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EXISTENCE AND STABILITY OF SOLUTIONS FOR
NONLINEAR MECKING-LÜCKE-GRILHÉ EQUATIONS

ALI ALRIYABI, SAÏD HILOUT

Dedicated to Jean Grilhé on his 73-th birthday

Abstract. In this article, we present the nonlinear Mecking-Lücke-Grilhé
model describing the temporal evolution for simple and multi-instabilities of
plastic deformation of stressed monocristal. This model extends the linear
problem considered in [9, 13, 14]. Using a nonlinear analysis, we present some
results of existence and stability of the solution with respect to the character-
istics of the material and the retarded times. Numerical examples validating
the theoretical results are also investigated in this study.

1. Introduction

The field of morphological change of solids has seen a considerable development in
metallurgical engineering and materials science in the past few years. The search for
materials of properties always more efficient led to many studies of the mechanisms
associated to plastic deformation. The concept of the dislocation was introduced
by Taylor [28, 29] to understand the mechanical behaviour of materials in plasticity.
The dislocations help to explain the phenomena of plastic deformations [6, 15, 22], as
well as other properties of solids, such as crystal growth and the electrical properties
of semiconductors [16].

Localization of plastic deformation in homogeneous materials can be associated
with instabilities of the stress-strain curves. These curves present in several cases
some rapid oscillations due to the difficulties of creation or propagation of dislo-
cations. This phenomenon can have very different aspects: Portevin-Le-Chatelier
PLC effect, twinning, avalanches of dislocations, thermo-mechanical effect, Piobert-
Lüders bands. For Example, the PLC effect is observed during stress rate change
test of Al-Mg alloys at room temperature [17]. Kuo et al. [17] show that the oc-
curence of plastic instability is strongly related to the retention time and applied
stress rate, and this instability could be justified as the interactions between solid
solution element, magnesium, and dislocations. Louchet and Brechet [19] present
the different types of dislocations patterning during uniaxial deformation as a func-
tion of significant physical parameters such as crystalline structure; they shown

2000 Mathematics Subject Classification. 34A34, 34D05, 34D20, 34A45.
Key words and phrases. Mecking-Lücke-Grilhé equation; plastic deformation;
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that it is determined by a competition between dislocation production and rear-
rangements and they have improved that this phenomenon is controlled by strain
rate and temperature. Sun et al. [27] investigated the finite element method to
simulate the propagation of Lüders band by the level of stress concentration and
the reduction of the thickness of corresponding element. Graff et al. [7, 8] propose
finite element simulations and experimental observations of PLC effect and Lüders
bands propagation in notched and compact tensile specimens of aluminum using
the macroscopic PLC constitutive model. Some criteria for localization of plastic
deformation and other studies in this field are proposed in [1, 3, 4, 5, 21, 30, 31].

In this paper, we are motivated by the works [9, 13, 14] restricted to the lin-
ear model. Consider a crystal subject to a mean stress. Under uniaxial traction
(or compression), the interactions between dislocations, and the rotation of the
traction-axis led to an activation of other slip systems. Consequently the plastic
deformation instabilities are observed and can be explained by a delay time in the
system’s response to solicitations. Grilhé et al. presented in [9] an experimen-
tal study and a graphically analysis of the stability of the solution of this model.
Using a linear analysis and Lambert’s functions, a complete mathematical study
(existence, uniqueness, asymptotic stability) of the model with a single delay is pre-
sented in [13]. Hilout et al. [14] present a new linear model describing the temporal
evolution for multi-instabilities of plastic deformation of stressed monocristal. Here,
we present the nonlinear Mecking-Lücke-Grilhé equation NMLGE. Under some as-
sumptions and using a nonlinear analysis, we deduce a differential equations with
one and two delays respectively. In the both cases, we show the theoretical exis-
tence and stability of the solution according to the characteristics of the material
and the retarded times.

This article is presented as follows: In Section 2 we present the mathematical
modelling of the plastic deformation instability. In Sections 3 and 4, we consider
the case of NMLGE with a single delay and two delays respectively. We present in
the both cases some results on existence and stability of the solution according to
the characteristics of the material and the retarded times. Numerical examples for
stability and instability of the material close to a mean stress using the MATLAB
software are also investigated.

2. Mathematical modelling

Consider a crystal sample subject to a mean stress σ0. The material is placed
between two traverses (the first is fixed and the second is mobile). We apply a
variable force F on the mobile traverse assuming a finite and constant velocity:

ε̇(t) = ε̇0 = constant.

