r)-strongly monotone mapping on X for ρ > 0, and for
RM

ρ,A = (A + ρM)−1, which reduces to the Yosida approximation of M for A = I:

Mρ = ρ−1(I −RM
ρ ),
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where I is the identity and RM
ρ = (I + ρM)−1.

Lemma 2.4. Let A : X → X and M : X → 2X be mappings such that D(A) ∩
D(M) 6= ∅. Let A be (r)-strongly monotone and AoRM

ρ,A be cocoercive, and let M
be an A-maximal relaxed monotone mapping. Then the generalized Yosida approx-
imation Mρ of M defined by

Mρ = ρ−1(I −ARM
ρ,A),

where
RM

ρ,A(u) = (A + ρM)−1(u) ∀u ∈ D(A) ∩D(M),

is ( 1
ρ )-Lipschitz continuous.

Proof. For any u, v ∈ X, we have

〈Mρ(u)−Mρ(v), u− v〉
= 〈Mρ(u)−Mρ(v), ρ[Mρ(u)−Mρ(v)− (Mρ(u)−Mρ(v))] + u− v〉
= ρ‖Mρ(u)−Mρ(v)‖2

− 〈ρ−1[u− v − (ARM
ρ,A(u)−ARM

ρ,A(v))],−(ARM
ρ,A(u)−ARM

ρ,A(v))〉
= ρ‖Mρ(u)−Mρ(v)‖2 + ρ−1〈u− v,ARM

ρ,A(u)−ARM
ρ,A(v)〉

− ρ−1〈ARM
ρ,A(u)−ARM

ρ,A(v), ARM
ρ,A(u)−ARM

ρ,A(v)〉
≥ ρ‖Mρ(u)−Mρ(v)‖2 + ρ−1‖ARM

ρ,A(u)−ARM
ρ,A(v)‖2

− ρ−1‖ARM
ρ,A(u)−ARM

ρ,A(v)‖2

≥ ρ‖Mρ(u)−Mρ(v)‖2.

�

For A = I, Lemma 2.4 reduces to

Lemma 2.5. Let M : X → 2X be a set-valued mapping. Let M be a maximal
monotone mapping. Then the Yosida approximation Mρ of M defined by

Mρ = ρ−1(I −RM
ρ ),

where
RM

ρ (u) = (I + ρM)−1(u) ∀u ∈ D(M),

is ( 1
ρ )-Lipschitz continuous.

Proposition 2.6. Let A : X → X and M : X → 2X be mappings such that
D(A)∩D(M) 6= ∅. Let A be (r)-strongly monotone and AoRM

ρ,A be cocoercive, and
let M be an A-maximal relaxed monotone mapping. Then the generalized Yosida
approximation Mρ of M defined by Mρ = ρ−1(I −ARM

ρ,A), satisfies:

(i) Mρ(u) ∈ MRM
ρ,A(u).

(ii) Mρ is A-maximal relaxed monotone.
(iii) (Mλ)µ = Mλ+µ.

Proof. To prove (i), consider

w = RM
ρ,A(u) ⇒ u ∈ (A + ρM)(w) ⇒ ρMρ(u) = u−A(w) ∈ ρM(w).

The proofs of (ii) and (iii) follow, respectively, from the Lipschitz continuity of the
generalized resolvent RM

ρ,A(u) and the definition of Mρ. �
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Proposition 2.7. Let A : X → X and M : X → 2X be mappings such that
D(A)∩D(M) 6= ∅. Let A be (r)-strongly monotone and AoRM

ρ,A be cocoercive, and
let M be an A-maximal relaxed monotone mapping. Then the generalized Yosida
approximation Mρ of M defined by Mρ = ρ−1(I − ARM

ρ,A), satisfies: for all u ∈
D(M),

Mρ(u) → M0(u), ‖Mρ(u)‖ ↑ ‖M0(u)‖ as ρ ↓ 0,

‖Mρ(u)−M0(u)‖2 ≤ ‖M0(u)‖2 − ‖Mρ(u)‖2 for all ρ > 0.

