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RECURRENT EPIDEMICS RESULTING FROM SECONDARY
TRANSMISSION ROUTES IN SIR MODELS

MALCOLM R. ADAMS, SAMUEL OBARA

Abstract. In this article, we analyze the behavior of solutions to a variant of
the SIR (susceptible, infected, recovered) model from epidemiology. The model
studied includes a secondary route for susceptible individuals to be exposed
to the infectious agent. This secondary route provides a feedback mechanism
that, within certain parameter regimes, allows for a limit cycle; i.e., sustained
periodic behavior in the solutions.

1. Introduction

The SIR model in epidemiology gives a simple dynamic description of three
interacting populations, the Susceptibles, the Infected, and the Recovered. In spite
of its simplicity, the SIR model, exhibits the basic structure generally associated to
the spread of a disease in a population: after a possible initial epidemic, the infected
population either tapers to zero or to a stable endemic level. Many variations of
the SIR model have been studied in recent years to more accurately model more
complex diseases and infection mechanisms. For instance the susceptible population
may be divided into subgroups with different infection rates [1, 4, 7, 11], the disease
may affect reproductive rates in the infected or recovered population [2], or there
may be multiple levels of infections, some lethal, some sublethal [3, 9]. These more
complicated models can lead to instabilities, and even cyclic behavior in the infected
population.

Here we study a simple variation of the SIR model introduced in [6] to model the
dynamics of distemper and parvo virus in jaguars of the Bolivian jungle. In this
model, the disease can infect a susceptible individual not only through contact with
an infected individual, but also through a secondary method, in this case through
contact with infected feces. Models with a similar feedback mechanism were studied
in [5] and later in [10] in the context of the evolution of virulence in waterborne
diseases. Numerical evidence in [6] showed that this model can support enduring
cyclic epidemics. Heuristically, this can be explained by the idea that the delayed
feedback of the fecal infections can cause a recurrence of the epidemic. Of course,
infection rates and fecal decay rates must be right for such recurrence to endure.

There are many diseases that bring great economic and human cost to society
which accommodate multiple infection routes. Other than through direct contact,
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diseases are often transmitted through animal or insect vectors (e.g. malaria or
plague), through fecal contamination of water or food supplies (cholera, typhus,
avian influenza), or through ingestion of infected tissues (brucellosis, bovine spongi-
form encephalopathy). Detailed modelling of these infection routes can be quite
complicated, involving such issues as the life cycle of the vector, or the diffusion of
infected materials through water sources. The model we study does not attempt to
understand the details of such mechanisms, but, as with the SIR model, is meant
as a broad conceptual tool for giving rudimentary insight into the general behavior
of the dynamics of such diseases.

In this article we will provide an analytic proof that an SIR type model with two
transmission routes does support enduring cyclic epidemics. We will outline the
proof that a Hopf bifurcation gives rise to this cyclic behavior. We will also provide
a numerical example showing that the cyclic behavior can persist in the full model
studied [6, 8].

2. Modelling

We begin with a basic SIR model with logistic term:

Ṡ = bN(1− N

K
)− βIS

İ = βIS − (d + r + di)I

Ṙ = rI − dR

(2.1)

where S denotes the susceptible population, I the infected population, R the re-
covered population, and N = S +I +R is the total population. The parameters are
b, the growth rate; K, the carrying capacity; β, the infection rate; d, the natural
death rate; r, the recovery rate; and di, the additional death rate due to the disease.

Most analytic discussions of the SIR model treat only the case of infinite carrying
capacity (K =∞) in order to make the algebra simpler. The case of finite carrying
capacity is much more realistic in that it restricts the total population to remain
bounded. Indeed, if the total population is ever larger than (or equal to) K, then
dN/dt = dS/dt + dI/dt + dR/dt < 0.

It should be noted that there are other ways to introduce a logistic term in
SIR models. Indeed the model we have chosen might be rejected since if S = 0
and N > K this model yields dS/dt < 0, (and thus S(t) would become negative).
However, the region described by S > 0, I > 0, R > 0, and N < K is invariant, thus
the population components remain positive as long as our initial total population,
N(0), is less than the carrying capacity, K. The model would have to be adjusted
for total populations greater than K, but we will restrict our attention to the region
in which N ≤ K.

Another logistic model that has been studied (see [10]) replaces our first equation
with

Ṡ = bS(1− N

K
)− βIS.