The strain rate ε̇ is the sum of the plastic strain rate ε̇p of the specimen and of the
elastic strain rate ε̇e = σ̇/M of the combined sample and loading system (with a
stiffness M)

ε̇(t) = ε̇p(t) + ε̇e(t). (2.1)
The plastic strain rate may be written as

ε̇p(t) = bΣ̇(t)/V, (2.2)

where b is the Burgers vector component along the tensile axis, Σ(t) is the area
swept by the dislocations and V is the sample volume which is supposed to remain
constant. The plastic deformation is controlled by the emission of dislocation loops
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from Frank-Read type sources model. The equation ((2.2) can be written in the
following form [20]:

ε̇p(t) = bn(t)S (2.3)
where n(t) denotes the number of loops arising at time t in the unit volume and
during unit time and by S the mean area swept by the loops supposed constant
during periods which are long enough compared with the period of instabilities.
The area S in (2.3) depends on the instantaneous density of the forest and thus on
the previous strain history of the sample. We suppose that S varies slowly. Note
that the relation (2.3) is established assuming that the area S is instantaneously
swept by each dislocation as soon as it is emitted [20, 9]. Grilhé et al. [9] suppose
that the plastic instability can be explained by a phase shift, characterized by a time
delay between the nucleation and the propagation of dislocations (see [9, 13, 14]
for more details). After the flight-time τ ′, the mobile dislocation gets pinned or
reaches the free surface of the sample having covered a constant area S(τ ′) = S
since it was emitted. Then only loops generated at a time t = t′ with 0 < t′ < τ ′,
will contribute to the deformation at a time t. Consequently, the equation (2.3)
can be written as follows:

ε̇p(t) = b

∫ τ ′

0

n(t− s)Ṡ(s) ds. (2.4)

To simplify the problem, Grilhé et al. [9] suppose that

Ṡ(t) = Sδ(t− τ) (2.5)

where δ is Dirac’s distribution and τ is the delay given by

τ =

∫∞
0

Ṡ(t)dt

S
. (2.6)

3. NMLGE with a single delay

The time lag given by relation (2.6) can be interpreted by the phase displacement
between the time of loop nucleation and the time at which the main strain is
recorded and approximation (2.5) amounts to replacing S(t) by a step function.
Under the assumption (2.5), we can rewrite (2.1) in the form

ε̇(t) = bSn(σ(t− τ)) +
σ̇(t)
M

, (3.1)

or
Mε̇(t) = MbSn(σ(t− τ)) + σ̇(t). (3.2)

Using the linear analysis we establish a differential-difference equation with a single
delay (see [13]) to describe the plasticity of a solid becoming deformed by loops of
dislocations or micro-twinning. For long-time, it is necessary to use the nonlinear
analysis to investigate the stability of system strain-stress curves. Then we use
Taylor’s expansion of second order of the function n(σ − τ) close to the value σ0:

n(σ(t− τ)) = n(σ0) +
∂n

∂σ
(σ = σ0)(σ(t− τ)− σ0)

+
1
2

∂2n

∂σ2
(σ = σ0)(σ(t− τ)− σ0)2.

(3.3)

Substituting (3.3) in (3.2) we obtain

σ̇(t) + βσ2(t− τ) + θσ(t− τ) + ξ = 0, (3.4)
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where

θ = α− 2βσ0, ξ = βσ2
0 − ασ0,

α = MbS
∂n

∂σ
(σ0) > 0, β =

1
2
MbS

∂2n

∂σ2
(σ0) < 0.

The signs of α and β respectively are justified by the physical experiments [9].
In the sequel we denote the set

C+ = {λ ∈ C : Re(λ) ≥ 0}.

3.1. Existence and uniqueness. Equation (3.4) is a nonlinear retarded differ-
ential difference equation with delay time τ . To define a function σ in (3.4) for
t ≥ 0, we impose an initial data on the interval [−τ, 0] (e.g., we consider φ ≡ 1 in
[−τ, 0]). In fact, let φ be a given continuous function on [−τ, 0] (φ is called preshape
function) and we consider the problem (3.4) with initial data φ:

σ̇(t) = −βσ2(t− τ)− θσ(t− τ)− ξ = f(σt), t ≥ 0,

σ(t) = φ(t), t ∈ [−τ, 0].
(3.5)

For fixed c > 0, consider the region

N = {t : |σ(t)|+ |σ(t− τ)| ≤ c}.

Proposition 3.1. Equation (3.5) admits a unique solution through (0, φ) defined
on [−τ,∞).

Proof. Let φ1, φ2 ∈ C ∩N . Then

|f(φ1)− f(φ2)| ≤ |β||φ2
1 − φ2

2|+ |θ||φ1 − φ2|
≤ (|β||φ1 + φ2|+ |θ|)|φ1 − φ2|
≤ (2c|β|+ |θ|)|φ1 − φ2|.

