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EXISTENCE OF SOLUTIONS FOR QUASILINEAR PARABOLIC
EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS

BAILI CHEN

ABSTRACT. We prove the existence of a generalized solution a quasilinear par-
abolic equation with nonlocal boundary conditions, using the Faedo-Galerkin
approximation.

1. INTRODUCTION

In this paper, we are concerned with the existence of a generalized solution of
the following quasilinear parabolic equation with nonlocal boundary conditions:

Zax a0 e fan), weq tef0T) (L)
u(e.t) = [ Mog)ulytdy, v eT (1.2)

Q
u(z,0) = uo(x). (1.3)

As a physical motivation, problem 7 arises from the study of quasi-static
thermoelasticity. The main difficulty of this problem is related to the presence of
both quasilinear term in and nonlocal boundary condition . Literatures
to this type of problem are very limited. We only found [4] in which the authors
study a quasilinear parabolic equation with nonlocal boundary conditions different
from (|1.2).

The quasilinear term in makes it difficult to apply classical methods like
semi-group method or method of upper and lower solutions. However, we found
that Faedo-Galerkin method serves as a convenient tool for this type of problem. We
proved the existence of a generalized solution of problem 7 by constructing
approximate solution using Faedo-Galerkin method and applying weak convergence
and compactness arguments.

It is well known that Faedo-Galerkin method is used to prove the existence
of solutions for linear parabolic equations in [6]. In [5], Faedo-Galerkin method is
coupled with contraction mapping theorems to prove the existence of weak solutions
of semilinear wave equations with dynamic boundary conditions. Bouziani et al. use
Faedo-Galerkin method to show the existence of a unique weak solution for a linear
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parabolic equation with nonlocal boundary conditions. Lion’s book [7, Chapter
1], collects the work of Dubinskii and Raviart, in which they use Faedo-Galerkin
method to prove the existence and uniqueness of weak solution for a quasilinear
parabolic equation with homogeneous boundary condition.

Problem f is the extension of the problem in [7, p. 140] in which the
boundary conditions are homegeneous.

This article is organized as follows: in section 2, we give the definition of the
generalized solution of problem 7 and introduce the function spaces related
to the generalized solution. In section 3, we demonstrate the construction of an
approximation solution by Faedo-Galerkin method and derive a priori estimates for
the approximation solution. Section 4 is devoted to the proof of existence of the
generalized solution by compactness arguments.

2. PRELIMINARIES

In this article, we use the following notation:
Q: regular and bounded domain of R™; I': boundary of €;
(-,+): usual inner product in L*(Q);
WkP(Q): Sobelev space on Q; H"(2): Sobelev space W™2(Q);
LP(Q): LP space defined on §; | - |,: norm in LP(Q); | - |, r: norm in LP(T);
H~"(Q): dual space of H"(Q); | - |g-r(q): norm in H~"(£2);
¢: nonzero constant which may take different values on each occurrence;
C': nonnegative constant which may take different values on each occurrence;
—: continuous embedding;
K(z): norm of k(x,y) in LI(Q) with respect to y,

ie, K(x) = (Jq [k(z,y)[dy)"/7;
Ki(x): norm of D;k(z,y) in L9(2) with respect to y,
ie., K;( fQ 8kzy)|qd )/,

In thls artlcle we make the following assumptions:

Al) n>2 p>n,r> 5+ 2

A2) L4lot

3) fe Lq(O T; L1(Q)) and ug € L>®(Q);

) ForanyacGI‘ K(z) < 00, Ki(z) < o0;
S fp K ()P K (w)dl < 1— L,

Here we give an example of a function k(x,y) which satisfies assumptions (A4)
and (A5): Whenn =2, p= 3 and 2 is an unit square, let k‘(x y) = I1$2(y1y2)2/3
It is easy to verify that K (z) = ([, |k(z,y)|dy)"/? and K;( fQ ’“) |9dy)'/e
satisfy assumptions (A4) and (A5)

With assumption (A1), using Sobelev embedding theorems, see [I], we have

H™(Q) — W?P(Q) — W'P(Q) — LP(Q) — L*(Q).
Define a space V:

V={veH(Q): v(z)= /Qk(;c,y)v(y)dy, forz €T} (2.1)

(
(
(
(
(A5

It is easy to see that V' is a subspace of H"(2).

Definition 2.1. Define a generalized solution of problem ([1.1)—(1.3)) as a function
u, such that
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L®(0,T; L2(9)

) u€ )N C([0,T], H());
(i) 9 e L9(0,T; H~"(Q));

)

)

d k)
u(x,0) = ug(x);
for all v € V and a.e. t€[0 7],

Z (o)) + () = (f0). (22)

Remark 2.2. From the proof of existence theorem in section 4, we will see that
each inner product in the identity is a function of ¢ in L%(0,T), hence the
identity holds for a.e. ¢ € [0,T]. On the other hand, since u(t) € V, the boundary
condition is satisfied.

