\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2011 (2011), No. 39, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2011 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2011/39\hfil Existence of entire solutions] {Existence of entire solutions for semilinear elliptic systems under the Keller-Osserman condition} \author[Z. Zhang, Y. Shi, Y. Xue\hfil EJDE-2011/39\hfilneg] {Zhijun Zhang, Yongxiu Shi, Yanxing Xue} % in alphabetical order \address{Zhijun Zhang \newline School of Mathematics and Information Science, Yantai University, Yantai, Shandong, 264005, China} \email{zhangzj@ytu.edu.cn} \address{Yongxiu Shi \newline School of Mathematics and Information Science, Yantai University, Yantai, Shandong, 264005, China} \email{syxiu0926@126.com} \address{Yanxing Xue \newline School of Mathematics and Information Science, Yantai University, Yantai, Shandong, 264005, China} \email{xiaoxue19870626@163.com} \thanks{Submitted January 22, 2011. Published March 9, 2011.} \thanks{Supported by grants 10671169 from NNSF of China and 2009ZRB01795 from NNSF of \hfill\break\indent Shandong Province} \subjclass[2000]{35J55, 35J60, 35J65} \keywords{Semilinear elliptic systems; entire solutions; existence} \begin{abstract} Under the Keller-Osserman condition on $f+g$, we show the existence and nonexistence of entire solutions for the semilinear elliptic system $\Delta u =p(x)f(v), \quad \Delta v =q(x)g(u),\quad x\in \mathbb{R}^N$, where $p,q:\mathbb{R}^N\to [0,\infty)$ are continuous functions. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{remark}[theorem]{Remark} \newtheorem{corollary}[theorem]{Corollary} \section{Introduction} The purpose of this paper is to investigate the existence and nonexistence of entire solutions to the semilinear elliptic system \begin{equation}\label{e1.1} \begin{gathered} \Delta u=p(x)f(v),\quad x \in \mathbb{R}^N \; (N\geq3), \\ \Delta v=q(x)g(u),\quad x \in \mathbb{R}^N. \end{gathered} \end{equation} By an entire large solution $(u, v)$, we mean a pair of functions $u, v\in C^2(\mathbb{R}^N)$ that satisfies \eqref{e1.1} and \begin{equation}\label{e1.2} \lim_{|x|\to \infty}u(x)=\lim_{|x|\to \infty}v(x)=+\infty. \end{equation} In this article, we assume that $p,q,f$ and $g$ satisfy the following hypotheses: \begin{itemize} \item[(H1)] $p,q:\mathbb{R}^N\to [0,\infty)$ and $f,g:[0,\infty)\to [0,\infty)$ are continuous and nontrivial; \item[(H2)] $f$ and $g$ are nondecreasing on $[0, \infty)$ and $f(t)>0$, $g(t)>0$ for all $t>0$; \item[(H3)] $H(\infty):=\lim _{r\to \infty}H(r)=\infty$, \end{itemize} where \begin{gather}\label{e1.3} H(r):=\int_a^r\frac{dt}{\sqrt{2(F(t)+G(t))}},\quad r\geq a>0,\\ \label{e1.4} F(t):=\int_0^t f(s)ds,\quad G(t):=\int_0^t g(s)ds. \end{gather} We see that $$ H'(r)=\frac {1}{\sqrt{2(F(r)+G(r))}}>0,\quad \forall r>a $$ and $H$ has the inverse function $H^{-1}$ on $[a, \infty)$. Denote \begin{equation}\label{e1.5} \begin{gathered} \phi_1(r):=\max_{|x|=r} p(x),\quad \phi_2 (r):=\min_{|x|=r} p(x),\\ \psi_1(r):=\max_{|x|=r} q(x),\quad \psi_2 (r):=\min_{|x|=r} q(x). \end{gathered} \end{equation} First we review the single elliptic equation \begin{equation}\label{e1.6} \Delta u=p(x)f(u),\quad x \in \mathbb{R}^{N}. \end{equation} For $p \equiv 1$ on $\mathbb{R}^N$ and $f$ satisfying (H1) and (H2), Keller-Osserman \cite{KE,OS} first supplied the necessary and sufficient condition \begin{equation}\label{e1.7} \int_1^\infty \frac{dt}{\sqrt{2F(t)}}=\infty \end{equation} for the existence of entire radial large solutions to \eqref{e1.6}. For the weight $p(x)=p(|x|)$ and $f(u)=u^\alpha$ with $\alpha\in (0, 1]$, Lair and Wood \cite{LA2} proved that \eqref{e1.6} has a non-negation entire radial large solution if and only if \begin{equation}\label{e1.8} \int_0^\infty rp(r)dr=\infty. \end{equation} Recently, Lair \cite {LA3} obtained the following results. \begin{lemma} \label{lem1.1} Let $f$ and $b$ satisfy {\rm (H1)} and {\rm (H2)} with $f(0)=0$. Suppose \begin{itemize} \item[(i)] \eqref{e1.7} holds; \item[(ii)] there exists a positive constant $\varepsilon$ such that $\int_0^\infty r^{1+\varepsilon} \phi_1(r) dr <\infty$, \item[(iii)] $r^{2N-2}\phi_1(r)$ is nondecreasing near $\infty$. \end{itemize} Then \eqref{e1.6} has one nonnegative nontrivial entire bounded solution. If, on the other hand, $p$ satisfies $$ \int_0^\infty r\phi_2(r)dr=\infty $$ and (iii) holds, then \eqref{e1.6} has no nonnegative nontrivial entire bounded solution. \end{lemma} \begin{lemma}\label{lem1.2} Let $f$ and $b$ satisfy {\rm (H1)} and {\rm (H2)} with $f(0)=0$ and $p(x)=p(|x|)$. Suppose \eqref{e1.7} holds. Then \eqref{e1.6} has one nonnegative nontrivial entire solution. Suppose further that (iii) and \eqref{e1.8} hold, then any nonnegative nontrivial entire solution of \eqref{e1.6} is large. Conversely, if \eqref{e1.6} has a nonnegative nontrivial entire large solution, then $p$ satisfies $$ \int_0^\infty r^{1+\varepsilon} \phi_1(r) dr =\infty,\quad \forall\varepsilon>0. $$ \end{lemma} For more works, see for example \cite{BZ, CR1,GM,LA1,LA2,LA3,TZ,YANG, YZ1,YZ2} and the references therein. Now let us return to \eqref{e1.1}. When $p(x)=p(|x|)$, $q(x)=q(|x|)$, $f(v)=v^\alpha$, $g(u)=u^\gamma$, and $0<\alpha\leq \gamma$, Lair and Wood \cite {LA4} considered the existence and nonexistence of entire positive radial solutions to system \eqref{e1.1}. Moreover, when $0<\alpha\leq 1$ and $ 0\leq \gamma\leq 1$, Lair \cite {LA5} showed that \eqref{e1.1} has a nonnegative entire radial large solution if and only if $p$ and $q$ satisfy both of the following conditions \begin{gather}\label{e1.9} \int_0^\infty tp(t) \Big(t^{2-N}\int_0^t s^{N-3}Q_1(s) ds\Big)^\alpha dt=\infty,\\ \label{e1.10} \int_0^\infty tq(t) \Big(t^{2-N}\int_0^t s^{N-3}P_1(s) ds\Big)^\gamma dt=\infty, \end{gather} where $$ P_1(r)=\int_0^r \tau p(\tau)d\tau,\quad Q_1(r)=\int_0^r \tau q(\tau)d\tau. $$ Ghanmi, M\^{a}agli, R\u{a}dulescu and Zeddini \cite {GMRZ} generalized the results in \cite {LA4} to the case when $f$ and $g$ are satisfy the condition that: For all $c>0$, there exists $L_c>0$ such that for all $s_1, s_2\in[c,\infty)$, \begin{equation}\label{e1.11} |f(s_2)-f(s_1)|+|g(s_2)-g(s_1)|\leq L_c|s_2-s_1|. \end{equation} Recently, the authors in \cite{LZZ} showed the existence of entire positive radial large solutions for \eqref{e1.1} under the condition \begin{equation}\label{e1.12} \int_1^\infty\frac {ds}{f(s)+g(s)}=\infty. \end{equation} For related works, see \cite{CR2,GM,GMRZ,PS,WW,YZ1,YZ2,ZH} and the references therein. In this paper, we extend some of the existence results for entire positive solutions in Keller \cite {KE}, Osserman \cite {OS} and Lair \cite {LA3} to \eqref{e1.1}. Our main results are as the following. \begin{theorem}\label{thm1.1} Under the hypotheses {\rm (H1)--(H3)}. Suppose that \begin{itemize} \item[(H4)] $r^{2N-2}\big(\phi_1(r)+\psi_1(r)\big)$ is nondecreasing for large $r$; \item[(H5)] there exists a positive constant $\varepsilon$ such that $$ \int_0^\infty r^{1+\varepsilon} \big(\phi_1(r)+\psi_1(r)\big) dr <\infty, $$ \end{itemize} then \eqref{e1.1} has a positive entire bounded solution $(u,v)$. \end{theorem} From Theorem \ref{thm1.1}, we have the following corollaries for the spherically symmetric case $p(x)=p(|x|)$ and $q(x)=q(|x|)$. \begin{corollary}\label{cor1.1} Under hypotheses {\rm (H1)--(H3)}, \eqref{e1.1} has one positive solution $(u,v)$. Suppose furthermore that \begin{itemize} \item[(H6)] $ P(\infty)=Q(\infty)=\infty$, where \begin{gather*} P(\infty):=\lim _{r\to \infty}P(r),\quad P(r):=\int_0^{r}t^{1-N} \Big(\int_0^t s^{N-1}p(s) ds\Big)dt,\quad r\geq 0,\\ Q(\infty):=\lim _{r\to \infty}Q(r),\quad Q(r):=\int_0^{r}t^{1-N} \Big(\int_0^t s^{N-1}q(s)ds\Big)dt,\quad r\geq 0. \end{gather*} \end{itemize} Then every positive radial entire solution $(u, v)$ of \eqref{e1.1} is large and satisfies $$ u(r)\geq u(0) +f(v(0))P(r),\quad v(r)\geq v(0) +g(u(0))Q(r),\quad \forall r\geq 0. $$ \end{corollary} \begin{corollary}\label{cor1.2} Assume {\rm (H1)--(H4)}. If \eqref{e1.1} has a non-negative radial entire large solution, then \begin{equation}\label{e1.13} \int_0^\infty r^{1+\varepsilon} \big(p(r)+q(r)\big) dr =\infty, \quad \forall \varepsilon >0. \end{equation} \end{corollary} \begin{corollary}\label{cor1.3} Under hypotheses {\rm (H1)--(H3)}, \eqref{e1.1} has no radial entire large solutions if $p+q$ satisfies one of the following conditions: \begin{itemize} \item[(i)] $ p(r)+q(r) \leq Cr^{2-2N}$ for large $r$; \item[(ii)] $r^{2N-2}\big(p(r)+q(r)\big)$ is nondecreasing near $\infty$ and $$ \int_0^\infty \sqrt{p(r)+q(r)}dr <\infty; $$ \item[(iii)] $\int_0^\infty \sqrt{\Lambda(r)}dr <\infty$, where \begin{equation}\label{e1.14} \Lambda(r)=\max_{t\in [0, r]}\big(p(t)+q(t)\big),\quad r\geq 0. \end{equation} \end{itemize} \end{corollary} \begin{theorem}\label{thm1.2} Under hypotheses {\rm (H1)--(H3)}, \eqref{e1.1} has no radial entire large solutions if $p+q$ satisifes \begin{equation}\label{e1.15} 0 < \liminf_{ r\to \infty} \frac {p(r)+q(r)}{ r^\beta}\leq \limsup _{ r\to \infty} \frac {p(r)+q(r)}{ r^\beta}<\infty, \quad \beta<-2. \end{equation} \end{theorem} \begin{remark}\label{rmk1.1} \rm By (H1) and (H2), we see that (H3) implies $$ \int_a^\infty\frac {ds}{\sqrt{F(s)}} =\int_a^\infty\frac {ds}{\sqrt{G(s)}}=\infty. $$ \end{remark} \begin{remark}\label{rmk1.2}\rm By \cite {LA2}, we see that $P(\infty)=\infty$ if and only if $\int_0^\infty rp(r)dr=\infty$. \end{remark} \begin{remark}\label{rmk1.3} \rm By \cite {LA1}, we see that if $\int_1^\infty\frac {dt}{\sqrt{F(t)}}<\infty$, then $\int_1^\infty\frac {dt}{f(t)}<\infty$. In other words, if $\int_1^\infty\frac {dt}{f(t)}=\infty$, then $\int_1^\infty\frac {dt}{\sqrt{F(t)}}=\infty$. Conversely, if $\int_1^\infty\frac {dt}{\sqrt{F(t)}}=\infty $, then $\int_1^\infty\frac {dt}{f(t)}=\infty $ does not hold. For example, $$ f(t)=2(1+t)(\ln (t+1)\big)^{2\sigma-1}\big(\ln (t+1)+\sigma\big),\quad F(t)=(t+1)^2\big(\ln(t+1)\big)^{2\sigma}, $$ where $\sigma>0$. We can see that $\int_1^\infty\frac {dt}{f(t)}=\infty $ if and only if $\sigma \in (0, 1/2]$ and $\int_1^\infty\frac {dt}{\sqrt{F(t)}}=\infty $ if and only if $\sigma \in (0, 1]$. \end{remark} \section{Proof of main theorems} \begin{proof}[Proof of Theorem \ref{thm1.1}] Suppose (H4) holds. We will show that \eqref{e1.1} has a solution by finding a supersolution, $(\bar{u},\bar{v})$ and a subsolution, $(\underline{u}, \underline{v})$, for which $\underline{u} \leq \bar{u}$ and $\underline{v} \leq \bar{v}$. To do this, we first prove the existence of $(\underline{u}, \underline{v})$ to \eqref{e1.1} by considering the system of the integral equations \begin{equation}\label{e2.1} \begin{gathered} \underline{u}(r)=\beta+\int_0^{r}t^{1-N} \Big(\int_0^t s^{N-1}\phi_1(s)f(\underline{v}(s)) ds\Big)dt,\quad r\geq 0, \\ \underline{v}(r)=\beta+\int_0^{r}t^{1-N} \Big(\int_0^t s^{N-1}\psi_1(s)g(\underline{u}(s)) ds\Big)dt,\quad r\geq 0, \end{gathered} \end{equation} where $\beta\geq a>0$, $a$ is in \eqref{e1.3}. Let $\{\underline{v}_{m}\}_{m\geq 0}$ and $\{\underline{u}_{m}\}_{m\geq 1}$ be the sequences of positive continuous functions defined on $[0,\infty)$ by \begin{equation}\label{e2.2} \begin{gathered} \underline{v}_0(r)=\beta, \\ \underline{u}_{m}(r)=\beta+\int_0^{r} t^{1-N} \Big(\int_0^t s^{N-1}\phi_1(s)f(\underline{v}_{m-1}(s)) ds\Big)dt,\quad r\geq 0,\\ \underline{v}_{m}(t)=\beta+\int_0^{r} t^{1-N} \Big(\int_0^t s^{N-1}\psi_1(s)g(\underline{u}_m(s)) ds\Big)dt,\quad r\geq 0. \end{gathered} \end{equation} Obviously, for all $ r\geq 0$ and $m\in {\mathbb{N}}$, $\underline{u}_{m}(r)\geq \beta$, $\underline{v}_{m}(r)\geq \beta$ and $\underline{v}_0\leq \underline{v}_1$. $\mathbf{(H_2)}$ yields $u_1(r)\leq u_2(r)$ for all $r\geq 0$, then $\underline{v}_1(r)\leq \underline{v}_2(r)$ for all $r\geq 0$. By the same argument, we obtain that the sequences $\{\underline{u}_m(r)\}$ and $\{\underline{v}_m(r)\}$ are increasing with respect to $m$ for $r\in[0, \infty)$. Moreover, for each $r>0$, \begin{gather*} \underline{u}_m'(r)=r^{1-N} \Big(\int_0^{r} s^{N-1}\phi_1(s)f(\underline{v}_{m-1}(s)) ds\Big)\geq 0,\\ \underline{v}_m'(r)=r^{1-N} \Big(\int_0^{r} s^{N-1}\psi_1(s)g(\underline{u}_{m}(s)) ds\Big)\geq 0 \end{gather*} and \begin{align*} &\Big(r^{N-1}\big(\underline{u}_m(r)+\underline{v}_m(r)\big)'\Big)'\\ &=r^{N-1}\big( \phi_1(r)f(\underline{v}_{m-1}(r))+\psi_1(r) g(\underline{u}_{m}(r)) \big)\\ &\leq r^{N-1}\big(\phi_1(r)+\psi_1(r)\big)\Big( f(\underline{v}_m(r)+\underline{u}_m(r))+g(\underline{v}_m(r) +\underline{u}_m(r))\Big). \end{align*} Let $$ \Lambda(r)=\max_{t\in [0, r]}\big(\phi_1(t)+\psi_1(t)\big),\quad r\geq 0. $$ Multiplying this by $2r^{N-1}\big(\underline{u}_m(r)+\underline{v}_m(r)\big)'$ and integrate on $[0, r]$, we obtain \begin{align*} &\Big(r^{N-1}\big(\underline{u}_m(r)+\underline{v}_m(r)\big)'\Big)^2\\ & \leq 2 \int_0^r t^{2(N-1)}\big(\phi_1(t)+\psi_1(t)\big)\\ & \Big( f(\underline{v}_m(t)+\underline{u}_m(t))+ g(\underline{v}_m(t)+\underline{u}_m(t))\Big) \big(\underline{u}_m(t)+\underline{v}_m(t)\big)'dt\\ &\leq 2 r^{2(N-1)}\Lambda(r)\int_{2\beta}^{\underline{u}_m(r) +\underline{v}_m(r)} \big( f(\sigma)+g(\sigma)\big)d \sigma\\ &\leq 2 r^{2(N-1)}\Lambda(r) \big(F(\underline{u}_m(r) +\underline{v}_m(r)) +G(\underline{u}_m(r)+\underline{v}_m(r)) \big), \end{align*} and \begin{equation}\label{e2.3} \big(\underline{u}_m(r)+\underline{v}_m(r)\big)' \leq \sqrt{2\Lambda(r)}\Big(\big(F(\underline{v}_m(r)+\underline{u}_m(r))+ G(\underline{v}_m(r)+\underline{u}_m(r))\big)\Big)^{1/2}. \end{equation} Thus \begin{align*} & \int_0^{r}\frac {\underline{u}_m'(t)+\underline{v}_m'(t)} {\sqrt{2}\big({F(\underline{u}_m(t)+\underline{v}_m(t)) +G(\underline{u}_m(t)+\underline{v}_m(t))\big)}^{1/2}}dt \\ &= \int_{2 \beta}^{\underline{u}_m(r)+\underline{v}_m(r)} \frac {d\tau} { \sqrt{2(F(\tau)+G(\tau))} } \\ & = H(\underline{u}_m(r)+\underline{v}_m(r))- H(2 \beta) \leq \int_0^r\sqrt{M(t)}dt. \end{align*} Since $H^{-1}$ is increasing on $[0, \infty)$, we have \begin{equation}\label{e2.4} \underline{u}_m(r)+\underline{v}_m(r)\leq H^{-1}\Big (H(2\beta)+\int_0^r \sqrt{M(t)}dt\Big), \quad \forall r\geq 0. \end{equation} It follows by (H3) and \eqref{e2.2} that the sequences $\{\underline{u}_m\}$ and $\{\underline{v}_m\}$ are bounded and equi-continuous on $[0,c_0]$ for arbitrary $c_0>0$. By Arzela-Ascoli theorem, $\{\underline{u}_m\}$ and $\{\underline{v}_m\}$ have subsequences converging uniformly to $\underline{u}$ and $\underline{v}$ on $[0, c_0]$. By the arbitrariness of $c_0>0$, we see that $(\underline{u}, \underline{v})$ is a positive entire solution of \begin{equation}\label{e2.5} \begin{gathered} \Delta \underline{u}=\phi_1(r)f(\underline{v})\geq p(x)f(\underline{v}), \quad x \in \mathbb{R}^N, \\ \Delta \underline{v}=\psi_1(r)g(\underline{u})\geq q(x)g(\underline{u}),\quad x \in \mathbb{R}^N; \end{gathered} \end{equation} i.e., $(\underline{u}, \underline{v})$ is a positive entire subsolution of \eqref{e1.1}. Next we prove that $(\underline{u}, \underline{v})$ is bounded. Since $(\underline{u}, \underline{v})$ satisfies \begin{gather}\label{e2.6} \big(r^{N-1}\underline{u}'(r)\big)' = r^{N-1}\phi_1(r)f (\underline{v}),\\ \label{e2.7} \big(r^{N-1}\underline{v}'(r)\big)' = r^{N-1}\psi_1(r)g (\underline{u}). \end{gather} Choose $R > 0$ so that $r^{2N-2}\big(\phi_1(r)+\psi_1(r)\big)$ is nondecreasing on $[R, \infty)$ and $$ \underline{u}(r)>0, \quad \underline{v}(r)>0,\quad \forall r\geq R. $$ Now, since $\underline{u}'(r)\geq 0$ and $\underline{v}'(r)\geq 0$ for $r\geq 0$, and (H2) holds, multiplying \eqref{e2.6} and \eqref{e2.7} by $r^{N-1}\underline{u}'(r)$ and $r^{N-1}\underline{v}'(r)$, respectively, and integrating from $0$ to $r$, we have \begin{align*} \big(r^{N-1}\underline{u}'(r)\big)^2 &\leq \big(R^{N-1}\underline{u}'(R)\big)^2 +2\Big(\int_{R}^{r}t^{2(N-1)}p(t) f(\underline{v}(t))\underline{u}'(t)dt\Big)\\ &\leq C+2r^{2(N-1)}\big(\phi_1(r)+\psi_1(r)\big) \Big(\int_{R}^{r} \frac {d}{dt}F(\underline{v}(t)+\underline{u}(t))dt\Big)\\ &\leq C+2r^{2(N-1)}\big(\phi_1(r)+\psi_1(r)\big)F(\underline{v}(r) +\underline{u}(r)), \end{align*} and \[ \big(r^{N-1}\underline{v}'(r)\big)^2\leq