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EXISTENCE OF SOLUTIONS FOR QUASILINEAR PARABOLIC
EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS

BAILI CHEN

Abstract. We prove the existence of a generalized solution a quasilinear par-
abolic equation with nonlocal boundary conditions, using the Faedo-Galerkin
approximation.

1. Introduction

In this paper, we are concerned with the existence of a generalized solution of
the following quasilinear parabolic equation with nonlocal boundary conditions:

∂u

∂t
−

n∑
i=1

∂

∂xi
(|u|p−2 ∂u

∂xi
) + |u|p−2u = f(x, t), x ∈ Ω, t ∈ [0, T ] (1.1)

u(x, t) =
∫

Ω

k(x, y)u(y, t)dy, x ∈ Γ (1.2)

u(x, 0) = u0(x). (1.3)

As a physical motivation, problem (1.1)–(1.3) arises from the study of quasi-static
thermoelasticity. The main difficulty of this problem is related to the presence of
both quasilinear term in (1.1) and nonlocal boundary condition (1.2). Literatures
to this type of problem are very limited. We only found [4] in which the authors
study a quasilinear parabolic equation with nonlocal boundary conditions different
from (1.2).

The quasilinear term in (1.1) makes it difficult to apply classical methods like
semi-group method or method of upper and lower solutions. However, we found
that Faedo-Galerkin method serves as a convenient tool for this type of problem. We
proved the existence of a generalized solution of problem (1.1)–(1.3) by constructing
approximate solution using Faedo-Galerkin method and applying weak convergence
and compactness arguments.

It is well known that Faedo-Galerkin method is used to prove the existence
of solutions for linear parabolic equations in [6]. In [5], Faedo-Galerkin method is
coupled with contraction mapping theorems to prove the existence of weak solutions
of semilinear wave equations with dynamic boundary conditions. Bouziani et al. use
Faedo-Galerkin method to show the existence of a unique weak solution for a linear
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parabolic equation with nonlocal boundary conditions. Lion’s book [7, Chapter
1], collects the work of Dubinskii and Raviart, in which they use Faedo-Galerkin
method to prove the existence and uniqueness of weak solution for a quasilinear
parabolic equation with homogeneous boundary condition.

Problem (1.1)–(1.3) is the extension of the problem in [7, p. 140] in which the
boundary conditions are homegeneous.

This article is organized as follows: in section 2, we give the definition of the
generalized solution of problem (1.1)–(1.3) and introduce the function spaces related
to the generalized solution. In section 3, we demonstrate the construction of an
approximation solution by Faedo-Galerkin method and derive a priori estimates for
the approximation solution. Section 4 is devoted to the proof of existence of the
generalized solution by compactness arguments.

2. Preliminaries

In this article, we use the following notation:
Ω: regular and bounded domain of Rn; Γ: boundary of Ω;
(·, ·): usual inner product in L2(Ω);
W k,p(Ω): Sobelev space on Ω; Hr(Ω): Sobelev space W r,2(Ω);
Lp(Ω): Lp space defined on Ω; | · |p: norm in Lp(Ω); | · |p,Γ: norm in Lp(Γ);
H−r(Ω): dual space of Hr(Ω); | · |H−r(Ω): norm in H−r(Ω);
c: nonzero constant which may take different values on each occurrence;
C: nonnegative constant which may take different values on each occurrence;
↪→: continuous embedding;
K(x): norm of k(x, y) in Lq(Ω) with respect to y,
i.e., K(x) = (

∫
Ω
|k(x, y)|qdy)1/q;

Ki(x): norm of Dik(x, y) in Lq(Ω) with respect to y,
i.e., Ki(x) = (

∫
Ω
|∂k(x,y)

∂xi
|qdy)1/q.

In this article, we make the following assumptions:
(A1) n ≥ 2, p > n, r > n

2 + 2;
(A2) 1

p + 1
q = 1;

(A3) f ∈ Lq(0, T ;Lq(Ω)) and u0 ∈ L∞(Ω);
(A4) For any x ∈ Γ, K(x) < ∞, Ki(x) < ∞;
(A5)

∑n
i=1

∫
Γ

K(x)p−1Ki(x)dΓ < 1− 1
p .