Therefore, f is locally Lipschitz in φ, by [12, theorem 2.3 p. 44] there exists a
unique solution of (3.5) through (0, φ) defined on [−τ,∞) by

σ(t) = φ(t) for t ∈ [−τ, 0],

σ(t) = φ(0) +
∫ t

0

f(σs)ds for t ≥ 0.
(3.6)

�

3.2. Stability. In this paragraph we study the stability of the solution of (3.5).
So we take the associated homogeneous equation of (3.5)

σ̇(t) + θσ(t− τ) = −βσ2(t− τ), t ≥ 0,

σ(t) = φ(t), t ∈ [−τ, 0].
(3.7)

We denote
mφ = |φ| = sup

−τ≤t≤0
|φ(t)|.

Theorem 3.2. For mφ is sufficiently small, the solution of (3.7) is asymptotically
stable.
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Proof. By [12, theorem A.5, p. 416] the solution of the equation

σ̇(t) = −θσ(t− τ), t ≥ 0,

σ(t) = φ(t), t ∈ [−τ, 0],
(3.8)

is asymptotically stable if and only if

0 < τθ <
π

2
. (3.9)

Thus, under the condition (3.9), we have

lim
t→∞

|σ0(t)| = 0, (3.10)

where σ0(t) is the solution of (3.8). That is, under the condition (3.9), all roots of
the characteristic equation

h(λ) = λ + θe−τλ = 0, (3.11)

have negative real parts (cf. [13]); i.e., (3.11) has no zeros in C+. Then if s is a root
of (3.11), since the equation is of retarded type, there is a positive number λ1 > 0
such that every characteristic root s satisfies Re(s) < −λ1. By [12, theorem 6.1, p.
23], every solution σ0 of (3.8) can be represented in the form

σ0(t) = X(t)φ(0)− θ

∫ 0

−τ

X(t− θ − τ)φ(θ)dθ. (3.12)

By [12, theorem 5.2, p. 20], there exists c2 > 0 such that

|X(t)| ≤ c2e
−λ1t, t ≥ 0. (3.13)

Consequently,
|σ0(t)| ≤ c3mφe−λ1t, t ≥ 0, (3.14)

where

c3 = c2 + |θ|c2
1
λ1

(eλ1τ − 1).

We want to show that for mφ sufficiently small then the solution of (3.7) satisfies

|σ(t)| < 2c3mφe−λ2t, t ≥ −τ, (3.15)

where 0 < λ2 < λ1.
Let t0 be the first value such that t0 > 0 and (3.15) is not true. Then by the

continuity of σ,
σ(t0) = 2c3mφe−λ2t0 . (3.16)

On the other hand, the function f(σ(t), σ(t − τ)) = −βσ2(t − τ) is continuous for
t ≤ t0 together with (σ(t), σ(t− τ)) ∈ N . By ([2, paragraph 11.5]),

σ(t) = σ0(t) +
∫ t

0

X(t− s)f(σ(s), σ(s− τ))ds, 0 < t ≤ t0. (3.17)

Furthermore,

lim
|σ(s−τ)|→0

|f(σ(s), σ(s− τ))|
|σ(s− τ)|

= lim
|σ(s−τ)|→0

−β|σ(s− τ)| = 0.

Therefore,

|f(σ(s), σ(s− τ))| ≤ ε|σ(s− τ)| ≤ 2εc3mφeλ2τe−λ2s, 0 ≤ s− τ ≤ t0
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and

|σ(t)| < c3mφe−λ2t + 2c2e
−λ2t

∫ t

0

eλ2sεc3mφeλ2τe−λ2sds

< c3mφe−λ2t + 2c2εc3mφeλ2τ t0e
−λ2t

for ε, mφ sufficiently small and 0 < t ≤ t0. We can choose ε such that 2c2εe
λ2τ t0 < 1,

then
|σ(t)| < 2c3mφe−λ2t, 0 < t ≤ t0,

This contradicts the relation (3.16). Hence for any t ≥ 0

|σ(t)| < 2c3mφe−λ2t,

then limt→∞ |σ(t)| = 0. �

3.3. Numerical tests. The numerical results (see Fig. 1) do not give the exact
solution of (3.7), but they show the asymptotic stability and instability of the
solution of (3.7) according to the parameter τθ. Various calculations are made
by using the MATLAB software. These numerical results validate the theoretical
result obtained in Theorem 3.2. Figure 1 (a) and (b) show the asymptotic stability
of the solution of (3.7) near to σ0. The beginning of phase instability of the solution
of (3.7) is shown in figure 1 (c) and (d).