C+2r^{2(N-1)}\big(\phi_1(r)+\psi_1(r)\big) G(\underline{v}(r)+\underline{u}(r)), \] for $r>R$, where $C=\big(R^{N-1}\big(\underline{u}'(R)+\underline{v}'(R))\big)^2$, which yields \begin{align*} &\underline{u}'(r)+\underline{v}'(r)\\ &\leq \sqrt{2C}r^{-(N-1)}+\sqrt{2(\phi_1(r)+\psi_1(r))}{\big(G(\underline{u}(r) +\underline{v}(r))+F(\underline{v}(r)+\underline{u}(r))\big)}^{1/2}, \end{align*} and \begin{align*} & \frac {d}{dr}\int_{\underline{u}(R) +\underline{v}(R)}^{\underline{u}(r)+\underline{v}(r)}\frac {d\tau}{\sqrt{2\big(F(\tau)+G(\tau)\big)}}\\ &\leq \sqrt{C}r^{1-N}\big(G(\underline{u}(r)+\underline{v}(r)) +F(\underline{v}(r)+\underline{u}(r))\big)^{-1/2} +\sqrt{\phi_1(r)+\psi_1(r)}. \end{align*} Integrating the above inequality and using the facts that $$ G(\underline{u}(r)+\underline{v}(r))+F(\underline{v}(r) +\underline{u}(r))\geq G(\underline{u}(R)+\underline{v}(R)) +F(\underline{v}(R)+\underline{u}(R))=C_1, $$ for all $r\geq R$, and $$ \sqrt{\phi_1(r)+\psi_1(r)}\leq \sqrt{2r^{1+\varepsilon}\big(\phi_1(r)+\psi_1(r)\big)r^{-1-\varepsilon}} \leq r^{1+\varepsilon}\big(\phi_1(r)+\psi_1(r)\big) + r^{-(1+\varepsilon)} $$ for $\varepsilon>0$, we have \begin{align*} H(\underline{u}(r)+\underline{v}(r)) &\leq H(\underline{u}(R)+\underline{v}(R))+\int_R^r s^{1+\varepsilon}\big(\phi_1(s)+\psi_1(s)\big)ds +(\varepsilon R^\varepsilon)^{-1}\\ &\quad +\sqrt{CC_1^{-1}}(NR^N)^{-1}. \end{align*} Letting $r\to\infty$, we find that $(\underline{u}, \underline{v})$ is bounded since $\phi_1+\psi_1$ satisfies (H5) and $f+ g$ satisfies (H3). Thus, Since $(\underline{u}, \underline{v})$ is nondecreasing, we have $$ \lim_{r\to \infty}\underline{u}(r)=M_1>0,\quad \ \ \lim_{r\to \infty}\underline{v}(r)=M_2>0. $$ In the same way, we can see that the system \begin{equation}\label{e2.8} \begin{gathered} \bar{u}(0)=\bar{v}(0)=\max\{M_1, M_2\},\quad \bar{u}'(r)=\bar{v}'(r)=0,\\ \Delta \bar{u}(x)=\bar{u}''(r)+\frac {N-1}{r}\bar{u}'(r)= \phi_2(r)f(\bar{v}(r)) ,\quad r>0,\\ \Delta \bar{v}(x)=\bar{v}''(r)+\frac {N-1}{r}\bar{v}'(r)= \psi_2(r)g(\bar{u}(r)) ,\quad r>0 \end{gathered} \end{equation} has a bounded solution $(\bar{u}, \bar{v})$ which is a supersolution for \eqref{e1.1}. It is also clear that $$ \bar{u}(r)\geq M_1\geq \underline{u}(r) ,\quad \bar{v}(r)\geq M_2\geq \underline{v}(r),\quad \forall r\geq 0. $$ Hence the standard super-sub solution principle (see \cite {SA,HE}) implies that \eqref{e1.1} has a bounded solution $(u, v)$ such that $\underline{u}(x) \leq u(x)\leq \bar{u}(x)$ and $\underline{v}(x) \leq v(x) \leq\bar{v}(x)$ on $\mathbb{R}^N$. This completes the proof. \end{proof} \begin{proof}[Proof of Theorem \ref{thm1.2}] We follow the arguments in (\cite[Theorem 4.3]{GS} and \cite[Theorem 3.4]{YZ2}) for studying the nonexistence of entire radial large solutions to \eqref{e1.6}. Let \begin{equation}\label{e2.9} a(r) = r^\theta\int_r^\infty t\big(p(t)+q(t)\big)dt,\quad r\geq 0. \end{equation} By \eqref{e1.15}, there exist $R_0>0, C_2 > C_1> 0$ such that $$ C_1 r^\beta \leq p(r)+q(r)\leq C_2 r^\beta,\quad r\geq R_0, $$ so \begin{align*} a'(r) &= \theta r^{\theta-1}\int_r^\infty t\big(p(t)+q(t)\big)dt -r^{\theta+1}\big(p(r)+q(r)\big)\\ &= -r^{\beta+\theta+1} \Big(C_1-\frac {C_2\theta}{-\beta-2}\Big)<0 \end{align*} provided $\theta \in \big(0, C_1C_2^{-1}(-\beta-2) \big)$; i.e., $a$ is decreasing in $[R_0,\infty)$. Define \begin{equation}\label{e2.10} b(r) = \int_r^\infty t\big(p(t)+q(t)\big)dt,\quad r\geq 0. \end{equation} Now suppose that \eqref{e1.1} has a radial entire large solution $(u, v)$ with $u(r)>0$ and $v(r)>0$ for all $r\geq R$, then for $r\geq R_0$ \begin{align*} u(r)+v(r) &= u(0)+v(0) +\frac {1}{N-2}\int_0^{r} \Big(1-\big(\frac {\tau}{ r}\big)^{N-2}\Big)\tau \big(p(\tau)f(v(\tau))\\ &\quad +q(\tau)g(u(\tau))\big)d\tau,\\ &\leq u(0)+v(0) + \frac {1}{N-2} \int_0^{r} \Big(1-\big(\frac {\tau}{ r}\big)^{N-2}\Big)\tau \big(p(\tau)+q(\tau)\big)\\ &\quad\times \big(f(v(\tau)+u(\tau))+g(u(\tau)+v(\tau))\big)d\tau\\ &= C + \frac {C}{N-2} \int_{R_0}^{r} \Big(1-\big(\frac {\tau}{ r}\big)^{N-2}\Big)\tau \big(p(\tau)+q(\tau)\big)\\ &\quad\times \big(f(v(\tau)+u(\tau))+g(u(\tau)+v(\tau))\big)d\tau. \end{align*} Let $\tau=b^{-1}(s)$, $w = (u+v) \circ b^{-1}$. By the monotonicity of $b$ and $a = r^\theta b$ in $[R_0, \infty)$, $t\big(b^{-1}(t)\big)^\theta$ is increasing in $(0, t_0],$ where $t_0=b(R_0)$, and \begin{equation}\label{e2.11} 1-r^\alpha\leq C_\alpha (1-r),\quad \forall r\in [0, 1] \text{ and and fixed $\alpha>0$}, \end{equation} we obtain, for $t \in (0, t_0]$, \begin{align*} w(t) &= C + \frac {1}{N-2}\int_t^{ t_0} \Big(1-\big(\frac {b^{-1}(s)}{ b^{-1}(t)}\big)^{N-2}\Big) \big(f(w(s))+g(w(s))\big)ds \\ &\leq C + \frac {1}{N-2}\int_t^{ t_0} \Big(1-\big(\frac { t}{s}\big)^{(N-2)/\theta}\Big) \big(f(w(s))+g(w(s))\big)ds\\ &\leq C + \frac {1}{N-2}\int_t^{ t_0} \Big(1-\frac { t}{s}\Big) \big(f(w(s))+g(w(s))\big)ds= z(t). \end{align*} It is easy to see that $z'(t)\leq 0$ for $t\in (0, t_0]$ and $$ z''(t) = \frac {C\big(f(w(t))+g(w(t))\big)}{ t} \leq \frac { C\big(f(z(t))+g(z(t))\big)}{ t}, $$ which yields \begin{align*} z'^2(t_0) - z'^2(t) &= 2\int_t^{ t_0} z''(s)z'(s)d s\\ &\geq 2C\int_t^{ t_0} \frac {\big(f(z(s))+g(z(s))\big)z'(s)}{ s} ds \\ &\geq \frac {2C} {t} \int_t^{ t_0} \big(f(z(s))+g(z(s))\big)z'(s)ds \\ &= \frac {2C}{ t} \big(F(z(t_0))+G(z(t_0)) - F(z(t))-G(z(t))\big) . \end{align*} Since $\lim_{t\to 0}w(t)=\infty$, so is $F(z(t))+G(z(t))$. We obtain, for $0 < t < t_1$ small enough, $$ z'^2(t) \leq \frac {C\big(F(z(t))+G(z(t))\big)}{t}, $$ and $$ -\frac {C}{\sqrt{t} }\leq \frac {z'(t)}{ \sqrt{F(z(t))+G(z(t))}} \leq 0. $$ Integrating from $t$ to $t_1$ and letting $t\to 0$, we obtain $$ \int_{z(t_1)}^\infty \frac { d\sigma}{\sqrt{F(\sigma)+G(\sigma)}} \leq C \int_0^{t_1}\frac { dt}{\sqrt{t} } =2C\sqrt{t_1}<\infty. $$ This is a contradiction. The proof is completed. \end{proof} \begin{thebibliography}{00} \bibitem{BZ} I. Bachar, N. Zeddini; \emph{On the existence of positive solutions for a class of semilinear elliptic equations}, Nonlinear Anal. 52 (2003), 1239-1247. \bibitem{CR1} F. C\^{\i}rstea, V. R\u adulescu; \emph{Blow-up boundary solutions of semilinear elliptic problems}, Nonlinear Anal. 48 (2002), 521-534. \bibitem{CR2} F. C\^{\i}rstea, V. R\u adulescu; \emph{Entire solutions blowing up at infinity for semilinear elliptic systems}, J. Math. Pures Appl. 81 (2002), 827-846. \bibitem{GM} J. Garc\'{i}a-Meli\'{a}¨¢n; \emph{A