3. CONSTRUCTION OF AN APPROXIMATE SOLUTION AND A PRIORI ESTIMATES

Since V' is a subspace of H"(2), which is separable. We can choose a countable
set of distinct basis elements w;, j = 1,2,---, which generate V and are orthonor-
mal in L?(Q). Let V,, be the subspace of V generated by the first m elements:
Wy, Wa,*++ , Wy. We construct the approximate solution of the form:

t) = Zgjm(t)wj(x), (z,t) € Q x [0,T]. (3.1)

where (g;m(t))72; remains to be determined.
Denote the orthogonal projection of ug on V,, as u = Py, ug, then 42, — wg in

V,as m — oo. Let (g3,,)7%; be the coordinate of uy, in the basis (w )j:1 of Vi;
ie., ud) = Z;n:l g?mwj7 let g, (0) = g]m.
We need to determine (g;m(t))7L; to satisfy

n
Ouyy,

|p—2 ax ))w]) + (‘um|1’—2um,wj) = (f’ w])’ 1 Sj S m.

(U ,Wj)

Integratmg by parts on the second term of left-hand side, we have

(s 07) 4 3 [ (2 Dit) (Do) o

. =t (3.2)

- Z/(|Um‘p72Dium)w]’dF + (|um|pizumawj) = (fiw;), 1<j<m.
, r

The above system is a system of ordinary differential equations in (g;m(t))72;. By
Caratheodory theorem [3], there exists solution (gjm ()72, t € [0,%m).

We need a priori estimates that permit us to extend the solution to the whole
domain [0, T7.

We derive a priori estimates for the approximate solution as follows: Multiply
. by g;jm(t), then sum over j from 1 to m, we have

() + 3 / ([t |2 Dt (Dt )
i=1"9

- Z/(|um|p_2Dium)umdF + (|um|p_2umaum) = (f7 um)7 1<j<m.
- I
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which gives

- (1)1 + 22 [ (Pllan )+ 0

- m mp_2 iUm md
(f,u )+;/F(|u P2 Dty )t dT

Integrating with respect to ¢ from 0 to T on both sides, we obtain

(TR + / Z/ |um|zum))dedt+/oT|um(t)|gdt

1
:/ (f,um)dt—i—/ Z/(|um|p’2Dium)umdth+§|um(0)\§.
0 0 ;5T

This gives

|um )2+ / Z/ |um|Zum))dedt+/OT|um(t)|§dt

1
S/ (F. )t + / > J 2 Dit 4 + 5 (01
0 0 ;= Jr

The first term in the right-hand side of (3.5)) can be estimated as follows:

/OT|(f,um dt = //\fum|dacdt

T
< / | flgltm|pdt  (hélder’s inequality)
0

T
1 1 e
S/ (f|um|§+pi|f|,§’_l)dt. (Young’s inequality)
o P p

(3.3)

(3.4)

Next, we estimate second term in the right-hand side of (3.5)): For x € T", we have

|t (2, 1)] = /Q [F(2, y)um(y, D)l dy < [k(2,y)lqltmlp-

Then we have |y, (x,t)] < K(x)|uy|, for z € T'. Similarly, we have |D;u,,(x,t)] <

K;(z)|umlp for x € T.

Then using holder’s inequality and assumptions (A4) and (A5), we have

T n
/ |Z/(|um|p_2DiUm)umdF’dt
0 =1’T

T n
S/ Z/K(w)”_l\um|£‘1Ki(x)\um\pdrdt
0 =10
T n )
< K(2)P~ K (2)dT ) [upm |Pdt
| (;/p () K)o

T
:C’/ |t [Hdt
0
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where

. _ 1
CZZ/FK(JJ)” 'K(z)dl < 1—5.
i=1

With the above estimates and -, we have
T
1
|um )E+ / Z/ (|| 7 um))zdmdt—f—/o (1-— i CO)|um (t)[pdt

g/o <—|f\ it + 5 i ()3

which holds for any finite 7' > 0.
Under assumption (A1)-(A5), we have the following a priori estimates:

(B) w, is bounded in L>(0,T; L2());
(C) [t |"=" [tima] is bounded in L2(0,T; H'(R));
(D) uy, is bounded in LP(0,T; LP(Q2)).

Since T is an arbitrary positive number, we have

[um[h < oo ae. t

4. EXISTENCE OF A GENERALIZED SOLUTION

To prove the existence of a generalized solution, we first prove the following
lemma:

Lemma 4.1. Let u,,, constructed in (3.1), be the approzimate solution of (1.1)—
(L-3) in the sense of Definition[2.1, Then ul, is bounded in L(0,T; H™"(Q)).