4. NMLGE with two delays

In most deformation experiments, several slip systems are active and depend
on their orientation with respect to the traction-axis. Even when system of de-
formation is active, the crystal undergoes a rotation and a secondary deformation-
mechanisms becomes active. These slip mechanisms with different activation values,
correspond to different delays. Our goal in this section is the modelling of the plas-
tic deformation instabilities when several delays are introduced, each corresponding
to a system of deformation. Now we take (2.5) and we consider the general case
when several deformation-mechanisms occur simultaneously, leading to several de-
lays. We assume that two deformation-mechanisms are active and τ1, τ2 are the
corresponding delays (τ1 6= τ2). Then, we can write

Ṡ(t) = S1δ(t− τ1) + S2δ(t− τ2) textand S = S1 + S2. (4.1)

Equation (2.1) can be re-written as follows (τ ′ > max{τ1, τ2})

ε̇(t) = b

∫ τ ′

0

n(σ(t− s))
(
S1δ(s− τ1) + S2δ(s− τ2)

)
ds +

σ̇(t)
M

= b
(
S1n(σ(t− τ1)) + S2n(σ(t− τ2))

)
+

σ̇(t)
M

.

(4.2)

Thus, we deduce the equation

Mε̇(t) = MbS1n(σ(t− τ1)) + MbS2n(σ(t− τ2)) + σ̇(t). (4.3)

To investigate the stability of system strain-stress curves, we take the Taylor’s
expansion of second order of the function n(σ − τi), i = 1, 2, close to the value σ0

for i = 1, 2:

n(σ(t− τi)) = n(σ0)+
∂n

∂σ
(σ = σ0)(σ(t− τi)−σ0)+

1
2

∂2n

∂σ2
(σ = σ0)(σ(t− τi)−σ0)2.
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Figure 1. (a): τ = 1 mφ = 0.05, β = −0.25, θ = 1.5, the solution
is stable. (b): τ = 1, mφ = 0.005, β = −0.5, θ = 1.57, the solution
is stable. (c): τ = 1, mφ = 0.005, β = −0.5, θ = 1.58, the solution
is unstable. (d): τ = 1, mφ = 0.005, β = −0.5, θ = 1.573, the
solution is unstable

Substituting in (4.3),

Mbn(σ0)(S1 + S2) = MbS1n(σ0) + MbS1
∂n

∂σ
(σ = σ0)(σ(t− τ1)− σ0)

+
1
2
MbS1

∂2n

∂σ2
(σ = σ0)(σ(t− τ1)− σ0)2 + MbS2n(σ0)

+ MbS2
∂n

∂σ
(σ = σ0)(σ(t− τ2)− σ0)

+
1
2
MbS2

∂2n

∂σ2
(σ = σ0)(σ(t− τ2)− σ0)2 + σ̇(t).

Therefore,

σ̇(t) = −β1σ
2(t− τ1)− β2σ

2(t− τ2)− θ1σ(t− τ1)− θ2σ(t− τ2) + γ. (4.4)

where

β1 =
1
2
MbS1

∂2n

∂σ2
(σ0) < 0, β2 =

1
2
MbS2

∂2n

∂σ2
(σ0) < 0, α1 = MbS1

∂n

∂σ
(σ0) > 0,
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α2 = MbS2
∂n

∂σ
(σ0) > 0, θ1 = α1 − 2β1σ0, θ2 = α2 − 2β2σ0, β = β1 + β2,

α = α1 + α2, γ = ασ0 − βσ2
0 .

Let τ = max{τ1, τ2}, φ ∈ C = C([−τ, 0]; R) such that σ(t) = φ(t) for t ∈ [−τ, 0].
We obtain the system

σ̇(t) = f(σt(−τ1), σt(−τ2)), for t ≥ 0,

σ(t) = φ(t), for t ∈ [−τ, 0],
(4.5)

where
f(x, y) = −β1x

2 − β2y
2 − θ1x− θ2y + γ.

4.1. Existence and uniqueness. As in [12, lemma 1.1, p. 39], we have the
following result.

Lemma 4.1. Suppose that φ ∈ C, f : C × C → R is a continuous function. Then
finding a solution of equation (4.5) is equivalent to solving the integral equation

σ(t) = φ(t), t ∈ [−τ, 0],

σ(t) = φ(0) +
∫ t

0

f(σs(−τ1), σs(−τ2))ds, t ≥ 0.
(4.6)

Theorem 4.2. Problem (4.5) admits a unique solution on [−τ,+∞) through (0, φ).

Proof. By [10, theorem 1.1.1], the existence is ensured. Let t ∈ Iα = [0, α], α > 0,
and on take the region:

N = {t; |σ(t)|+ |σ(t− τ1)|+ |σ(t− τ2)| ≤ c}.
Let x, y ∈ N be two solutions of (4.5). Then for t ≥ 0, we have

|x(t)− y(t)| ≤
∫ t

0

|f(xs(−τ1), xs(−τ2))− f(ys(−τ1), ys(−τ2))|ds

≤
∫ t

0

(
(−β1|x(s− τ1) + y(s− τ1)|+ θ1)|x(s− τ1)− y(s− τ1)|

+
(
− β2|x(s− τ2) + y(s− τ2)|+ θ2

)
|x(s− τ2)− y(s− τ2)|

)
ds.