remark on uniqueness of large solutions for elliptic systems of competitive type}, J. Math. Anal. Appl. 331 (2007), 608-616. \bibitem{GMRZ} A. Ghanmi, H. M\^{a}agli, V. R\u{a}dulescu, N. Zeddini; \emph{Large and bounded solutions for a class of nonlinear Schr\"{o}dinger stationary systems}, Analysis and Applications 7(4) (2009), 1-14. \bibitem{GS} A. Gladkov, N. Slepchenkov; \emph{Entire solutions of semilinear elliptic equations}, Electronic J. Diff. Equations 2004 (2004), No. 86, 1-10. \bibitem{HE} J. Hernandez; \emph{Qualitative methods for nonlinear diffusion equations}, Lecture Notes in Math., 1224, Springer, Berlin, 47-118, 1986. \bibitem{KE} J. B. Keller; \emph{On solutions of $\Delta u=f(u)$ }, Commun. Pure Appl. Math. 10 (1957), 503-510. \bibitem{LA1} A. V. Lair; \emph{A necessary and sufficient condition for existence of large solutions to semilinear elliptic equations}, J. Math. Anal. Appl. 240 (1999), 205-218. \bibitem{LA2} A. V. Lair, A. W. Wood; \emph{Large solutions of sublinear elliptic equations}, Nonlinear Anal. 39 (2000), 745-753. \bibitem{LA3} A. V. Lair; \emph{Large solutions of semilinear elliptic equations under the Keller-Osserman condition}, J. Math. Anal. Appl. 328 (2007) 1247-1254. \bibitem{LA4} A. V. Lair, A. W. Wood; \emph{Existence of entire large positive solutions of semilnear elliptic systems}, J. Diff. Equations 164 (2000) 380-394. \bibitem{LA5} A. V. Lair; \emph{A necessary and sufficient condition for the existence of large solutions to sublinear elliptic systems}, J. Math. Anal. Appl. 365 (2010), 103-108. \bibitem{LZZ} H. Li, P. Zhang, Z. Zhang; \emph{A remark on the existence of entire positive solutions for a class of semilinear elliptic systems}, J. Math. Anal. Appl. 365 (2010), 338-341. \bibitem{OS} R. Osserman; \emph{On the inequality $\Delta u\geq f(u)$}, Pacific J. Math. 7 (1957), 1641-1647. \bibitem{PS} Y. Peng, Y. Song; \emph{Existence of entire large positive solutions of a semilinear elliptic system}, Appl. Math. Comput. 155 (2004), 687-698. \bibitem{SA} D. Sattinger; \emph{Monotone methods in nonlinear elliptic and parabolic boundary value problems}, Indiana Univ. Math. J. 21 (1972), 979-1000. \bibitem{TZ} S. Tao, Z. Zhang; \emph{On the existence of explosive solutions for semilinear elliptic problems}, Nonlinear Anal. 48 (2002), 1043- 1050. \bibitem{WW} X. Wang, A. W. Wood; \emph{Existence and nonexistence of entire positive solutions of semilinear elliptic systems}, J. Math. Anal. Appl. 267 (2002), 361-362. \bibitem{YANG} H. Yang; \emph{On the existence and asymptotic behavior of large solutions for a semilinear elliptic problem in $\mathbb{R}^N$}, Comm. Pure Appl. Anal. 4 (1) (2005), 197-208. \bibitem {YZ1} D. Ye, F. Zhou; \emph{Invariant criteria for existence of bounded positive solutions}, Discrete Contin. Dyn. Syst. 12 (2005), 413-424. \bibitem {YZ2} D. Ye, F. Zhou; \emph{Existence and nonexistence of entire large solutions for some semilinear elliptic equations}, J. Partial Diff. Equations 21 (2008), 253-262. \bibitem{ZH} Z. Zhang; \emph{On the existence of entire positive solutions for a class of semilinear elliptic systems}, Electronic J. Diff. Equations 2010 (2010), No. 16, 1-5. \end{thebibliography} \end{document}