Here we give an example of a function k(x, y) which satisfies assumptions (A4)
and (A5): When n = 2, p = 3 and Ω is an unit square, let k(x, y) = x1x2(y1y2)2/3.
It is easy to verify that K(x) = (

∫
Ω
|k(x, y)|qdy)1/q and Ki(x) = (

∫
Ω
|∂k(x,y)

∂xi
|qdy)1/q

satisfy assumptions (A4) and (A5).
With assumption (A1), using Sobelev embedding theorems, see [1], we have

Hr(Ω) ↪→ W 2,p(Ω) ↪→ W 1,p(Ω) ↪→ Lp(Ω) ↪→ L2(Ω).

Define a space V :

V = {v ∈ Hr(Ω) : v(x) =
∫

Ω

k(x, y)v(y)dy, for x ∈ Γ} (2.1)

It is easy to see that V is a subspace of Hr(Ω).

Definition 2.1. Define a generalized solution of problem (1.1)–(1.3) as a function
u, such that
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(i) u ∈ L∞(0, T ;L2(Ω)) ∩ C([0, T ],H−r(Ω));
(ii) du

dt ∈ Lq(0, T ;H−r(Ω));
(iii) u(x, 0) = u0(x);
(iv) for all v ∈ V and a.e. t ∈ [0, T ],

(
du

dt
, v)− (

n∑
i=1

∂

∂xi
(|u|p−2 ∂u

∂xi
), v) + (|u|p−2u, v) = (f, v) . (2.2)

Remark 2.2. From the proof of existence theorem in section 4, we will see that
each inner product in the identity (2.2) is a function of t in Lq(0, T ), hence the
identity holds for a.e. t ∈ [0, T ]. On the other hand, since u(t) ∈ V , the boundary
condition (1.2) is satisfied.

3. Construction of an approximate solution and a priori estimates

Since V is a subspace of Hr(Ω), which is separable. We can choose a countable
set of distinct basis elements wj , j = 1, 2, · · · , which generate V and are orthonor-
mal in L2(Ω). Let Vm be the subspace of V generated by the first m elements:
w1, w2, · · · , wm. We construct the approximate solution of the form:

um(x, t) =
m∑

j=1

gjm(t)wj(x), (x, t) ∈ Ω× [0, T ]. (3.1)

where (gjm(t))m
j=1 remains to be determined.

Denote the orthogonal projection of u0 on Vm as u0
m = PVmu0, then u0

m → u0 in
V , as m → ∞. Let (g0

jm)m
j=1 be the coordinate of u0

m in the basis (wj)m
j=1 of Vm;

i.e., u0
m =

∑m
j=1 g0

jmwj , let gjm(0) = g0
jm.

We need to determine (gjm(t))m
j=1 to satisfy

(um
′, wj)− (

n∑
i=1

∂

∂xi
(|um|p−2 ∂um

∂xi
), wj) + (|um|p−2um, wj) = (f, wj), 1 ≤ j ≤ m.

Integrating by parts on the second term of left-hand side, we have

(um
′, wj) +

n∑
i=1

∫
Ω

(|um|p−2Dium)(Diwj) dx

−
n∑

i=1

∫
Γ

(|um|p−2Dium)wjdΓ + (|um|p−2um, wj) = (f, wj), 1 ≤ j ≤ m.

(3.2)

The above system is a system of ordinary differential equations in (gjm(t))m
j=1. By

Caratheodory theorem [3], there exists solution (gjm(t))m
j=1, t ∈ [0, tm).

We need a priori estimates that permit us to extend the solution to the whole
domain [0, T ].

We derive a priori estimates for the approximate solution as follows: Multiply
(3.2) by gjm(t), then sum over j from 1 to m, we have

(um
′, um) +

n∑
i=1

∫
Ω

(|um|p−2Dium)(Dium)dx

−
n∑

i=1

∫
Γ

(|um|p−2Dium)umdΓ + (|um|p−2um, um) = (f, um), 1 ≤ j ≤ m.
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which gives

1
2

d

dt
|um(t)|22 +

4
p2

n∑
i=1

∫
Ω

(Di(|um|
p−2
2 um))2dx + |um(t)|pp

= (f, um) +
n∑

i=1

∫
Γ

(|um|p−2Dium)umdΓ.

