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OUTPUT-FEEDBACK STABILIZATION AND CONTROL
OPTIMIZATION FOR PARABOLIC EQUATIONS WITH

NEUMANN BOUNDARY CONTROL

ABDELHADI ELHARFI

Abstract. Both of feedback stabilization and optimal control problems are
analyzed for a parabolic partial differential equation with Neumann boundary
control. This PDE serves as a model of heat exchangers in a conducting rod.
First, we explicitly construct an output-feedback operator which exponentially
stabilizes the abstract control system representing the model. Second, we
derive a controller which, simultaneously, stabilizes the associated output an
minimizes a suitable cost functional.

1. Introduction

In this article, we study the parabolic equation
zt(t, x) = [ε(x)zx(t, x)]x + b(x)zx(t, x) + a(x)z(t, x), in (0,∞)× (0, 1),

zx(t, 0) = ρz(t, 0), zx(t, 1) = u(t), in (0,∞),

z(0, x) = z0(x), in (0, 1),

(1.1)

with a control u(t) placed at the extremity x = 1, via Neumann boundary condition,
where the parameters ε, a, b, ρ, satisfy the assumptions

−∞ < ρ ≤ +∞, a ∈ C1[0, 1], b, ε ∈ C2[0, 1], inf
x∈[0,1]

ε(x) > 0. (1.2)

Equation (1.1) can be interpreted, in thermodynamic point of view, as a model of
heat conducting rod in which not only the heat is being diffused and bifurcated
((εzx)x + bzx) but also a destabilizing heat is generating (az). System (1.1) also
represents very well a linearized model of chemical tubular reactor [3] and it can
further approximates a linearized model of unstable burning in solid propellant
rockets [4].

The stabilization problem of parabolic systems is treated by several authors with
different approaches. Stability by boundary control in the optimal control setting
is discussed by Bensoussan et al. [2]. In [11, 15], the open-loop system is sep-
arated into an infinite-dimensional stable part and a finite-dimensional unstable
part. A boundary control stabilizing the unstable part and leaving the stable part
stable is derived. In [16, 17], the stabilizability problem for parabolic systems is
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approached using the feedback theory for (autonomous) regular linear systems. In
time depend setting, the stabilizability and the controllability for non-autonomous
parabolic systems are discussed in [14] by developing the so called non-autonomous
regular linear systems. The finite-dimensional backstepping is applied in [1] to the
discritized version of (1.1), and shown to be convergent in L∞. The backstepping
method with continuous kernel is investigated in [7, 10, 12] to construct boundary
feedback laws making the closed-loop systems exponentially stable. The backstep-
ping idea is to convert the parabolic system into a well known one using an integral
transformation with a kernel satisfying an adequate PDE.

In this paper, we combine the feedback theory for regular linear system [16]
and the backstepping method to design an output-feedback which exponentially
stabilizes the abstract control system representing system (1.1). To be more pre-
cise, system (1.1) is written in a suitable state space as an abstract control sys-
tem; zt(t) = Az(t) + Bu(t), t > 0, z(0) = 0, where A represents the evolution of
the open-loop system and B is an appropriate control operator. For any λ > 0,
we explicitly construct an admissible observation operator Cλ which exponentially
stabilizes (A,B) at the desired rate of λ. The stabilizing observation operator is
given in term of the solution of an adequate kernel PDE which depends on λ. On
the other hand, we erect a controller which solves, simultaneously, both the stabi-
lization and the control optimization problems associated with (1.1). In particular,
we design a controller which not only stabilizes the output of the concerned control
system but also minimizes an adapted cost functional.

The paper is organized as follows: In Section 2, we present the stabilizability
concept associated with regular linear systems. The abstract control system rep-
resenting (1.1) is derived in Section 3. In Section 4, an explicit construction of
the observation operator stabilizing (1.1) is given. Section 5 is devoted to study
the λ-exponential stability of the closed-loop system. Finally, the optimal control
problem of system(1.1) is treated in Section 6.

