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EXISTENCE OF PERIODIC SOLUTIONS FOR SECOND ORDER
DELAY DIFFERENTIAL EQUATIONS WITH IMPULSES

LIJUN PAN

ABSTRACT. Using the coincidence degree theory by Mawhin, we prove the
existence of periodic solutions for the second-order delay differential equations
with impulses

a”(t) + f(t,2'(t) + g(a(t — 7(t)) = p(t), >0, t#ty,
Aﬂc(tk) = Ik(:v(tk),x/(tk)),
Axl(tk) = Jk(x(tk),x'(tk)).

We obtain new existence results and illustrated them by an example.

1. INTRODUCTION

This article concerns the existence of periodic solutions for the second-order
delay differential equations with impulses

a(t) + f(t, /() + g(z(t — 7(£) = p(t), £ = 0, # ty,,
)

A.’L‘(tk) = Ix(z(ty), ' (tx)), (1.1)
Az (tr) = T (x(te), 2’ (tk))
where Ax(ty) = z(t)) — z(ty), =(t)) = hmt_>t+ x(t), z(t,) = 1imt_>t; x(t) and

z(t;) = z(ty); also Aa/(ty) = 2/(t)) — 2/(t;), = (t ) = hrntﬂt;r '(t), o'(t,) =
limtﬁt; 2'(t) and 2'(t, ) = 2’ (ty).
We assume that the following conditions:
(H1) f € C(R%,R) and f(t+ T,z) = f(t,z), g € C(R,R), p,7 € C(R,R) with
T(t+T) =7(t), p(t +T) = p(t);
(H2) {ti} satisfies ty < tp41 and limg— 100ty = Fo0, k € Z, Ii(z,y), Jp(z,y) €
C(R?,R), and there is a positive n such that {t;} N[0,T] = {t1,ta2,...,tn},
tyn =tk + T, Ik-HL(xa y) = Ik(zv y)v Jk+n($7 y) = ‘]k(xv y)
Impulsive differential equations are mathematical apparatus for simulations of
process and phenomena observed in control theory,physics,chemistry, population
dynamics, biotechnologies, industrial robotics, economics, etc. So there have been
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quite a few results on properities of their solutions in recent years [Tl 2] [5l [7, [15].
In paiticular, the existence of periodic solutions for first order differential equations
with impulses has been studied in [I4] I7]. Li and Shen [I5] have studied the
existence of periodic solutions for duffing equations with delays and impulses. In
present paper, by using Mawhin’s continuation theorem, we will establish some
theorems on the existence of periodic solutions of (L.I). The results is related to
not only f(¢,z) and g(y) but also the impulses I (x,y) and Ji(z,y) and the delay
7(t). In addition, we give an example to illustrate our new results.

For background material on periodic solutions of first or second order differential
equations without impulses, the references [3, 6, O 10, 1T, 12, 13, 16] may be
consulted.

2. PRELIMINARIES

We establish the theorems of existence of periodic solution based on the following
Mawhin’s continuation theorem.

Let PC(R,R) = {z : R — R, z(¢) be continuous everywhere except for some tj
at which x(t{") and z(t;) exist and z(t; ) = z(t)}, PC*(R,R) = {z : R — R, z(¢)
is continuous everywhere except for some #j, at which 2/(t{) and 2'(t; ) exist and
2'(t;) = 2'(ty)}. Let X = {z(t) € PC*(R,R),z(t + T) = z(t)} with norm |jz|| =
max{|z|oc, [7']cc }, Where |2]oo = sup,cjo py [2(?)], ¥ = PC(R,R) x R" x R", with
norm |ly|| = max{|u|s, |c|}, where v € PC(R,R),c = (c1,...con) € R™ x R",
lc| = maxi<g<on{|ck|}. Then X and Y are Banach spaces. L: D(L) C X — Y is
a Fredholm operator of index zero, where D(L) denotes the domain of L. P: X —
X,Q :Y — Y are projectors such that

ImP=kerL, kerQ=ImL, X =kerL@kerP, Y =ImL&ImQ.
It follows that
Liprynkerp : D(L) Nker P — Im L

is invertible and we define the inverse of that map by K. Let 2 be an open bounded
subset of X, D(L)NQ # (), the map N : X — Y will be called L-compact in Q, if
QN (Q) is bounded and K,(I — Q)N : Q@ — X is compact.