3. Generalized First-Order Evolution Inclusions

Let A : X → X be a single-valued mapping, and M : X → 2X be a multival-
ued mapping. In this section, we consider the solvability of first-order nonlinear
evolution inclusions of the form

u′(t) + Mu(t) 3 f(t) for almost all t ∈ (0, T )

u(0) = u0,
(3.1)

where M : X → 2X is a multivalued mapping on X, f ∈ W 1
2 (0, T ;X), T is fixed,

0 < T < ∞, and u : [0,∞) → X is a continuous function such that (3.1) holds.
Here M is A-maximal relaxed monotone and the Yosida approximation of M is
defined by

Mρ = ρ−1(I −A(RM
ρ,A)).

We consider the main result on the first-order evolution inclusions based on A-
maximal relaxed monotonicity framework in conjunction with generalized Yosida
approximations.

Theorem 3.1. Let A : X → X be (r)-strongly monotone, and let M : X → 2X

be A-maximal relaxed monotone on a separable Hilbert space X. Let AoRM
ρ,A be

cocoercive, where RM
ρ,A) = (A + ρM)−1 for ρ > 0. Suppose that the given

u0 ∈ D(M), f ∈ W 1
2 (0, T ;X)

are fixed. Then (3.1) has exactly one solution u ∈ W 1
2 (0, T ;X) such that M : X →

2X is A-maximal relaxed monotone.

Proof. The proof is based on the results from Section 2, especially Lemma 2.4 and
Proposition 2.3. First, we consider the regularized problems

u′ρ(t) + Mρuρ(t) = f(t), uρ(0) = u0, ρ > 0. (3.2)

As the function f is continuous on [0,T] by the hypotheses, and Mρ is ( 1
ρ )-Lipschitz

continuous by Lemma 2.4, problems (3.2) can be solved as for first-order evolution
equations. To achieve that goal, we need to arrive at a priori estimate

‖u′ρ(t)‖ ≤ C ∀ ρ > 0, t ∈ [0, T ]. (3.3)

Now we differentiate (3.2) by setting gρ(t) = Mρouρ(t) as follows:

u′′ρ(t) + g′ρ(t) = f ′(t) for almost all t. (3.4)

Under the hypotheses all the derivatives exist. Since A ◦ RM
ρ,A is cocoercive (and

hence A ◦RM
ρ,A is nonexpansive), it implies

〈A(RM
ρ,A(u))−A(RM

ρ,A(u)), u− v〉 ≤ ‖u− v‖2.
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It follows that Mρ is monotone, and thus we have

〈Mρuρ(t + h)−Mρuρ(t), uρ(t + h)− uρ(t)〉 ≥ 0.

It follows that
〈g′ρ(t), u′ρ(t)〉 ≥ 0.

Therefore,

〈u′′ρ(t), u′ρ(t)〉 ≤ −〈g′ρ(t), u′ρ(t)〉+ 〈f ′(t), u′ρ(t)〉
≤ 〈f ′(t), u′ρ(t)〉
≤ ‖f ′(t)‖ ‖u′ρ(t)‖

≤ 1
2
‖f ′(t)‖2 +

1
2
‖u′ρ(t)‖2.

Applying integration by parts to 〈u′′ρ(t), u′ρ(t)〉, we have

2
∫ t

0

〈u′′ρ(s), u′ρ(s)〉ds = ‖u′ρ(t)‖2 − ‖u′ρ(0)‖2

≤ ‖f‖2
Y +

∫ t

0

‖u′ρ(s)‖2ds,

where Y = W 1
2 (0, T ;X). This is equivalent to

‖u′ρ(t)‖2 − ‖u′ρ(0)‖2 ≤ ‖f‖2
Y +

∫ t

0

‖u′ρ(s)‖2ds,

where Y = W 1
2 (0, T ;X). Now by Gronwall lemma,

‖u′ρ(t)‖2 ≤ c(‖u′ρ(0)‖2 + ‖f‖2
Y ).