2. Preliminaries

Throughout this paper, U,X, Y , are Hilbert spaces. A : D(A) ⊂ X → X is the
generator of a C0-semigroup T . We denote by X1 the Hilbert space D(A) endowed
with the graph norm; ‖x‖1 = ‖x‖+ ‖Ax‖.

We further set R(λ,A) = (λ−A)−1 for λ in the resolvent set %(A). The Hilbert
space X−1 is the completion of X with respect to the norm ‖x‖−1 := ‖R(λ,A)x‖
for some λ ∈ %(A). Then, T is extended to a C0-semigroup T−1 on X−1. The
generator of T−1 is denoted by A−1 which is an extension of A to X. For more
detail on extrapolation theory we refer to [8].

Let B ∈ L(U,X−1), C ∈ L(X1, Y ) and on X−1 consider the abstract linear
system

zt(t) = A−1z(t) +Bu(t), z(0) = z0, (2.1)

y(t) = Cz(t), t > 0, (2.2)

where u ∈ L2
loc([0,∞), U).

The well-posedness of system (2.1)–(2.2) requires a certain regularity of the
triplet (A,B,C), due to [16, 17]. Moreover, if one relates the output y to the
input u by an adequate (feedback) operator K; u = Ky, K ∈ L(Y, U), we obtain
a new system called the closed-loop system. From [16], the well-posedness of the
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closed-loop system requires that the feedback operator should be admissible for the
transfer function H(·) := CR(·, A−1)B; i.e., the operator IY −H(·)K is uniformly
invertible in some half plan Cs := {λ ∈ C : <λ > s}. If it is the case, then due to
Weiss [16], the operator representing the closed-loop system.

AI := A−1 +BCL with D(AI) := {x ∈ X : (A−1 +BCL)x ∈ X}, (2.3)

generates a C0 semigroup T I .
In practice, many control systems are unstable. However, if one feeds back the

output of an unstable system to the input by an appropriate feedback law u = Ky,
it is possible to obtain a stable closed-loop system. This is called the feedback
stabilizability of the open-loop system. An extensive survey on the stabilizability
concept of linear systems can be found in [13]. Here, we are concerned with the
concept of exponential stabilizability as presented in [17].

Definition 2.1 ([17]). Consider an abstract control system with open-loop gener-
ator A and control operator B ∈ L(U,X−1). We say that C ∈ L(X,U) stabilizes
(A,B) if

(a) (A,B,C) is a regular triple,
(b) IU is an admissible feedback operator for H(·) = CR(·, A−1)B,
(c) the operator AI , defined in (2.3), generates an exponentially stable semi-

group.

3. The abstract control system associated with (1.1)

Without loss of generality we set in what follows b ≡ 0 since it can be eliminated
from equation (1.1) using the transformation

z̃(t, x) := exp
( ∫ x

0

b(s)
2ε(s)

ds
)
z(t, x) (3.1)

with the compatible changes of parameters

ε̃(x) := ε(x), ã(x) := a(x)− b′(x)
2

− b2(x)
4ε(x)

,

ρ̃ := ρ+
b(0)
2ε(0)

, ũ(t) := exp
( ∫ 1

0

b(s)
2ε(s)

ds
)
u(t),

(3.2)

In fact, one can easily see that

z̃t − (ε̃z̃x)x − ãz̃ = {zt − (εzx)x − bzx − az} exp
( ∫ x

0

b(s)
2ε(s)

ds
)
.

Then, z satisfies (1.1) if and only if z̃ satisfies (1.1) with the parameters ε̃, 0, ã, ρ̃, ũ,
instead of ε, b, a, ρ, u. Moreover, provided that b ∈ C2, the parameters ε̃, 0, ã, ρ̃,
satisfy (1.2).

To present system (1.1) as an abstract control system, we define on the state
space X = L2(0, 1) the operators

Af := (εfx)x + af, D(A) := {f ∈ H2(0, 1) : fx(0) = ρf(0), fx(1) = 0},
Bu := −uA−1ψ, B ∈ L(C, X−1).