Lemma 2.1 ([5]). Let L be a Fredholm operator of index zero and let N be L-
compact on Q. Assume that the following conditions are satisfied:

(i) Lx # ANz,Vz € 00N D(L),\ € (0,1);
(ii) QNz #0, for all x € 0N Nker L;
(i) deg{JQNz,Q\ker L,0} # 0, where J : Im Q — ker L is an isomorphism.

Then the equation Lx = Nx has at least one solution in Q () D(L).
We define the operators L : D(L) C X — Y by
Lz = (2", Ax(ty), ..., Ax(t,), Az (t1),..., Az (t,)), (2.1)
and N: X —Y by
Na = (= f(t,2'(8)) — gla(t — 7(£))) + p(D),
Li(x(ty))y . In(2(tn)), Ju(2' (t1)), . .., Ju (2 (t0))).
It is easy to see that can be converted into the abstract equation Lx = Nz.

(2.2)
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Lemma 2.2 ([8]). L is a Fredholm operator of index zero with
ker L = {z(t) = ¢,t € R}, (2.3)

and
ImL:{(y?ala"'aanabl,-..7bn) EY

T n n
/O y(s)ds + ) bp(T —ty) + Y ax +2'(0)T = 0}.
k=1

k=1

(2.4)

Furthermore, let the linear continuous projector operator P: X — X and Q : Y —
Y be defined by

Pz = z(0), (2.5)
and
Q(y,a1,...,an,b1,...,b,)
2 (T - - , (2.6)
= ﬁ[/0 (T — s)y(s)ds + ;bk(T — ) + l;ak +2/(0)T7,0,...,0).
Then the linear operator K, : Im L — D(L) Nker P can be written as
Kp(y,a1,...,an,01,...,by)
(2.7

T n n
_ / (T = s)y(s)ds + 3 bp(T — 1) + 3 ax + 2/ (O)T.
0 k=1 k=1

Lemma 2.3. Suppose Q C X is bounded open set,then N is L-compact in Q.

Proof. Tt is easy to see that QN () is bound. By using the Ascoli-Arzela theorem,
we can prove that K,(I — Q)Nx is compact. Thus N is L-compact in Q. O

Lemma 2.4 ([10]). Suppose a > 0, z(t) € PC*(R,R) with x(t +T) = x(t), Then

/OT/:Q |gg’(5)|2dsdta/OT ()l 28)

/OT /tm x'(s)|2dsdt:a/OT |2/ (¢) 2. (2.9)

Ai(t,a) = Z ag, As(t,a)= Z ak,

t—a<t,<t t<tp<t+o

By (t,a) = Z ay, Ba(t,a)= Z g

t—a<t,<t t<t <t+a

Ala) = (/OT Af(t,a)dt)m + (/T A%(t,a)dt)l/z,

0

B(a) = (/OT Bf(t,a)dt)m + (/OT Bg(t,a)dt)m,

T T
Cla)= [ Ai(t,a)dt+ | A3(t,a)dt,
0 0

D(a) = /0 Av(t, o) By (t)dt + /0 As(t, a) By (t)dt,

and

Let
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T T
E(a) = / B3(t,)dt +/ B3(t, )dt
0 0
The following Lemma is crucial for us to establish theorems related to the delay

7(t) and Ix(x,y).

Lemma 2.5. Suppose 7(t) € C(R,R) with 7(t + T) = 7(t) and 7(t) € [—, ] for
allt € [0,T), z(t) € PCY(R,R) with z(t + T) = z(t) and there is a positive n such
that {tx} N[0, T] = {t1,t2, ..., tn}, Ax(ty) = M (x(tx), 2’ (tx)) for all X € (0,1) and
than =t + T, Igyn(x,y) = Ix(x,y). Furthermore there exist nonnegative constants
ak, a such that |Ix(z,y)| < ax|z| + a),. Then

/O lz(t) — 2(t — 7(t))|dt

T

2 r / 2 / 2 1/2
<% /0 12 (1) dt+2aA(a)|x(t)\oo(/0 (1) Pt (2.10)

T 1/2
+2aB(a)(/O |ac’(t)\2dt) / + C(a)|z(t)|%, + D(a)|z(t)|so + E(c).