Since x, y ∈ N , then we can write −βi|x(s − τi) + y(s − τi)| + θi) ≤ ki, where
ki = −2cβi + θi, i = 1, 2. Let k = max{k1, k2}, then for α = ᾱ such that kᾱ < 1,
and t ∈ Iᾱ, we find

|x(t)− y(t)| ≤ kᾱ sup
0≤s≤t

[|x(s− τ1)− y(s− τ1)|+ |x(s− τ2)− y(s− τ2)|],

since s − τi ∈ [−τ, 0], i = 1, 2; therefore, x(s − τi) = y(s − τi), i = 1, 2. Thus,
x(t) = y(t) for all t ∈ Iᾱ. One completes the proof of the theorem by successively
stepping intervals of length ᾱ. �

Lemma 4.3. Consider the associated homogeneous equation with (4.5):

σ̇(t) = −θ1σ(t− τ1)− θ2σ(t− τ2), t ≥ 0,

σ(t) = φ(t), t ∈ [−τ, 0],
(4.7)

The solution of (4.5) is exponentially bounded; i.e., there exist constants a and b
such that

|σ(t)| ≤ amφebt, t ≥ 0,
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where mφ = sup−τ≤t≤0 |φ|.

Proof. We have

σ(t) = φ(0) +
∫ t

0

[−θ1σ(s− τ1)− θ2σ(s− τ2)]ds, t ≥ 0.

and σ(t) = φ(t) for all t ∈ [−τ, 0], then for t ≥ 0 we can write

|σ(t)| ≤ mφ + θ1

∫ t

0

|σ(s− τ1)|ds + θ2

∫ t

0

|σ(s− τ2)|ds

≤ mφ + θ1mφτ1 + θ2mφτ2 + (θ1 + θ2)
∫ t

0

|σ(s)|ds

≤ amφ + b

∫ t

0

|σ(s)|ds,

where a = 1 + θ1τ1 + θ2τ2, b = θ1 + θ2. By Grönwall’s lemma, |σ(t)| ≤ amφebt,
t ≥ 0. �

In the sequel we use the notation∫
(c)

= lim
T→∞

1
2πi

∫ c+iT

c−iT

,

where c is a real number.

4.2. Stability. First we define the Fundamental solution. The characteristic equa-
tion associated with (4.7) is

h(λ) = λ + θ1e
−λτ1 + θ2e

−λτ2 = 0. (4.8)

We are looking for the solution X(t) of (4.7) such that its Laplace transform is
h−1(λ) with the initial condition

X(t) =

{
0 t < 0,

1 t = 0.

By lemma 4.3 the Laplace transform of X(t) has a sense. We multiply (4.7) by
e−λt and we integrate between 0 and ∞:∫ ∞

0

e−λtẊ(t)dt = −θ1

∫ ∞

0

e−λtX(t− τ1)dt− θ2

∫ ∞

0

e−λtX(t− τ2)dt.

An integration by parts gives

1 = (−λ− θ1e
−λτ1 − θ2e

−λτ2)
∫ ∞

0

e−λtX(t)dt;

therefore,
L(X)(λ) = h−1(λ). (4.9)

The solution of (4.7) which satisfies (4.9) is called the fundamental solution. Since
X(t) is a function of bounded variation on every compact and is continuous, then
the inversion theorem [12] allows us to write

X(t) =
∫

(c)

eλth−1(λ)dt.

By adapting the proof of [12, Theorem 5.2], we obtain the following result.
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Theorem 4.4. For α > α0 = max{Reλ; h(λ) = 0}, there exists a constant k > 0
such that

|X(t)| ≤ keαt, t ≥ 0.

Particularly, if α0 < 0, then we can choose α0 < α < 0 such that X(t) → 0 when
t →∞.

Proof. We have

X(t) =
∫

(c)

eλth−1(λ)dλ, (4.10)

where c is some sufficiently large real number. We may take c > α. We first want
to prove that

X(t) =
∫

(α)

eλth−1(λ)dλ. (4.11)

We integrate eλth−1(λ) around the boundary of the box ABCD in the complex
plane with boundary L1M1L2M2 in the direction indicated (see Fig. 2), where

L1 = {c + iτ ;−T ≤ τ ≤ T}, L2 = {α + iτ ;−T ≤ τ ≤ T},
M1 = {σ + iT ;α ≤ σ ≤ c}, M2 = {σ − iT ;α ≤ σ ≤ c}.

Since h(λ) has no zeros in the box, it follows that the integral over the boundary
is zero. Therefore, relation (4.11) will be verified if we show that∫

M1

eλth−1(λ)dλ,

∫
M2

eλth−1(λ)dλ → 0 as T →∞.

Figure 2. Γ: inside the rectangle ABCD

Choose T0 such that

(1 +
α2

T 2
0

)1/2 − 1
T0

(θ1e
−τ1α + θ2e

−τ2α) ≥ 1
2
.