Proof. For v eV C H", from (3.2)), we have
(', 0 Z/ o [P~2 Ditupn)(Dyv) da

—Z / P2 Ditt oI+ (ft |21, 0) = (f,0).

The last term in the left-hand side can be estimated as in [7]:
[t P2t 0)] < | e [P~ 0]
< (lum )l
< (lum ) 9C o] -,

since H" < LP. Hence | [tp [P~ 2tm|g-r(0) < C(Jum[E)"/9 < co. The norm of
|ty [P~ 21, in L9(0, T; H="(£2)) is bounded by

T q
(/ (Ol ) 2y0d1) / Cq|um|pdt < .
0

Therefore, |t |[P~2u,, is bounded in L4(0,T; H="(£2)).
Next, we consider the term » 1" | [i.( |um| 2Dt )vdl in the left-hand side of

(4.1):
0= / ([t |P~2 Dstign )0l = (a(tim), v).
i=1 7T
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‘We have
3 / (ttyn[P~2Dstty ol
i=1 7T

n
< Z| (|um‘p_2Dium)‘q,F|v|pr
i=1

_Z‘(/ 2, ) (3, )y P 2/Dk 2 ()|
</ k(az,wv(y,t)dy\pr

<Z| 2P (@l x| o) e

< 3 K Kl K )

< DK (@) K)o | K (@) p,rluml ™ Clolr.

=1

Therefore,

p,p|um\£7lc’ < 0.

alum)li—goy < 32 K@) Ki(o)lr K o)

Then the norm of a(uy,) in L2(0,T; H-"()) is bounded by

([ Soxerxie

Hence, a(uyy,) is bounded in L2(0,T; H~"(2)).
Next, we consider the second term in the left-hand side of (4.1)). Integrating by
parts gives

q P 1/q
oK (@) 0 C)Jum[fdt) < .

> / ([t [P~2 Dyt (Ds0)

=179
1 < / p—2 / —2

= - U, W, D;0dl — U, [P~ U, Avdx).
(3 [ el [ Jun| )

Consider v — Y7 | [1. [u[P"2uD;vdl’ = (11 (u), v), we have:

(4.2)

M=

(11 (w),v)] <

| |u‘p_2u‘q,F|DiU|pyF

([ Kwutom) | | [ Diktetom]

| (K ()P~ Hulh ™) .| (Ki(@) [v]p) [

Il
=

7

I

=1

<

3

IN

i
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[
M=

|K(x)p71|q,l“|Ki($)|p7l“|u|£71 vl
1

.
Il

|K ()0 | K (@) [p,r|ul2 Clo| g

I

1

2

So we have

13 () - () € Y 1K (@)P 7 o 0| Ko (@) p,rfum |5 C < oo
i=1
With this, it is easy to see that norm of I (u,,) in L(0,T; H~"(£2)) is bounded.
Next, consider v — [, [u[P~?uAvdz = (I3(u),v). From the proof of [7, Theorem
12.2], we know I (uy,) is bounded in L(0,T; H~"(f2)). Since f € L9(0,T; L1()) C
LY(0,T; H"(£2)), from and the above discussion, we have u/, is bounded in
L9(0,T; H"(Q)). O

With Lemma [4.1} we can use [7, Theorem 12.1]. We quote the theorem here.
Theorem 4.2. Let B, By be Banach spaces, and S be a set. Define

Z/H”a” 2)!/p

on S with:
(a) SC B C By, and M(v) >0 on S, M(A\v) = |A\|M(v);
(b) the set {v|v € S, M (v) < 1} is relatively compact in B.
Deﬁne the set F'={v: v is locally summable on [0, T] with value in By,

fo )Pedt < C, v' bounded in LP*(0,T; By)}. Where 1 < p; < oo, i =0,1.
Then F C Lro(0,T; B) and F is relatively compact in LP°(0,T; B).

We need Theorem [4.2] to prove the following lemma:

Lemma 4.3. Let u,,, constructed as in (3.1), be the approzimate solution of (1.1)—
([L.3) in the sense of Definition[2.1] then u,, — u in LP(0,T;LP(Q)) strongly and
almost everywhere.

Proof. Let S = {v : |v|"= v € H(Q)}. Since H(Q) is also compactly embedded
in L2(Q), the proof of [7, Proposition 12.1,p. 143] also works for \v|¥v € HY(Q),
then (b) holds.

Let B=L*(Q)), By = H "(Q), po = p, p1 = ¢, we have

/OT<M< rdt /Z/wmw?a“m) o)t

= C/ / (|| = um))dedt < 00
0

Now with Lemma [{.1] and a priori estimates7 conclusion follows easily from appli-
cation of Theorem [£.2] O

Next, we prove that we can pass the limit in (4.1). Lemmas4.4/{4.7] below, show
that we can pass the limit in each term in the left-hand side of (4.1)).
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Lemma 4.4. Let u,,, as constructed in (3.1), be the approzimate solution of (1.1)—
(1.3) in the sense of Definition then (|tm|P~2tUm,v) — (|Ju|P~2u,v) as m — oco.