Proof. If 7(t) € [0, o, then for all ¢ € [0,T], using Schwarz inequality, we obtain
Ja(t) — a(t — 7(t)
¢
= | d()ds+ XA Y Ie(a(ty)?

t=7(t) t—7(8)<tn <t

g(/tt |x’(s)|ds)2+2)\(/tia|x'(8)ds) > m(aty)]

o t—a<tp<t

f(0 Y )

t—a<t,<t

Soz/ti \x’(s)|2ds+2/ti (s 3 laxla®)lo +aj]

t—a<t,<t

[ @l +ap)]

t—a<t,<t

By the Schwarz inequality and Lemma [2:4] we obtain

T
/0 (t) — o(t — (1)) [2dt

T
§a/ / |2’ (s)|? ds dt
0 t—a

+22(t)|s /OTAl(t,a) /:a |x’(s)|dsdt+2/0TBl(t,a) /tt |2/ (s)| ds dt

—Q

+|x(t)|go/0 A%(t,a)dtﬂx(mm/o Al(t,a)Bl(t,a)dt—i—/O B2(t, a)dt

T t
< a/ / 12 ()[2 ds dt + 2)(t)] e
0 t—a
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X (/OTAi(t,a)dt)l/Q(/oT (/tiaa:'(s)|ds)2dt)l/2
wo( [ mrwaa) ([ ([ sy a)”
+|x(t)|go/OTA§(t,a)dt+|x(t)|oo/OT[Al(t,a)Bl(t,a)]dH/OTBf(t,a)dt
<2 /OT |x'(t)2dt+2ax(t)|oo(/OT A%(t,a)dt)l/z(/oT |x’(t)|2dt)1/2
T 12 [T /
+2a</0 Bi(t,a)dt) (/0 | (¢) |2dt) /2

T T T
+|x(t)|§o/0 Af(t,a)dt+|x(t)|oo/0 Al(t,a)Bl(t,a)dt—i—/O B(t, )dt.

If 7(t) € [~«, 0], then for all ¢ € [0, T], similarly, we obtain
T
/ o (t) — a(t — r()[2dt
0
T T 1/2 T 1/2
< a2/ 2 (1)[2dt + 2a|x(t)|oo(/ (1, 0)it) (/ (1)t
0 0 0
T T
+2a( [ Bty ([ (0P
0 0

+|x(t)|go/0TA§(t7a)dt+|x(t)Oo /OTAQ(t,a)Bz(ua)dH/OT B2(t,a)dt.

Let Ay ={t:t€[0,T],7(t) > 0}, Ag = {t : ¢t €[0,7],7(t) < 0}. Then for for all
te€0,T7,

T
/0 l(t) — 2t — ~(£)|2dt
:/ lz(t) — 2(t — T(t))|2dt+/ lz(t) — 2(t — 7(t))|dt
A1 Ay

T T
< 2012/0 |x'(t)\2dt+204A(a)\m(t)|oo(/0 |2/ (t)|?dt)"/?

+ 2aB(a)(/0 |x’(t)|2dt)1/2 + C(a)|z(t) % + D(a)|a(t)] s + Ela).

O
3. MAIN RESULTS
For the next theorem we use the following conditions:
(H3) There are constants o, 3 > 0 such that
lf(t )| <oz, V(tz)el[0,T] xR, (3.1)
zf(t,x) > Bla?, V(t,z) €[0,T] x R; (3.2)

(H4) there are constants §; > 0 (i = 1,2, 3) such that
lg(z)| > B1 + Balz], (3.3)
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lg(z) — g(v)| < Bslx — yl; (3.4)

(H5) there are constants v; > 0 (i = 1,2,3), such that \f;+)‘lk(w’y)g(s)ds| <

|Ik(z7y)‘(71 +72|x|+73|1k(m7y)|), VA€ (Oﬂ]‘);
(H6) there are constants ay,aj, > 0 such that |[Iy(z,y)| < aglz| + a};
(HT) yJi(x,y) <0 and there are constants by > 0 such that |Ji(z,y)| < bg.