(3.3)

Integrating with respect to t from 0 to T on both sides, we obtain

1
2
|um(T )|22 +

∫ T

0

4
p2

n∑
i=1

∫
Ω

(Di(|um|
p−2
2 um))2dxdt +

∫ T

0

|um(t)|ppdt

=
∫ T

0

(f, um)dt +
∫ T

0

n∑
i=1

∫
Γ

(|um|p−2Dium)umdΓdt +
1
2
|um(0)|22.

(3.4)

This gives

1
2
|um(T )|22 +

∫ T

0

4
p2

n∑
i=1

∫
Ω

(Di(|um|
p−2
2 um))2dxdt +

∫ T

0

|um(t)|ppdt

≤
∫ T

0

|(f, um)|dt +
∫ T

0

n∑
i=1

∫
Γ

|(|um|p−2Dium)um|dΓdt +
1
2
|um(0)|22.

(3.5)

The first term in the right-hand side of (3.5) can be estimated as follows:∫ T

0

|(f, um)|dt =
∫ T

0

∫
Ω

|fum|dxdt

≤
∫ T

0

|f |q|um|pdt (hölder’s inequality)

≤
∫ T

0

(
1
p
|um|pp +

p− 1
p

|f |
p

p−1
q )dt. (Young’s inequality)

(3.6)

Next, we estimate second term in the right-hand side of (3.5): For x ∈ Γ, we have

|um(x, t)| =
∫

Ω

|k(x, y)um(y, t)|dy ≤ |k(x, y)|q|um|p.

Then we have |um(x, t)| ≤ K(x)|um|p for x ∈ Γ. Similarly, we have |Dium(x, t)| ≤
Ki(x)|um|p for x ∈ Γ.

Then using hölder’s inequality and assumptions (A4) and (A5), we have∫ T

0

∣∣ n∑
i=1

∫
Γ

(|um|p−2Dium)umdΓ
∣∣dt

≤
∫ T

0

n∑
i=1

∫
Γ

K(x)p−1|um|p−1
p Ki(x)|um|pdΓdt

≤
∫ T

0

( n∑
i=1

∫
Γ

K(x)p−1Ki(x)dΓ
)
|um|ppdt

= C

∫ T

0

|um|ppdt

(3.7)
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where

C =
n∑

i=1

∫
Γ

K(x)p−1Ki(x)dΓ < 1− 1
p

.

With the above estimates and (3.5), we have

1
2
|um(T )|22 +

∫ T

0

4
p2

n∑
i=1

∫
Ω

(Di(|um|
p−2
2 um))2dxdt +

∫ T

0

(1− 1
p
− C)|um(t)|ppdt

≤
∫ T

0

(
p− 1

p
|f |

p
p−1
q )dt +

1
2
|um(0)|22.

which holds for any finite T > 0.
Under assumption (A1)-(A5), we have the following a priori estimates:
(B) um is bounded in L∞(0, T ; L2(Ω));
(C) |um|

p−2
2 |um| is bounded in L2(0, T ;H1(Ω));

(D) um is bounded in Lp(0, T ;Lp(Ω)).
Since T is an arbitrary positive number, we have

|um|pp < ∞ a.e. t

4. Existence of a generalized solution

To prove the existence of a generalized solution, we first prove the following
lemma:

Lemma 4.1. Let um, constructed in (3.1), be the approximate solution of (1.1)–
(1.3) in the sense of Definition 2.1. Then u′m is bounded in Lq(0, T ; H−r(Ω)).

Proof. For v ∈ V ⊂ Hr, from (3.2), we have

(um
′, v) + (

n∑
i=1

∫
Ω

(|um|p−2Dium)(Div)dx

−
n∑

i=1

∫
Γ

(|um|p−2Dium)vdΓ + (|um|p−2um, v) = (f, v).