(3.3)

where ψ is the unique H2-solution of the ordinary differential equation
(εψx)x + aψ = 0, 0 ≤ x ≤ 1,

ψx(0) = ρψ(0), ψx(1) = 1.
(3.4)
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The smoothness of the solution of (3.4) is shown as in [5, VIII.4]. We first confirm
the well-posedness of the evolution equation corresponding to A and the admissi-
bility of the control operator B (for A).

Lemma 3.1. (i) A generates an analytic semigroup T on X;
(ii) B is an admissible control operator for T .

Further, there exist constants θ, α0 > 0 such that

‖R(s,A−1)B‖L(C,X) ≤
θ√
<s

(3.5)

for <s > α0.

Proof. (i) Observe that A is self-adjoint. Then A generates an analytic semigroup
T on X; see e.g. [8]. (ii) Since T is analytic on the Hilbert space X, then due to
De Simon [6], ∫ t0

0

u(t0 − σ)T (σ)fdσ ∈ D(A),

for a.e. t0 > 0, all f ∈ X, and u ∈ L2([0, t0],C). Hence,

Φ(t0)u :=
∫ t0

0

T−1(t0 − σ)Bu(σ)dσ = −A
∫ t0

0

u(t0 − σ)T (σ)ψdσ ∈ X

for some t0 > 0. Therefore, B is an admissible control operator for T . Finally, the
estimate (3.5) is a consequence of the admissibility of B for an analytic semigroup,
see [18]. �

4. The observation operator

The idea of constructing the observation operator is to convert (1.1) into a well
known equation by using the following transformation.

Lemma 4.1 ([12]). Let k ∈ H2(∆), ∆ := {(x, y) : 0 ≤ y ≤ x ≤ 1}, and define the
linear bounded operator Tk : Hi(0, 1) → Hi(0, 1), by

(Tkv)(x) := v(x) +
∫ x

0

k(x, y)v(y)dy.

Then, Tk has a linear bounded inverse T −1
k : Hi(0, 1) → Hi(0, 1), i = 0, 1, 2.

Next, assume that z(t) satisfies (1.1) and for t ≥ 0, x ∈ [0, 1], set

w(t, x) := (Tkz(t))(x) = z(t, x) +
∫ x

0

k(x, y)z(t, y)dy.

Then,

wt(t, x) = zt(t, x) +
∫ x

0

k(x, y)zt(t, y)dy

= zt(t, x) +
∫ x

0

k(x, y)
[
[ε(y)zy(t, y)]y + a(y)z(t, y)

]
dy
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By integrating by parts from 0 to x, for t > 0 and λ > 0, we obtain
wt − [εwx]x + λw

=
[
(λ+ a(x))− 2ε(x)

d

dx
(k(x, x))− ε′(x)k(x, x)

]
z(t, x)

+
∫ x

0

[
(λ+ a(y))k(x, y) +

(
[ε(y)ky(x, y)]y − [ε(x)kx(x, y)]x

)]
z(t, y)dy

+ [ky(x, 0)− ρk(x, 0)]ε(0)z(t, 0).

(4.1)

Then wt− [ε(x)wx]x +λw = 0, in (0,∞)× (0, 1), if and only if the kernel k satisfies
the PDE

x − [ε(y)ky(x, y)]y = aλ(y)k(x, y), 0 ≤ y ≤ x ≤ 1,

ky(x, 0) = ρk(x, 0), 0 ≤ x ≤ 1,

k(x, x) =
1

2
√
ε(x)

∫ x

0

aλ(s)√
ε(s)

ds =: g(x), 0 ≤ x ≤ 1,
(4.2)

where aλ(x) := a(x) + λ. We note that the third (boundary) equation of (4.2) is
obtained by solving the first order differential equation

2ε(x)
d

dx
(k(x, x)) + ε′(x)k(x, x) = aλ(x)

with the initial condition k(0, 0) = 0. The following well-posedness result of the
kernel PDE (4.2) is proved in [7] which generalizes the one obtained in [10] for ε
constant.