Theorem 3.1. Suppose (H1)-(HT7) hold. Then (L.1) has at least one T-periodic
solution provided the following two conditions hold

Zak <1, (3.5)

[72 D ar) +13(>ai }MQ + B3 {2|T(t)|?>o
k=1 k=1 (3.6)

1/2
+ 207(8) oo A7 () o0) M + C(IT (D)) M2] < 5,
where )
_ g 1/2
M= L= a (52T1/2 T,

Proof. Consider the equation Lz = ANz, with A € (0,1), where L and N are

defined by and . Let
Q ={x € D(L):ker L, Lv = ANz for some A € (0,1)}.
For x € Q4, we have
o () + Af (8" (8) + Ag(t, a(t — 7(1) = Ap(t),  t # ty,
Ax(ty) = My (z(ty), 2’ (t)), (3.7)
AT (ty) = N (z(tr), 2’ (k).

Integrating them on [0, T], using Schwarz inequality, we have

\/ 2(t — 7(8))d]

/ £)dt — /ftx dt—i—ka (). ' (1))
< Tip(t)]oe +a/0 |x’(t)|dt+zbk
k=1

1/2 T / 2 1/2 -
<ol (/ |/ (t)] dt) +Tp(t)lso + ) b
0

k=1
From the above formula, there is a ty € [0, 7] such that

T
g
otatto = rlt0))| < ([ I/ @Fd 2 +1pt0) Zbk
It follows from ({3.3)) that

T 1 «
By + Balz(to — 7(to))] < T(17/2(/ 12! ()2dt) 2 + [p(t) oo + T};bk.
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Thus
T 1/2
a / 2
lz(to — 7(to))] < —ﬁzTW(/O |2 (¢)] dt) +d,

where d = (|[p(t)|oc + 7 > p—1 bx — B1])/B2. So there must be an integer m and a
point ¢; € [0,T] such that tg — 7(tg) = mT + t1. Hence

T
|2 (t1)| = |2(to — 7(to))| < ﬁ(/o |x,(t)|2dt>1/2 i

which implies

:E(t):o:(tl)Jr/ ¥(s)ds+ Y Ip(w(te), 2 (t)).

t1 t1<tp<t

This yields

Iw(t)\ooélx(tl)lJr/t ' (s)lds + D il (t))]

t1<tp<t

T T n n
g
§m</ @/ () )72 + d + / & (®)]dt+ Y anleleo + > al
i ’ 0 k=1 k=1

n T 1/2 n
< |m|m2ak+(ﬁ +T1/2)(/ |:z:’(t)|2dt) +d+ ) aj.
k=1 2 0 k=1
It follows that

d+2k 1 O 1 g 1/2 /T 102 34\1/2
t + = +T 2 ())2dt)Y
|x( )|OO =1_ Zk L a 1— Zk:l ak(ﬁng/Q )( 0 | ( )| )

T
— oy + M / ! (1)|2dt) 2,
0

where u; is a positive constant. On the other hand, multiplying both side of (3.7
by 2/(t), we have

T T T
/ () (£)dt + A / Fa' () (Odt 42 / ot 2t — ()2 (B)dt
0 0 0

(3.8)

T
= )\/O p(t)z'(t)dt.