Proof. We need to show that |, |P~%u, — |u[P7%u in L4(Q) weakly, this is a

consequence of [7, Lemma 1.3]. (]

Lemma 4.5. Let u,,, constructed as in (3.1), be the approzimate solution of (1.1)—
(1.3) in the sense ofDeﬁm'tion then, [(|tm [P~ 2Dyt )vdl — [L(|u[P~2D;u)vdl

as m — oQ.

Proof. By a priori estimates, u,, is bounded in LP(2) for almost every ¢, then there
exists subsequence of u,,, still denoted as wu,,, converges to u weak star in LP()
(Alaoglu’s Theorem) for almost every ¢ € [0,T].

Under the assumption that for fixed z, |k(z,y)|, = ([ |k(x,y)|9dy)*/? < oo; i.e.,
k(z,y) € LI(Q) for fixed z € T, we have

[ by dy — [ kot dy asm— .
Q Q

Similarly,

/ Dik(, y)tm (3, 1)y — / Dik(z, y)uly, t)dy as m — oo,
Q Q

Therefore, for z € T, we have |u,, (z,t)|P~2Diu, (z,t) — |u(z,t)|P~2Diu(z,t) ae.
Next, we prove that |(|um (@, t)[P~2Dium (2, t))|er < 0o. For x € ', we have

(2, 1) = /Q Bz, )i (4. 1)y,

|t (,1)] < |k($vy)|q|um|p < K(z)C

Since K(x) € LP(T"), we have |uy, |, r < co. Similarly, we have |D;ty, |, r < 0o and
|v|p,r < 00. Then
—2
‘ |um|p ‘Dium’q,l1
1 p-2 1
<| lum|P72 , Diup|pr  (since — = —— + —, [1, p25
| fum”™] o p ] lpor - (since ===, | )

= (Jttn|p.0)" ™| Diti
By Lemma [7, Lemma 1.3], we have: |u,,|P~ 2Dty — |[u[P72D;u weakly in L9(T)
for a.e. t € [0,T]. Since |v|,r < 00, the proof is complete. O

p,I < 0

Lemma 4.6. Let u,,, as constructed in (3.1), be the approximate solution of (1.1])—
([1.3) in the sense of Definition[2.1], then

/(|um|p_2Dium)(Div)dx—>/(|u|p_2Diu)(Diu)dx.
Q Q

Proof. From ({4.2) we know, we need to prove:

(1) Jp lum|P~?um Dijvdl — i [u[P~?uD;vdl; and

(i) [ [um[P~2umAvde — [, [ulP~?uAvdz.
(i) From the proof of Lemma we have, for x € T, |up(z,t)[P "2t (2, 1) —
|u(z,t)[P~2u(x,t) almost everywhere, and

_ -1
| [t "™ tumlgr = Jum [} < o0.
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Therefore, we can apply [7, Lemma 1.3] to conclude that |, (z, )P~ 2w, (x,t) —
|u(z,t)[P~2u(x,t) weakly in LI(T'). Since D;v € LP(T), (i) is proved.

(ii) From Lemma we have |um(x P2 U (2, 1) — |u(z, )P~ 2u(x,t) almost
everywhere, for z € Q. Since | [t [P~ ?tUm|q = [um[E~" < 00, by [7, Lemma 1.3], we
have: [, [P~ 2w, — |u[P~2u weakly in L9(Q). Since Av € LP(Q2), we complete the
proof of (ii). O

Lemma 4.7. Let u,,, as constructed in , be the approximate solution of (1.1)—
(L3) in the sense of Definition [2.1] then ul,,v) — (v, v) and u(t) is continuous
on [0, 7).

Proof. Since u), is bounded in L4(0,T; H~"(Q2)), by Alaoglu’s theorem, there exists
a subsequence, still denoted by u/,, converging to x weak star in L2(0,7; H~"(£2)).
By slightly modifying the proof of [2, Theorem 1] (with the space L4(0,T; H~"(2)),
instead of L?(0,T; B3(0,1)).), we have x = «/ and u(t) is continuous on [0,T]. O

Based on the above discussion, we summarize the existence theorem as follows.

Theorem 4.8. Under assumptions (A1)-(A5), there exists a generalized solution

u of problem 7, such that
(1) ue L°°(0 T; L2(Q))NC([0,T], H " ());
(2) |u|*z u is bounded in L*(0,T; H*(Q)).
(3) dv e L0, T; H ().
(4) (. 0) = uo(x).

(5) forallvEV and a.e. t € [0,T],

(Zl %ﬂu\fj—?%),v) + (JuP~2u,v) = (f,0).
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