This model has the advantage that the set S ≥ 0 is clearly invariant, so there is no
risk of S(t) becoming negative. On the other hand, such a model seems restrictive
to us since it assumes that reproduction is limited to the susceptible population.
Even so, the results presented in this paper can be shown to hold for this model as
well.
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The behavior of system (2.1) is analogous to the system with K = ∞, however
more cumbersome the algebra. Summarizing, it can be proven analytically that
this system has the following properties:

(1) If βK < d + di + r there are only two equilibria in the positive octant,
(S(t), I(t), R(t)) = (0, 0, 0) and (S(t), I(t), R(t)) = (K, 0, 0) (there are two other
irrelevant equilibria outside the positive octant). The equilibrium point (0, 0, 0) is
unstable (a saddle point) but (K, 0, 0) is stable. For these parameter values, dI/dt
is always negative (and so epidemics will not occur) within the relevant region
N ≤ K (Epidemics can occur when S(0) > (d + r + di)/β > K, but for all initial
values, the infected population eventually tends to zero.)

(2) When βK > d + di + r the equilibrium (K, 0, 0) becomes unstable (a saddle)
and there is a third equilibrium in the positive octant, which we denote (S0, I0, R0).
This equilibrium is always stably attracting, representing an endemic population
of infected individuals. Thus, after an initial epidemic, solution curves approache
(S0, I0, R0). The limiting behavior can be a damped oscillation (see Figure 1).
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Figure 1. A damped oscillation limiting to an endemic infected
population for the SIR model with a logistic term. Parameter
values are β = .12, b = .20, K = 5, r = .2, d = .05 d1 = 0. The
blue curve is S(t), the green one is I(t), and the red one is R(t)

In order to include in this model the possibility of disease transmission through
a route other than direct contact we introduce a new dependent variable F (t)
representing a quantity which can infect susceptibles through mutual contact at a
rate given by the parameter γ. This secondary transmission factor is produced by
the infected population I at a relative rate given by δ and it leaves the environment
at a relative rate given by a parameter α. Thus, we study the four dimensional
system given by

Ṡ = bN(1− N

K
)− βIS − γFS

İ = βIS + γFS − (d + r + di)I

Ṙ = rI − dR

Ḟ = δI − αF
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Although this model is fairly simplistic, it seems to be too complicated to obtain
complete analytic results. Instead, we will study a lower dimensional reduction of
this system for which we are able to obtain a complete analysis. At the end of this
section we will show numerically that some of the salient features of our reduced
system are preserved in the full four - dimensional system.

The simplifying assumption that we use to reduce this system to an analytically
amenable case is to decouple the R dependence from the rest of the system. This
could happen by a variety of mechanisms. For instance, if the disease is fatal, so
r = 0, then, with R(0) = 0, we have that R(t) = 0 for all t. Another mechanism for
decoupling R would be replacing N in the logistic term by S + I. This would be
appropriate if the recovered population does not contribute to the reproductive role
represented by the logistic term (e.g. the recovereds are sterile) and nor do they
contribute to the limiting nature of the carrying capacity (this might be reasonable
if R remains relatively small).

After assuming this decoupling we end up with the three dimensional system
given by

Ṡ = b(S + I)(1− S + I

K
)− βIS − γFS

İ = βIS + γFS − (d + r + di)I

Ḟ = δI − αF.

In the next section we will provide an analytic proof of the following results.
(1) Solutions remain bounded for all time.
(2) If K(βα + γδ) < dα then there are only two biologically relevant equilibria

(in the positive octant) located at (0, 0, 0) and (K, 0, 0). The origin is a saddle point
and (K, 0, 0) is an attractor. So, under these conditions, the long term behavior
predicts that the infected population eventually approaches zero (after a possible
epidemic) and the susceptible population will approach the carrying capacity, K.

(3) On the other hand, when K(βα + γδ) > dα a third equilibrium moves into
the positive quadrant and so becomes biologically relevant. At the same time the
equilibrium at (K, 0, 0) becomes unstable (a saddle). The third equilibrium can be
stable or unstable according to the parameter values. To obtain a glimpse of the
nature of this equilibrium we make a change of variable in the parameter space
and then study as a bifurcation parameter the quantity c4 = δγK

αb . When c4 = 0
the third equilibrium is a sink. But it can be shown that there is a region of
parameter values for which there is a value c∗4 at which a linear Hopf bifurcation
occurs. That is, there is some ε > 0 such that if c4 satisfies c∗4 − ε < c4 < c∗4
then the third equilibrium is a stable spiral point, but when c∗4 < c4 < c∗4 + ε then
the third equilibrium becomes an unstable spiral point. This fact together with the
boundedness of solutions suggests that there should be a stable limit cycle. That is,
after an initial transient, the solution becomes periodic (with period independent of
initial condition). In three dimensions, due to the possibility of strange attractors,
this linear analysis is not enough to prove the existence of such a limit cycle but
it gives good evidence of such. Combining this with computational data is fairly
convincing.