Since
n

T
| e = =5 )R - @ 00y

i=1
it follows from assumption (H7) that

(@' (t))? — (2 (tx))?
= (@'(t)) + ' (t)) (@' (8]) — (2 (tx))
= Az (tg) (22 (tr) + Az’ (tr))
= Mi(x(tr), ' (te)) (22" (tr) + A ((tn), 2’ (tr))
= 2\ (@ (tn), 2 (b))’ (t) + N (2 (), 2 (8))]) < b3

ty
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In view of (3.2), by Schwarz inequality, we obtain
r 2
5 [ wopa
T / g ! 1 - 2
< —/0 g(z(t — (1))’ (t)dt + /o p(t)x' (t)dt + 5 ; bi;
T T
= / [9(x(t) — g(x(t — 7(t))]a' (t)dt — / g(x(t))z'(t)dt
0 0
T
+/ t)dt + = Zb2
/ l9(2(t) — gla(t — r(E) I’ (B)]dt + |p(t |oo/ (1) at

+ / o) () + 1 Y1

<[ 1ateen — otete —rompar)  wiorr ] ([ wora)’
1 n
1 gteowomn D> i
0 i=1
(3.9)
From (H5) and (H6), we have
T
| / o (t)a’ (1)t
z(t1) z(t2) z(T)
oy / o(s)ds + / g(s)ds+ - + / o(s)ds|
z(0) z(t]) (t5)
z(T) n x(t})
oy / o()ds— 3" [ g(s)ds|
z(0) =1 7 z(tx)
n x(tr)+ g (z(tr),z’ (tr))
<> g(s)ds
=1 (tx)
< S (et 7' (80 (n + 7ol (t)] + sl (@ (t), 2/ (1) )]
k=1
< (> a) + 35> @Dl () + sl (B)]oo + v,
k=1 k=1
where ug, ug are positive constants. From (3.8)), we have
| / ((t)2’ (t)dt]
0 (3.10)

n T T
< (Y )+ (D [ OP ([l OP ) s,
k=1 0 0

k=1
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where uy, us are positive constants. Applying Lemma [2.5] we obtain
T
‘A|adw—gm@—rwnﬁw
T
Sﬁ?/lﬂﬂ*w@*ﬂﬂwﬁ
0

T 1/2

< BRITOR [ OPd+ 2Ol A Ol ([ 0P)
T
+2r OBl ([ 0Fd) "+ @0l

+ D(r(t) o) [2(8) oo + E(7(8)]o0)]-
Substituting into the above inequality, we have
LAIMﬂw—g@@—Twnﬁﬁ
< BRI, + 20Ol A(7(8)] ) M
T T 1/2
2 .’E, 2 ug (E/ 2 wy,
+CUrl) 2] [ OPat+ s [l OPa)”

where ug, u7 are positive constants. Using the inequality
(a+b)Y2 <a2 402 for a>0,b>0, (3.11)
we have
T
([ lota(o) - statt = () e
< Bsl2m ()5 + 207 (1) [ AIT (1)) M
T T
+Crlar? ([P ([ wopa)
0 0

Substituting the above formula and (3.10) in (3.9)), we obtain

= [ Zak + 73 Zak — G327 (1) %

1/2

+20r(1) oo A7 (1) o) M + C([7(2) Aﬂ”%/|x D[2dt

T T
< US(/ |x’(t)|2dt)% + “9(/ |2/ (£))2dt)/? + uso,
0 0

where ug, ug, w19 are positive constants. Then there is a constant M; > 0 such that
T
/ |2’ (t)|2dt < M;. (3.12)
0
From (3.8)), we have

T
|2(t) oo < d+ M(/ |2/ (£)|2dt)/? < d+ M(M;)*/2.
0
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Then there is a constant My > 0 such that |2(t)|so < Mz. Furthermore, integrating

(3.7) on [0,T], using Schwarz inequality, we obtain
T T
/ 2" (1) dt = / | F(t. (1)) — gla(t — v(1))) + p(t)]dt
0 0
T T T
< / (b /(1)) + / gt — 7(0)]dt + / Ip(t)dt
T
<o / &/ (8)|dt + 95T + TIp(t) o
0

T
< UTl/Q(/ |2/ (£)|2dt)" /2 + gsT + T|p(t) |
0

< oT2(M)Y2 + g5T + T|p(t) o

where hs = max|, <5 |g(x)|. That is to say that there is a constant Mz > 0 such
that

T
/ |z" (t)|dt < Ms. (3.13)
0

From (3.12), it is easy to see that there are t5 € [0,7] and uy; > 0 such that
|z’ (t2)| < w11, then for ¢ € [0,T]

T n
|7 (t)] 0o < |2 (t2)] +/0 |z" (t)|dt + Zbk' (3.14)
k=1

Hence there is a constant My > 0 such that
|2 ()]0 < M. (3.15)

It follows that there is a constant B > max{Ma, M4} such that ||z|| < B, Thus O
is bounded.