Lemma 4.2. Assume that (1.2) holds. Then the kernel equation (4.2) has a unique
solution k ∈ H2(∆).

Now, let kλ be the solution of the PDE (4.2) associated with some λ > 0. From
(4.1), we obtain

wt = [ε(x)wx]x − λw in (0,∞)× (0, 1).
Moreover, it follows from the boundary conditions of (1.1) that

wx(t, 0) = ρw(t, 0), wx(t, 1) = u(t) + k0(1)z(t, 1) + 〈kλ
1 , z(t)〉,

where 〈·, ·〉 denotes the inner product on X and kλ
0 (y) = kλ(1, y), kλ

1 (y) = kλ
x(1, y).

Thus, wx(t, 1) = 0 if and only if u satisfies the control law

u(t) = −kλ
0 (1)z(t, 1)− 〈kλ

1 , z(t)〉. (4.3)

This means that Tk converts the closed-loop system (1.1),(4.3), into
wt(t, x) = [ε(x)wx(t, x)]x − λw(t, x), in (0,∞)× (0, 1),

wx(t, 0) = ρwx(t, 0), w(t, 1) = 0, in (0,∞),

w(0, x) = w0(x), in (0, 1),

(4.4)

where w0(x) := z0(x) +
∫ x

0
k(x, y)z0(y)dy.

The following theorem states the well-posedness of the closed-loop system (1.1),
(4.3) and also gives an estimation of the solution.

Theorem 4.3. For any z0 ∈ L2(0, 1), the closed-loop system (1.1),(4.3) has a
unique solution z(t, x) ∈ C1,2 := C1

(
(0,∞)× C2[0, 1]

)
such that

‖z(t)‖ ≤Me−λt‖z0‖, (4.5)

where M is a positive constant independent of z0.
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Proof. It remains to show that the equivalent system (4.4) has a unique solution w
satisfying

‖w(t)‖ ≤ e−λt‖w0‖. (4.6)
In fact, consider on the state space X the operator

D(G) := {f ∈ H2(0, 1) : fx(0) = ρf(0), fx(1) = 0},
Gf := (εfx)x − λf, for f ∈ D(G).

Observe that G is self adjoint. Moreover, by integrating by parts over [0, 1], we get

〈Gf, f〉 ≤ −λ‖f‖2,

for every f ∈ D(G). Then, see e.g. [2, p. 55], G generates a bounded analytic
semigroup S such that

‖S(t)‖ ≤ e−λt, t ≥ 0. (4.7)
This means that for any w0 ∈ X system (4.4) has a unique solution w = S(·)w0 ∈
C([0,∞), X). Since S is analytic, S(·)w0 ∈ C1((0,∞), D(G∞)) for all t > 0, where
D(G∞) := ∩∞n=0D(Gn); see e.g. [8, p. 93]. Now, the Sobolev embedding theorem
leads us to conclude that w ∈ C1,2. Moreover, (4.6) is an immediate consequence
of (4.7).

System (1.1), (4.3) is well posed, since it can be transformed via the isomorphism
Tk to the well posed system (4.4). Further, the fact that T −1

k and Tk are bounded,
then there exists a constant δ > 0 such that

‖z(t)‖ ≤ δ‖w(t)‖ and ‖w0‖ ≤ δ‖z0‖, (4.8)

for t ≥ 0. Finally, (4.5), follows from (4.6) combined with (4.8). �

Theorem 4.3 shows that the feedback law (4.3) forces the the open-loop system
(1.1) to exhibit a behavior akin to e−λt with L2-norm (as t → ∞). This leads us
to choose as observation operator

Cλf := −kλ
0 (1)f(1)− 〈kλ

1 , f〉, Cλ ∈ L(X,C), (4.9)

where kλ is the solution of the kernel PDE (4.2) corresponding to some λ > 0. We
will show in the following section that Cλ is an appropriate observation operator to
create a stabilizing controller with respect to the open-loop system corresponding
the aforesaid operators (A,B).