If T ≥ T0 and λ ∈ M1; that is, λ = σ + iT, α ≤ σ ≤ c, and T ≥ T0, then

|h−1(λ)| ≤ 1
(σ2 + T 2)1/2 − θ1e−τ1α − θ2e−τ2α

≤ 2
T

.

Therefore, by letting T →∞,

|
∫

M1

eλth−1(λ)dλ| ≤ 2
T

ect(c− α) → 0.
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The same arguments as previously prove that the integral over M2 go to 0 by letting
T →∞. This proves the relation (4.11).

Suppose T0 is as above. If g(λ) = h−1(λ)− (λ−α)−1 then for λ = α+ iT ; |T | ≥
T0, and

g(λ) = | 1
λ− θ1e−τ1α − θ2e−τ2α

− 1
λ− α0

|

= |θ1e
−τ1α + θ2e

−τ2α − α0

λ− α0
h−1(λ)|

≤ 2
T 2

(θ1e
−τ1α + θ2e

−τ2α + |α0|).

Then ∫
(α)

|g(λ)|dλ < ∞,

∫
(α)

|eλtg(λ)|dλ ≤ k1e
αt, t > 0,

where k1 is a constant. Consequently∫
(α)

eλt(λ− α0)−1dλ ≤ k2e
αt, t > 0,

and |X(t)| ≤ keαt, t > 0, k = k1 + k2. �

Theorem 4.5. For t ≥ 0, the solution of (4.7) is given by

σ(φ, 0)(t) = X(t)φ(0)− θ1

∫ 0

−τ1

X(t− r − τ1)φ(r)dr − θ2

∫ 0

−τ2

X(t− r − τ2)φ(r)dr.

Proof. Multiply (4.7) by e−λt and we integrate by parts:

−φ(0) + h(λ)L(σ)(λ) = −θ1e
−λτ1

∫ 0

−τ1

e−λrφ(r)dr − θ2e
−λτ2

∫ 0

−τ2

e−λrφ(r)dr.

Then, for c is sufficiently large,

σ(t) =
∫

(c)

h−1(λ)[φ(0)− θ1e
−λτ1

∫ 0

−τ1

e−λrφ(r)dr − θ2e
−λτ2

∫ 0

−τ2

e−λrφ(r)dr]dλ.

For i = 1, 2, we consider wi : [−τi,∞) → [0, 1] such that wi(r) = 0 if r ≥ 0 and
wi(r) = 1, if r < 0, then we can define φ on [−τ,∞) by φ(r) = φ(0) for r ≥ 0.

For i = 1, 2, we have

e−λτi

∫ 0

−τi

e−λrφ(r)dr =
∫ ∞

0

e−λsφ(−τi + s)wi(−τi + s)ds

= L(φ(−τi + ·)wi(−τi + ·)).

We can write

σ(t) = X(t)φ(0)− θ1

∫ t

0

X(t− s)φ(−τ1 + s)w(−τ1 + s)ds

− θ2

∫ t

0

X(t− s)φ(−τ2 + s)w(−τ2 + s)ds,

and

σ(t) = X(t)φ(0)− θ1

∫ τ1

0

X(t− s)φ(−τ1 + s)ds− θ2

∫ τ2

0

X(t− s)φ(−τ2 + s)ds.
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Suppose that ri = −τi + s for i = 1, 2. Then

σ(t) = X(t)φ(0)− θ1

∫ 0

−τ1

X(t− r − τ1)φ(r)dr − θ2

∫ 0

−τ2

X(t− r − τ2)φ(r)dr.

�

Corollary 4.6. Let α0 = max{Re(λ);h(λ) = 0} and σ(φ)(t) is the solution of
(4.7). Then, for all α > α0, there exists a constant k = k(α) such that

|σ(φ)(t)| ≤ kmφeαt, t ≥ 0, mφ = sup
−τ≤r≤0

|φ(r)|.

Particularly, if α0 < 0, then we can choose α0 < α < 0 such that any solution of
(4.7) approaches 0, by letting t →∞.

Proof. By theorem 4.4, there exists a constant k1 > 0 such that |X(t)| ≤ k1e
αt.

On the other hand, By theorem 4.5 we can write

|σ(φ)(t)| ≤ |X(t)|mφ + θ1mφ

∫ 0

−τ1

|X(t− r − τ1|dr + θ2mφ

∫ 0

−τ2

|X(t− r − τ2|dr

≤ k1mφeαt + θ1k1mφ

∫ 0

−τ1

eα(t−τ1−r)dr + θ2k1mφ

∫ 0

−τ2

eα(t−τ2−r)dr

≤ mφeαt[k1 +
θ1

α
k1(1 + e−ατ1) +

θ2

α
k1(1 + e−ατ2)]

≤ kmφeαt.