Let Q3 = {z € ker L, QNx = 0}. Suppose = € o, then z(t) = ¢ € R and
satisfies

9 T
0
Then .
| 1#.0)+ 906 = piogar = (3.17)
It follows from that there must be a to € [0, 7] such that
g(c) = —f(to,0) + p(to). (3.18)
From and assumption (H3), (H4), we have
Bi + Bale] < [g(e)] < [f(to, 0)| + [p(to)] < o x 0+ [p(t)|s0- (3.19)
Thus
lc| < M (3.20)
B

which implies €25 is bounded. Let € be a non-empty open bounded subset of X
such that Q D Q; UQy UQ3, where Q3 = {z € X : |z| < ||p(t)]|oc — f1]/B2 + 1}. By
Lemmas and we can see that L is a Fredholm operator of index zero and
N is L-compact on Q. Then by the above argument,

(i) Lx # ANz for all z € 90N D(L), A € (0,1);
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(ii) QNz #£ 0 for all x € 9Q Nker L.

At last we prove that (iii) of Lemma [2.1]is satisfied. We take H (z, u) : Q x [0,1] —
X

)

HGow) = po+ 2052 [ @) + g(alt = 0 + pl0)

From assumptions (H3) and (H4), we can easily obtain H(x, 1) # 0, for all (z,u) €
O Nker L x [0,1], which results in

deg{JQNz, Q2 Nker L,0} = deg{H (z,0),2 Nker L,0}
=deg{H(z,1),QNker L,0} # 0,

where J(z,0,...,0) = z. Therefore, by Lemma Equation (1.1]) has at least one
T-periodic solution. ([

Theorem 3.2. Suppose (H1)-(H2), (H4)-(H6) hold and the following two conditions
hold:

(H8) there is an constant o > 0 such that
|f(t,2)] <olz], V(t2z)e€[0,T] xR,
xf(t,x) < —plz?,V(t,z) € [0,T] x R,
(H9) yJi(x,y) > 0 and there are constants by > 0 such that |Ji(z,y)| < bg.
Then has at least one T-periodic solution provided and hold.
The proof of the above theorem is similar to that of Theorem so we omit it.

Example. Consider the equation

1 1 1
2 () + =2/ (t) + (t — —cost) =sint, t#k,

3 .1—53: 10
Bafi) = D oy ¢ 00 (3.21)
N 2a° (t )’ ()

1+ 2t ()2 2 (te)
where ty = k, f(t,2) = 1z, g(y) = &y, p(t) = sint, 7(t) = 15 cost, Ip(z,y) =

sin X @ ey .
o T s e y) = —%, it is easy to see that |7(t)|e = 15, T = 2m, {k}N
[07271—] = {17233347576}7 o=p= %a fr =0, B2 = B3 = %5 Since |Ik(x7y)| <

41 (x,
Balel+ 5 [T y)] < L] [T g(s)ds| < [T, y)l (& |2l + 51 1k(2,)]), then
we take a = 155, @ = 3, b, =1 (£ =1,2,3,4,5,6), 71 =0, 72 = 1/15, 73 = 1/30.
Thus assumption (H1)—(HT7) hold and

6
Zak:%<1,
k=1
1 o 1 1
M = T1/2 3 o)1) < ¢
1_Zk—1ak(ﬁ2T1/2+ ) 1,2%(L(27T)1/2+(7T) )
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+2/7(8)| s A(IT(8)] o) M + C(|7(1)]oc) M?]'/? < 3.

By Theorem Equation (3.21)) has at least one 27-periodic solution.
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