5. The closed-loop stability

We confirm in this section that Cλ is a suitable stabilizing output operator for the
abstract control system represented by (A,B). The following theorem constitutes
the first main result of this paper.

Theorem 5.1. Consider (A,B) with representation (3.3) and define Cλ by (4.9).
Then

(i) Cλ stabilizes (A,B),
(ii) the operator AI := A−1 + BCλ with the domain D(AI) := {f ∈ X :

A−1f +BCλf ∈ X}, generates a C0-semigroup T I such that

‖T I(t)z0‖ ≤Me−λt‖z0‖, (5.1)

for t ≥ 0 and any z0 ∈ X, where M is a positive constant independent of
z0.
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Proof. Since Cλ is a bounded perturbation of the Dirichlet trace, it follows that it
is an admissible observation operator for the open-loop semigroup T and that its
degree of unboundedness is 1/4, see e.g. [9]. Taking into account the analyticity
of the open-loop semigroup T , the feedthrough operator is equal to zero and the
control operator B also has the same degree of unboundedness 1/4. [9, Example
7.7.5] then shows that Cλ is an admissible state feedback operator. Thus due to
[16], (A,B,Cλ) is a regular triple and the transfer function is given by

H(s) = CλR(s,A−1)B,

for a sufficiently large <s. On the other hand, due to Lemma 3.1, there exist
α, θ > 0 such that

‖H(s)‖ = ‖CλR(s,A−1)B‖ ≤
θ‖Cλ‖L(X,C)√

<s
, for s ∈ Cα.

Which implies that there exists s0 > α such that |H(s)| < 1 for s ∈ Cs0 . Conse-
quently, IC is an admissible feedback for H. According to Section 2, AI generates
a C0-semigroup T I . Which means that T I(·)z0 is the unique classical solution of
the evolution equation

zt(t) = A−1z(t) +BCλz(t), t > 0,

z(0) = z0;

i.e., T I(·)z0 is the unique solution of the closed-loop system

zt(t) = A−1z(t) +Bv(t), z(0) = z0,

y(t) = Cλz(t),

v(t) = y(t), t > 0.

(5.2)

On the other hand, in view of Theorem 4.3, for a given z0 ∈ X the system (1.1),
(4.3) has a unique solution z = z(t, x, z0) ∈ C1,2. Observe that, z(t)−u(t)ψ ∈ D(A),
for t > 0, and

zt(t) = A(z(t)− u(t)ψ) = A−1z(t) +Bu(t).
Moreover, the control law (4.3) means that

u(t) = Cλz(t) = y(t).

This shows that z is also a solution of (5.2). Thus, z(·, z0) = T I(·)z0. Finally, the
estimate (5.1) is an immediate consequence of (4.5). �

Alternatively, instead of invoking [9, Example 7.7.5], one can use in the above
proof, that the impulse response is in L1(0; 1) (which follows from analyticity of the
semigroup and the degrees of unboundedness) and then use the reasoning involving
the concept of well-posedness radius from [16] to show that Cλ is an admissible
state feedback operator.

The scheme of Figure 1 makes understood the meaning of the stability result
stated in Theorem 5.1, and shows how the controller (4.3) affects in a closed form
the open-loop system (1.1),

In view of the scheme of Figure 1, in order to stabilize (1.1) in a closed form, for
a given rate λ, one computes, for example by a numerical calculator, the quantity
q := −kλ

0 (1)z(t, 1)−〈kλ
1 , z(t)〉, and one injects, intermediary a dispositive described

by the control operator B , the sum q at the extremity x = 1. The state of the
resulting closed-loop system exhibits a behavior akin to e−λt as t→∞.
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B  ( )z t  
1x = C λ  ( )u t  I  The kernel PDE  