(4.1)

The last term in the left-hand side can be estimated as in [7]:

|(|um|p−2um, v)| ≤ | |um|p−1|q|v|p
≤ (|um|pp)1/q|v|p
≤ (|um|pp)1/qC|v|Hr ,

since Hr ↪→ Lp. Hence | |um|p−2um|H−r(Ω) ≤ C(|um|pp)1/q < ∞. The norm of
|um|p−2um in Lq(0, T ;H−r(Ω)) is bounded by( ∫ T

0

(C(|um|pp)1/q)qdt
)1/q

=
( ∫ T

0

Cq|um|ppdt
)1/q

< ∞.

Therefore, |um|p−2um is bounded in Lq(0, T ;H−r(Ω)).
Next, we consider the term

∑n
i=1

∫
Γ
(|um|p−2Dium)vdΓ in the left-hand side of

(4.1):

v →
n∑

i=1

∫
Γ

(|um|p−2Dium)vdΓ = (a(um), v).
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We have
n∑

i=1

∫
Γ

(|um|p−2Dium)vdΓ

≤
n∑

i=1

| (|um|p−2Dium)|q,Γ|v|p,Γ

=
n∑

i=1

∣∣∣(|∫
Ω

k(x, y)um(y, t)dy|p−2

∫
Ω

Dik(x, y)um(y, t)dy
)∣∣∣

q,Γ

×
∣∣∣ ∫

Ω

k(x, y)v(y, t)dy
∣∣∣
p,Γ

≤
n∑

i=1

|(K(x)p−2Ki(x)|um|p−1
p )|q,Γ|(K(x)|v|p)|p,Γ

≤
n∑

i=1

|K(x)p−2Ki(x)|q,Γ|K(x)|p,Γ|um|p−1
p |v|p

≤
n∑

i=1

|K(x)p−2Ki(x)|q,Γ|K(x)|p,Γ|um|p−1
p C|v|Hr .

Therefore,

|a(um)|H−r(Ω) ≤
n∑

i=1

|K(x)p−2Ki(x)|q,Γ|K(x)|p,Γ|um|p−1
p C < ∞.

Then the norm of a(um) in Lq(0, T ;H−r(Ω)) is bounded by( ∫ T

0

n∑
i=1

(|K(x)p−2Ki(x)|q,Γ|K(x)|p,ΓC)q|um|ppdt
)1/q

< ∞.

Hence, a(um) is bounded in Lq(0, T ;H−r(Ω)).
Next, we consider the second term in the left-hand side of (4.1). Integrating by

parts gives
n∑

i=1

∫
Ω

(|um|p−2Dium)(Div)dx

=
1
c
(

n∑
i=1

∫
Γ

|um|p−2umDivdΓ−
∫

Ω

|um|p−2um∆vdx).

(4.2)

Consider v →
∑n

i=1

∫
Γ
|u|p−2uDivdΓ = (I1(u), v), we have:

|(I1(u), v)| ≤
n∑

i=1

| |u|p−2u|q,Γ|Div|p,Γ

=
n∑

i=1

∣∣∣( ∫
Ω

k(x, y)u(y, t)dy
)p−1∣∣∣

q,Γ

∣∣∣ ∫
Ω

Dik(x, y)v(y, t)dy
∣∣∣
p,Γ

≤
n∑

i=1

|(K(x)p−1|u|p−1
p )|q,Γ|(Ki(x)|v|p)|p,Γ
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=
n∑

i=1

|K(x)p−1|q,Γ|Ki(x)|p,Γ|u|p−1
p |v|p

≤
n∑

i=1

|K(x)p−1|q,Γ|Ki(x)|p,Γ|u|p−1
p C|v|Hr

So we have

|I1(um)|H−r(Ω) ≤
n∑

i=1

|K(x)p−1|q,Γ|Ki(x)|p,Γ|um|p−1
p C < ∞.