EJDE-2011/142 RECURRENT EPIDEMICS 5

3. Analytic Results

We begin with the equations

Ṡ = b(S + I)
(
1− S + I

K

)
− βSI − γSF

İ = βSI + γSF − dI

Ḟ = δI − αF.

(3.1)

As mentioned above, we first show that solutions to this system of equations
must remain bounded. First let N = S + I. Then, from above, we see that

Ṅ = Ṡ + İ = b(S + I)(1− S + I

K
)− dI.

In the positive quadrant, Ṅ becomes negative if S + I > K, so N (and hence each
of S and I) must remain bounded. Finally, if I is bounded, say by M , we have that
Ḟ becomes negative if ever F grows beyond δM/α. Hence F cannot grow without
bound either. We also remark here that since Ṅ < 0 when N = K, it follows that
the region given by S ≥ 0, I ≥ 0, and N ≤ K is invariant, and so we need not
worry about negative population components as long as our initial value N(0) is
less than K.

Now we move on to the equilibrium analysis of our equations. We begin by
non-dimensionalizing these equations by taking x = S/K, y = I/K, z = γF/b and
rescaling time by τ = bt. This yields

ẋ = (x + y)(1− x− y)− βK

b
xy − xz

ẏ =
βK

b
xy + xz − d

b
y

ż =
δγK

b2
y − α

b
z.

Setting c1 = βK
b , c2 = d

b , c3 = α
b and c4 = δγK

αb we obtain

ẋ = (x + y)(1− x− y)− c1xy − xz

ẏ = c1xy + xz − c2y

ż = c3(c4y − z).

(Now, of course, the region of interest is given by x ≥ 0, y ≥ 0, and x + y ≤ 1.)
At an equilibrium point, we must have

(x + y)(1− x− y)− c1xy − xz = 0
c1xy + xz − c2y = 0

c4y − z = 0.

Substituting z = c4y into the first two equations yields:

(x + y)(1− x− y)− (c1 + c4)xy = 0

y
(
(c1 + c4)x− c2

)
= 0.

There are two equilibria with y = 0: (0, 0, 0) and (1, 0, 0). When y 6= 0 there are
two others, (x0, y0+, c4y0+) and (x0, y0−, c4y0−), where x0 = c2

c1+c4
and

y0± =
1
2
(1− 2x0 − c2)±

1
2

√
(2x0 + c2 − 1)2 − 4x0(x0 − 1).
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Since (2x0 + c2 − 1)2 − 4x0(x0 − 1) = (c2 − 1)2 + c2x0, it follows that the two
roots, y0±, are always real. Furthermore, if x0 < 1, then y0+ > 0 and y0− < 0
so only y0+ is biologically relevant. Indeed, a straightforward computation shows
that if x0 < 1, then also x0 + y0 < 1, so this equilibria is in the relevant region for
our model. For this reason we will henceforth refer to y0+ as simply y0. (Finally,
note that if x0 > 1, then both y0+ and y0− are negative, and so not biologically
relevant.)

We note that if c4 = 0 then z decreases to zero so we limit to the 2 dimensional
system

ẋ = (x + y)(1− x− y)− c1xy

ẏ = c1xy − c2y

which is a standard SIR model with a logistic term (and R is removed). Thus we
think of c4 as a perturbation parameter and analyze bifurcations of the system as
c4 varies, holding the other parameters constant.

The Jacobi matrix for system (3.1) is

J =

1− 2x− 2y − c1y − z 1− 2x− 2y − c1x −x
c1y + z c1x− c2 x

0 c3c4 −c3

 .

At the point (0, 0, 0) this gives

J0 =

1 1 0
0 −c2 0
0 c3c4 −c3

 .

Since the eigenvalues are 1,−c2, and −c3, the point (0, 0, 0) is a saddle.
At the point (1, 0, 0), we obtain

J1 =

−1 −1− c1 −1
0 c1 − c2 1
0 c3c4 −c3

 .

The eigenvalues of this matrix are −1, and
1
2

(
c1 − c2 − c3 ±

√
(c1 − c2 − c3)2 + 4c3(c1 − c2 + c4)

)
=

1
2

(
c1 − c2 − c3 ±

√
(c1 − c2 + c3)2 + 4c3c4

)
.