0x =  
                                

( ) ( )z t Az t=ɺ  0 1(1) (1) , ( )k z k z tλ− − 〈 〉  k λ

Figure 1. The closed-loop system of (1.1) associated with the
control law (4.3)

Remark 5.2. Although of the results in the above sections are given for b = 0.
However, if b 6= 0, one may consider, in view of (3.1)–(3.2), the observation operator

C̃λf :=
(
− k̃λ

0 (1)f(1)− 〈k̃λ
1 , f〉

)
e−

R 1
0

b(s)
2ε(s) , f ∈ X,

where k̃ is the solution of the kernel PDE given for ε̃, ã, ρ̃ instead of ε, a, ρ.

6. Optimal control problem for (1.1)

In some applications, it is not benefic to stabilizes a system by a large cost. So,
by stabilizing a system, a question should de asked. What is the cost of stabilizing
the system? To this purpose, we devote this section to deal with the optimal control
of system (1.1) coupled with the adequate output function

y(t) := 2
√

1 + λ〈k0, z(t)〉, (6.1)

where k is the solution of the kernel PDE (4.2) and z(t) = z(t, u, z0) is the solution
of the system (1.1) corresponding to the initial condition z0 and the control u.
The optimal control problem that we address here, is to design a control u which,
simultaneously, stabilizes the output function y and minimizes the cost functional

J(u) :=
∫ ∞

0

y(t)2dt+
∫ ∞

0

{
ε2zx(t, 1)−Q(u)

}2
dt (6.2)

with
Q(u) := ε1z(t, 1)− 〈p, z(t)〉,

where ε1 := ε(1)k
′

0(1), ε2 := ε(1)k0(1) and p(y) :=
[
ε(x)kx(x, y)

]
x|x=1

. We note

here that J can be written as
∫∞
0

(
y(t)2 + ‖Ku(t)‖2

)
dt, where K is a linear op-

erator chosen appropriately. Which shows that (6.2) has the usual form of a cost
functional. The second main result of this paper is given by the following theorem.

Theorem 6.1. The controller

ε2u
opt(t) = ε1z(t, 1) + 〈2k0 − p, z(t)〉, (6.3)
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applied to (1.1), stabilizes the output function y and minimizes the cost J . More-
over, the optimal value for J is given by

Jopt = 2〈k0, z
0〉2.

Proof. For t ≥ 0, set

V (t) :=
1
2
〈k0, z(t)〉2.

By integrating by parts and using (4.2), we obtain

V̇ (t) = 〈k0, z(t)〉
{
ε2zx(t, 1)− ε1z(t, 1) + 〈p− λk0, z(t)〉

}
= −λ〈k0, z(t)〉2 + 〈k0, z(t)〉

[
ε2zx(t, 1)−Q(u)

]
,

which can be written as

V̇ (t) =
{
〈k0, z(t)〉+

1
2
[
ε2zx(t, 1)−Q(u)

]}2

− (1 + λ)〈k0, z(t)〉2 −
1
4
[
ε2zx(t, 1)−Q(u)

]2
.

(6.4)

So,
1
4
J(u) = V (0)− V (∞) +

∫ ∞

0

{
〈k0, z(t)〉+

1
2
[
ε2zx(t, 1)−Q(u)

]}2
dt. (6.5)

Choosing now the control uopt as in (6.3), then the control law zx(t, 1) = uopt(t) is
equivalent to

〈k0, z(t)〉+
1
2
[
ε2zx(t, 1)−Q(u)

]
= 0. (6.6)

Substituting (6.6) in (6.4), we obtain V̇ (t) ≤ −2(1 + λ)V (t), which implies

V (t) ≤ e−2(1+λ)tV (0) and y(t)2 ≤ e−2(1+λ)ty(0)2. (6.7)

This proves that the control law uopt(t) = zx(t, 1) stabilizes the output y.
On the other hand, from (6.7), one has V (∞) = 0. Substituting (6.6) in (6.5),

we obtain
J(uopt) = 4V (0) = Jopt.

This completes the the proof. �
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