With this, it is easy to see that norm of I1(um) in Lq(0, T ;H−r(Ω)) is bounded.
Next, consider v →

∫
Ω
|u|p−2u∆vdx = (I2(u), v). From the proof of [7, Theorem

12.2], we know I2(um) is bounded in Lq(0, T ;H−r(Ω)). Since f ∈ Lq(0, T ;Lq(Ω)) ⊂
Lq(0, T ;H−r(Ω)), from (4.1) and the above discussion, we have u′m is bounded in
Lq(0, T ;H−r(Ω)). �

With Lemma 4.1, we can use [7, Theorem 12.1]. We quote the theorem here.

Theorem 4.2. Let B,B1 be Banach spaces, and S be a set. Define

M(v) = (
n∑

i=1

∫
Ω

|v|p−2(
∂v

∂xi
)2dx)1/p

on S with:
(a) S ⊂ B ⊂ B1, and M(v) ≥ 0 on S, M(λv) = |λ|M(v);
(b) the set {v|v ∈ S, M(v) ≤ 1} is relatively compact in B.

Define the set F = {v : v is locally summable on [0, T ] with value in B1,∫ T

0
(M(v(t)))p0dt ≤ C, v′ bounded in Lp1(0, T ;B1)}. Where 1 < pi < ∞, i = 0, 1.
Then F ⊂ Lp0(0, T ;B) and F is relatively compact in Lp0(0, T ;B).

We need Theorem 4.2 to prove the following lemma:

Lemma 4.3. Let um, constructed as in (3.1), be the approximate solution of (1.1)–
(1.3) in the sense of Definition 2.1, then um → u in Lp(0, T ;Lp(Ω)) strongly and
almost everywhere.

Proof. Let S = {v : |v|
p−2
2 v ∈ H1(Ω)}. Since H1(Ω) is also compactly embedded

in L2(Ω), the proof of [7, Proposition 12.1,p. 143] also works for |v|
p−2
2 v ∈ H1(Ω),

then (b) holds.
Let B = Lp(Ω), B1 = H−r(Ω), p0 = p, p1 = q, we have∫ T

0

(M(um))p0dt =
∫ T

0

(
n∑

i=1

∫
Ω

|um|p−2(
∂um

∂xi
)2dx)dt

= C

∫ T

0

n∑
i=1

∫
Ω

(Di(|um|
p−2
2 um))2dxdt < ∞

Now with Lemma 4.1 and a priori estimates, conclusion follows easily from appli-
cation of Theorem 4.2. �

Next, we prove that we can pass the limit in (4.1). Lemmas 4.4–4.7, below, show
that we can pass the limit in each term in the left-hand side of (4.1).
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Lemma 4.4. Let um, as constructed in (3.1), be the approximate solution of (1.1)–
(1.3) in the sense of Definition 2.1, then (|um|p−2um, v) → (|u|p−2u, v) as m →∞.

Proof. We need to show that |um|p−2um ⇀ |u|p−2u in Lq(Ω) weakly, this is a
consequence of [7, Lemma 1.3]. �

Lemma 4.5. Let um, constructed as in (3.1), be the approximate solution of (1.1)–
(1.3) in the sense of Definition 2.1, then

∫
Γ
(|um|p−2Dium)vdΓ →

∫
Γ
(|u|p−2Diu)vdΓ

as m →∞.

Proof. By a priori estimates, um is bounded in Lp(Ω) for almost every t, then there
exists subsequence of um, still denoted as um, converges to u weak star in Lp(Ω)
(Alaoglu’s Theorem) for almost every t ∈ [0, T ].

Under the assumption that for fixed x, |k(x, y)|q = (
∫
|k(x, y)|qdy)1/q < ∞; i.e.,

k(x, y) ∈ Lq(Ω) for fixed x ∈ Γ, we have∫
Ω

k(x, y)um(y, t)dy →
∫

Ω

k(x, y)u(y, t)dy as m →∞.

Similarly, ∫
Ω

Dik(x, y)um(y, t)dy →
∫

Ω

Dik(x, y)u(y, t)dy as m →∞.