The above expression shows that all eigenvalues are always real. The signs of the
last two eigenvalues depend on the sign of x0−1. When x0 > 1 we have c2 > c1+c4

and hence the terms c1 − c2 − c3 and c1 − c2 + c4 are both negative. This implies
that all three eigenvalues are negative; i.e., this equilibrium is a sink. When x0 < 1,
we have c2 < c1 + c4 so the term c1 − c2 + c4 is positive. This implies that one
of the eigenvalues is positive while the other two are negative; the equilibrium is a
saddle.

Summarizing our results so far, we have determined the following (see Figure 2):
(1) If x0 > 1 then there are only two biologically relevant equilibria: A saddle

at (0, 0, 0) and a sink at (1, 0, 0).
(2) If x0 < 1 then there are three biologically relevant equilibria: Saddles at

(0, 0, 0) and (1, 0, 0). We study the nature of the third equilibrium (x0, y0, c4y0)
next.
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Figure 2. In the left figure, the parameter values are c1 = .2,
c2 = .5, c3 = 1, and c4 = .2, so x0 = 1.25 > 1. Thus all solutions
limit to x = 1 (blue), y = 0 (green), and z = 0 (red). In the right
hand figure, the parameter values are c1 = 4, c2 = 2, c3 = .01, and
c4 = 5, so x0 = 2/9 < 1. Here we see the trend to a stable endemic
diseased population

In the following discussion we will assume that x0 < 1 so that the equilibrium
(x0, y0, c4y0) is biologically relevant. Here the Jacobian becomes

J2 =

1− 2x0 − 2y0 − (c1 + c4)y0 1− 2x0 − 2y0 − c1x0 −x0

(c1 + c4)y0 c1x0 − c2 x0

0 c3c4 −c3

 ,

where x0 = c2/(c1 + c4) < 1.
Here it is useful to make a change of variable in the parameter space: we replace

the parameter c1 by x0 using the relation c1 = (c2/x0)− c4. Substituting this into
J2 yields

J2 =

1− 2(x0 + y0)− c2y0
x0

1− 2(x0 + y0) + c4x0 − c2 −x0

c2y0/x0 −c4x0 x0

0 c3c4 −c3

 .

The term 1 − 2(x0 + y0) can be simplified to c2 −
√

(c2 − 1)2 + 4c2x0, which,
for the moment, we will simply denote by ω. Note that ω − c2 < 0. Also, from
(x0 + y0)(1− x0 − y0) = (c1 + c4)x0y0 = c2y0, so we have 1− x0 − y0 = c2y0

x0+y0
and

so ω = c2y0
x0+y0

− (x0 + y0).
Then, a computation shows that the (negative of the) characteristic polynomial

of J2 is

P (λ) = λ3 +
(
c3 +

c2y0

x0
− ω

)
λ2 +

(c2y0

x0
(c3 + c2 − ω)− c3ω

)
λ + c3(c2 − ω)

c2y0

x0

+ c4x0

(
λ(λ− ω)

)
.

When c4 = 0, the roots are −c3 and

1
2

(
ω − c2y0

x0
±
√

(ω − c2y0

x0
)2 + 4(

c2y0

x0
(ω − c2))

)
.

Now, as noted above, ω − c2 < 0, so the real part of the last two roots of the
characteristic polynomial have the same sign as ω − c2y0

x0
. But, again from above,
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ω = c2y0
y0+x0

− (x0 + y0), so

w − c2y0

x0
= c2y0(

1
x0 + y0

− 1
x0

)− (x0 + y0) < 0.

Thus, this equilibrium is a sink when c4 = 0.
To analyze the general case we use the following basic results about a general

cubic polynomial of the form P (λ) = λ3 + Aλ2 + Bλ + C:

Lemma 3.1. Let ∆ = A2B2 + 18ABC − 27C2 − 4B3 − 4A3C, then P (λ) = 0 has
two complex roots if and only if ∆ < 0. Moreover, if this is the case, then the sign
of the real parts of these complex roots is the same as C −AB.

Here we set

A0 =
(
c3 +

c2y0

x0
− ω

)
,

B0 =
(
c3(

c2y0

x0
− ω),+

c2y0

x0
(c2 − ω)

)
,

C0 = c3(c2 − ω)
c2y0

x0
,

A1 = x0, B1 = −x0ω.