�

Remark 4.7. Consider

f(σ(t− τ1), σ(t− τ2)) = −β1σ
2(t− τ1)− β2σ

2(t− τ2),

and denote u(t) = σ(t− τ1), v(t) = σ(t− τ2). Then

f(u, v) = −β1u
2 − β2v

2, β1 < 0, beta2 < 0.

One can easily show that, f is a continuous function, f(0, 0) = 0, and

|f(u1, v1)− f(u2, v2)| ≤ −β1|u2
1 − u2

2| − β2|v2
1 − v2

2 |
≤ k(|u1|+ |u2|+ |v1|+ |v2|)(|u1 − u2|+ |v1 − v2|),

where k = max{−β1,−β2}. We take the region N = {t; |σ(t)|+ |u(t)|+ |v(t)| ≤ c1},
suppose c2 = 2c1k, we choose c3 = εc1 ≤ c1, (ε small enough) such that c3 satisfies
the inequality

|u1 − u2|+ |v1 − v2| ≤ c3.

Then, c2 → 0 as c3 → 0. Then f is c2-Lipschitz on N ,

|f(u1, v1)− f(u2, v2)| ≤ c2(|u1 − u2|+ |v1 − v2|). (4.12)

Remark 4.8. By [14, proposition 3.2] (see also [18]), if

τ1 6=
π

2θ1
+

2jπ

θ1
, (j ∈ N), τ1 >

π

2θ1
,

then, for τ2 > 0, there exists a constant δ > 0 such that the solution of (4.7) is
unstable when θ2

θ1
< δ.

Remark 4.9. By [14, propositions 3.1 et 3.3] (see also [18]), we have the stability
of the solution of (4.7) under the following conditions:
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(1)

θ2 < θ1, τ1 ≤
1

θ1 + θ2
, τ2 > 0. (4.13)

(2)

θ2 > θ1,
π

2τ1
< (θ2

1 + θ2
2)

1/2 <
3π

2τ1

and for all τ2 ∈ [0, τ2,c] such that τ2,c is the critical value which given as

τ2,c =
1
ω0

arccos(−θ1 cos ω0θ1τ1

θ2
),

where ω0 is the unique solution of the equation

ω2 + 1− θ2
2/θ2

1

2ω
= sinωθ1τ1.

(3) τ1 ∈ [ 1
θ1+θ2

, π
2θ1

], in this case the stability depends only on the critical value
τ2.

(4) For τ1 as fixed τ1 > π
2θ1

, there exists a value τ0,c such that the solution of
(4.7) is stable for all τ2 ≤ τ0,c.

For each root s of h(λ) (see [14, 18]), there exists λ0 > 0 such that Re(s) < −λ0.
By theorem 4.4, there exists a constant c4 such that

|X(t)| ≤ c4e
−λ0t, t ≤ 0. (4.14)

By Corollary 4.6, we can find a constant c5 such that

|σ0(t)| ≤ c5mφe−λ0t, t ≥ 0, (4.15)

with σ0(t) is the solution of (4.7).

Using the notation of Remark 4.7, we consider

σ̇(t) = −θ1σ(t− τ1)− θ2σ(t− τ2) + f(u(t), v(t)), t ≥ 0,

σ(t) = φ(t), t ∈ [−τ, 0].
(4.16)

We have the following result.

Theorem 4.10. Suppose that mφ is sufficiently small. Then the solution of (4.16)
is a continuous function on [−τ,∞), given by

σ̇(t) = σ0(t) +
∫ t

0

f(u(s), v(s))X(t− s)ds, t ≥ 0,

σ(t) = φ(t), t ∈ [−τ, 0],
(4.17)

where σ0(t) is the solution of linear equation (4.7), and X(t) is the fundamental
solution of (4.7). Therefore if mφ is sufficiently small, then limt→∞ |σ(t)| = 0.

Proof. We use ideas from [2, Chapter 11]. Let {σn(t)}n≥0 is a sequence defined by

σn+1(t) = σ0(t) +
∫ t

0

f(un(s), vn(s))X(t− s)ds, t ≥ 0,

σn+1(t) = φ(t), t ∈ [−τ, 0],
(4.18)

where un(s) = σn(s − τ1), vn(s) = σn(s − τ2). We will show that this sequence is
well defined; i.e.,

|σn(t)| ≤ 2c5mφ, n = 0, 1, . . . , t ≥ −τ. (4.19)
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For n = 0, (4.19) is verified for all t ∈ [−τ, 0], if we take c5 > 1/2. We proceed by
recurrence. Let t ≥ 0, suppose that (4.19) is verified. We will show that

|σn+1(t)| ≤ 2c5mφ, n = 0, 1, . . . , t ≥ 0. (4.20)

For mφ is sufficiently small, we can take c3 = 8c5mφ; therefore,

|σn(s− τ1)|+ |σn(s− τ2)| ≤ 4c5mφ ≤
c3

2
, s ≥ 0.