Therefore, for x ∈ Γ, we have |um(x, t)|p−2Dium(x, t) → |u(x, t)|p−2Diu(x, t) a.e.
Next, we prove that |(|um(x, t)|p−2Dium(x, t))|q,Γ < ∞. For x ∈ Γ, we have

um(x, t) =
∫

Ω

k(x, y)um(y, t)dy,

|um(x, t)| < |k(x, y)|q|um|p ≤ K(x)C

Since K(x) ∈ Lp(Γ), we have |um|p,Γ < ∞. Similarly, we have |Dium|p,Γ < ∞ and
|v|p,Γ < ∞. Then∣∣ |um|p−2Dium

∣∣
q,Γ

≤
∣∣ |um|p−2

∣∣
p

p−2 ,Γ
|Dium|p,Γ (since

1
q

=
p− 2

p
+

1
p
, [1, p25])

= (|um|p,Γ)p−2|Dium|p,Γ < ∞

By Lemma [7, Lemma 1.3], we have: |um|p−2Dium ⇀ |u|p−2Diu weakly in Lq(Γ)
for a.e. t ∈ [0, T ]. Since |v|p,Γ < ∞, the proof is complete. �

Lemma 4.6. Let um, as constructed in (3.1), be the approximate solution of (1.1)–
(1.3) in the sense of Definition 2.1, then∫

Ω

(|um|p−2Dium)(Div)dx →
∫

Ω

(|u|p−2Diu)(Div)dx.

Proof. From (4.2) we know, we need to prove:
(i)

∫
Γ
|um|p−2umDivdΓ →

∫
Γ
|u|p−2uDivdΓ; and

(ii)
∫
Ω
|um|p−2um∆vdx →

∫
Ω
|u|p−2u∆vdx.

(i) From the proof of Lemma 4.5, we have, for x ∈ Γ, |um(x, t)|p−2um(x, t) →
|u(x, t)|p−2u(x, t) almost everywhere, and

| |um|p−2um|q,Γ = |um|p−1
p,Γ < ∞.
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Therefore, we can apply [7, Lemma 1.3] to conclude that |um(x, t)|p−2um(x, t) ⇀
|u(x, t)|p−2u(x, t) weakly in Lq(Γ). Since Div ∈ Lp(Γ), (i) is proved.

(ii) From Lemma 4.3, we have |um(x, t)|p−2um(x, t) → |u(x, t)|p−2u(x, t) almost
everywhere, for x ∈ Ω. Since | |um|p−2um|q = |um|p−1

p < ∞, by [7, Lemma 1.3], we
have: |um|p−2um ⇀ |u|p−2u weakly in Lq(Ω). Since ∆v ∈ Lp(Ω), we complete the
proof of (ii). �

Lemma 4.7. Let um, as constructed in (3.1), be the approximate solution of (1.1)–
(1.3) in the sense of Definition 2.1, then (u′m, v) → (u′, v) and u(t) is continuous
on [0, T ].

Proof. Since u′m is bounded in Lq(0, T ;H−r(Ω)), by Alaoglu’s theorem, there exists
a subsequence, still denoted by u′m, converging to χ weak star in Lq(0, T ;H−r(Ω)).
By slightly modifying the proof of [2, Theorem 1] (with the space Lq(0, T ;H−r(Ω)),
instead of L2(0, T ;B1

2(0, 1)).), we have χ = u′ and u(t) is continuous on [0, T ]. �

Based on the above discussion, we summarize the existence theorem as follows.

Theorem 4.8. Under assumptions (A1)-(A5), there exists a generalized solution
u of problem (1.1)–(1.3), such that

(1) u ∈ L∞(0, T ;L2(Ω)) ∩ C([0, T ],H−r(Ω));
(2) |u|

p−2
2 u is bounded in L2(0, T ;H1(Ω)).

(3) du
dt ∈ Lq(0, T ;H−r(Ω)).

(4) u(x, 0) = u0(x).
(5) for all v ∈ V and a.e. t ∈ [0, T ],

(
du

dt
, v)− (

n∑
i=1

∂

∂xi
(|u|p−2 ∂u

∂xi
), v) + (|u|p−2u, v) = (f, v) .
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