Finally, using (3.2), we have u′ρ(0) = −Mρ(u0) + f(0) and ‖Mρu0‖ ≤ ‖M0u0‖, and
thus, it follows that (3.3) holds. �

Corollary 3.2. Let M : X → 2X be maximal monotone on a separable Hilbert
space X. Suppose that the given

u0 ∈ D(M), f ∈ W 1
2 (0, T ;X)

are fixed. Then (3.1) has exactly one solution u ∈ W 1
2 (0, T ;X) such that M : X →

2X is maximal monotone.

Concluding Remarks. The obtained results on the first-order evolution inclu-
sions can further be generalized to the case of a real Banach space setting in terms
of accretivity and m-accretivity. More importantly, the solution concept is also
changed as an integral solution based on the difference method belonging to (3.1)
as backward differences. The uniqueness proof assures that each classical solution
of (3.1) is also an integral solution.

References

[1] Ahmed, N. U.; Optimization and Identification of Systems Governed by Evolution Equations
on Banach Spaces, Pitman Research Notes in Mathematics, Volume 184, Longman Scientific
and Technical, 1988.

[2] Fang, Y. P.; Huang, N. J.; H-monotone operators and system of variational inclusions,
Communications on Applied Nonlinear Analysis 11 (1) (2004), 93–101.

[3] Komura, Y.; Nonlinear semigroups in Hilbert space, Journal of Mathematical Society of
Japan 19 (1967), 493–507.



6 R. U. VERMA EJDE-2011/50

[4] Nakajo,k; Takahashi, W.; Strong convergence theorems for nonxpansive mappings and nonex-
pansive semigroups, Journal of Mathematical Analysis and Applications 279 (2003), 372–379.

[5] Verma, R. U.; A-monotonicity and applications to nonlinear inclusion problems, Journal of
Applied Mathematics and Stochastic Analysis 17 (2004), 193–195.

[6] Verma, R. U.; A-monotonicity and its role in nonlinear variational inclusions, Journal of
Optimization Theory and Applications 129 (3)(2006), 457–467.

[7] Verma, R. U.; First-order evolution equations and Yosida approximations based on the rela-
tive maximal monotonicity, International Journal of Evolution Equations 5 (2) (2010), 1–19.

[8] Verma, R. U.; General system of A-monotone nonlinear variational inclusions with applica-
tions, Journal of Optimization Theory and Applications 131 (1) (2006), 151–157.

[9] Verma, R. U.; Approximation solvability of a class of nonlinear set-valued inclusions involving
(A, η)-monotone mappings, Journal of Mathematical Analysis and Applications 337 (2008),
969–975.

[10] Yosida, K.; On differentiability and the representation of one-parameter semigroups of linear
operators, Journal of Mathematical Society of Japan 1 (1948), 15–21.

[11] Yosida, K.; Functional Analysis, Springer-Verlag, Berlin, 1965.
[12] Zeidler, E.; Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York,

New York, 1984.
[13] Zeidler, E.; Nonlinear Functional Analysis and its Applications II/A, Springer-Verlag, New

York, New York, 1990.
[14] Zeidler, E.; Nonlinear Functional Analysis and its Applications II/B, Springer-Verlag, New

York, New York, 1990.
[15] Zeidler, E.; Nonlinear Functional Analysis and its Applications III, Springer-Verlag, New

York, New York, 1985.

Ram U. Verma
Texas A&M University, Department of Mathematics, Kingsville, TX 78363, USA

E-mail address: verma99@msn.com


	1. Preliminaries
	2. Auxiliary results
	3. Generalized First-Order Evolution Inclusions
	Concluding Remarks

	References