By (4.12), we find that

|f(σn(s− τ1), σn(s− τ2))| ≤ c2[|σn(s− τ1)|+ |σn(s− τ2)|]

≤ 1
2
c2c3 = 4c2c5mφ.

Then

|σn+1(t)| ≤ c5mφe−λ0t + 4c2c4c5mφ

∫ t

0

e−λ0(t−s)ds

≤ c5mφ + 4c2c4c5mφ

∫ t

0

e−λ0rdr

≤ c5mφ + 4c2c4c5mφ/λ0.

Since c2 → 0 as mφ → 0, we can choose mφ such that 4c2c4/λ0 < 1. Then

|σn+1(t)| ≤ 2c5mφ, n = 0, 1, . . . , t ≥ −τ.

The sequence {σn(t)}n≥0 is well defined for t ≥ −τ , and it is bounded uniformly.
Now we prove that {σn(t)}n≥0 converges. For n ≥ 1, we find that

|σn+1(t)− σn(t)| ≤
∫ t

0

|f(σn(s− τ1), σn(s− τ2))

− f(σn−1(s− τ1), σn−1(s− τ2))|X(t− s)ds.

By (4.19), we have

|σn(t− τ1)− σn−1(t− τ1)|+ |σn(t− τ2)− σn−1(t− τ2)| ≤ 8c5mφ = c3.

Using (4.12), we find that

|σn+1(t)− σn(t)| ≤ c2c4

∫ t

0

[|σn(s− τ1)− σn−1(s− τ1)|

+ |σn(s− τ2)− σn−1(s− τ2)|]e−λ0(t−s)ds.

Let
mn(t) = sup

−τ≤s≤t
|σn(s)− σn−1(s)|, n ≥ 1.

For t ≥ −τ , n ≥ 1, we have

|σn+1(t)− σn(t)| ≤ 2c2c4mn(t)
∫ t

0

e−λ0(t−s)ds. (4.21)

Since σn+1(t) = σn(t) for t ∈ [−τ, 0], we obtain

mn+1(t) ≤ c6mn(t), t ≥ −τ, (4.22)
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where c6 = 2c2c4

∫ t

0
e−λ0(t−s)ds. For mφ is sufficiently small, we can take c6 < 1,

because that c2 → 0 as c3 → 0. Consequently,
∞∑

n=0

sup
−τ≤s≤t

|σn+1(s)− σn(s)|, (4.23)

is convergent, since it is bounded by m1(t)
∑∞

n=0 cn
6 , where

|m1(t)| ≤ sup
−τ≤s≤t

|σ1(s)|+ sup
−τ≤s≤t

|σ0(t)| ≤ 4c5mφ.

The convergence of (4.23) is uniform, then {σn(t)}n≥0 converges uniformly to σ(t).
By (4.18), σ(t) satisfies the condition σ(t) = φ(t) for t ∈ [−τ, 0]. It also satisfies
(4.17). σ(t) is a continuous function for all t ≥ −τ . By (4.17), we have

|σ(t)| ≤ c5mφe−λ0t + c2c4

∫ t

0

[|σ(s− τ1)|+ |σ(s− τ2)|]|X(t− s)|ds,

|σ(t)| ≤ c5mφe−λ0t + c2c4

∫ t−τ1

−τ1

|σ(r)||X(t− r − τ1)|dr

+ c2c4

∫ t−τ2

−τ2

|σ(r)||X(t− r − τ2)|dr,

Suppose that k = 2c2c4(eλ0τ − 1)/λ0, then

|σ(t)|eλ0t ≤ c5mφ + kmφ + c2c4e
λ0τ1

∫ t

0

|σ(r)|eλ0rdr + c2c4e
λ0τ2

∫ t

0

|σ(r)|eλ0rdr.

Therefore,

|σ(t)|eλ0t ≤ c5mφ + kmφ + 2c2c4e
λ0τ

∫ t

0

|σ(r)|eλ0rdr.

By Grönwall’s lemma,

|σ(t)|eλ0t ≤ (c5 + k)mφ exp (2c2c4e
λ0τ )t,

and
|σ(t)| ≤ (c5 + k)mφ exp (−λ0 + 2c2c4e

λ0τ )t.
Since c2 → 0 as mφ → 0, for mφ is sufficiently small, we obtain limt→∞ |σ(t)| =
0. �

4.3. Numerical tests. As in the previous section (Section 3) we present some
numerical results using MATLAB to show asymptotic stability and instability of
solution of (4.16) according to the physical parameters α1, α2, β1, β2, τ1 and τ2;
see Table 1.
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Mecking-Lücke equation with delay, Mathematical Problems in Engineering 2007 Article ID
45951.

[14] S. Hilout, M. Boutat, I. Laadnani and J. Grilhé, mathematical modelling of plastic deforma-
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