(Note that A0, B0, and C0 are all positive.) Also, A = A0 + c4A1, B = B0 + c4B1,
and C = C0. So

AB − C = A0B0 − C0 + c4(A0B1 + A1B0) + c2
4A1B1. (3.2)

Note that

A0B0 − C0 = (
c2y0

x0
− ω)

(
c2
3 + c3(

c2y0

x0
− ω) +

c2y0

x0
(c2 − ω)

)
which is greater than zero since c2y0

s0
− ω > 0 and c2 − ω > 0. Since (3.2) is

quadratic in c4 and positive at c4 = 0 we see that AB − C becomes negative after
some critical value, c∗4, of c4 if and only if the coefficient, A1B1, of c2

4 is negative.
Since A1B1 = −x2

0ω we see that this is negative only if ω > 0; i.e.,

c2 >
√

(c2 − 1)2 + 4c2x0. (3.3)

Squaring both sides, and simplifying, yields that inequality (3.3) holds exactly when

x0 <
1
2
(
1− 1

2c2

)
.

Thus we have proven the following theorem.

Theorem 3.2. Assume that J2 has two complex eigenvalues and let A0, B0, C0,
A1, B1 be defined as above. Let p(c4) = A0B0 −C0 + c4(A0B1 + A1B0) + c2

4A1B1,
and assume that x0 < 1

2 (1− 1
2c2

). Then p has two real roots, one positive and one
negative. Letting c∗4 denote the positive root, we have that for c4 > c∗4 the sign of
the real part of the complex eigenvalues of J2 will be positive.

Next we claim that J2 has complex eigenvalues when c4 is in a neighborhood of
c∗4. When c4 = c∗4 we have that

C(c∗4) = A(c∗4)B(c∗4) (3.4)

so

−∆(c∗4) = 8A(c∗4)
2B(c∗4)

2 + 4B(c∗4)
3 + 4A(c∗4)

4B(c∗4)
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= 8A(c∗4)
2B(c∗4)

2 + 4B(c∗4)(B(c∗4)
2 + A(c∗4)

4).

Notice that B(c∗4) > 0 from (3.4) since A(c4) and C(c4) are positive for all values
of c4. Thus we have proven the following result.

Theorem 3.3. Assume that x0 < 1
2 (1− 1

2c2
), and let c∗4 be defined as above. Then

the system has a linear Hopf bifurcation at c∗4; i.e., there is a δ > 0 such that for
c4 satisfying c∗4 − δ < c4 < c∗4 the Jacobi matrix, J2, has two complex eigenvalues
with negative real parts while for c4 satisfying c∗4 < c4 < c∗4 + δ the Jacobi matix,
J2, has two complex eigenvalues with positive real parts.

We should also remark that since −C0 is the product of all of the eigenvalues
(and is negative) we know that if there are two complex eigenvalues, the third (real)
eigenvalue must be negative. Thus when c4 > c∗4, we have an outward spiral from
(x0, y0, z0) which is being compressed in the complementary direction and remains
bounded. This certainly indicate a likely limit cycle. (See Figure 3.)
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Figure 3. Oscillatory behavior for the system studied in this sec-
tion. The parameter values are x0 = .05, c2 = 5, c3 = 1.2, and
c4 = 99 (so c1 = 1). The critical value is c∗4 = 95.4. In the graph,
the values of z(t) (red) are divided by 10 to make the scaling com-
patible

4. The full four dimensional model

Finally, we return to the full 4 dimensional model. If the reduced model is
robust, we would expect that for small values of r, we will see the same behavior
that we see when r = 0. To verify that this is the case, we look at two sets of
parameter values, the first satisfying c4 < c4∗ and the second with c4 > c4∗, and
numerically compute the eigenvalues of the linearized system near the equilibrium.
Before proceeding, we should first repeat the dimensional reduction for this system.

We begin with the system

Ṡ = bN(1− N

K
)− βIS − γFS
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İ = βIS + γFS − (d + r + di)I

Ṙ = rI − dR

Ḟ = δI − αF.

As above, we rescale time by τ = bt and set x = S/K, y = I/K, z = γF/b, as well
as w = R/K. This yields the equations

ẋ = (x + y + w)(1− x− y − w)− c1xy − xz

ẏ = c1xy + xz − (c2 + c5 + c + 6)y

ż = c3(c4y − z)
ẇ = c5y − c2w

with c1 = βK
b , c2 = d

b , c3 = α
b , c4 = δγK

αb , and c5 = r/b, c6 = di/b.
This system has an equilibrium (x0, y0, z0, w0), where x0 = (c2+c5+c6)/(c1+c4),

z0 = c4y0, w0 = c5
c2

y0, and y0 is the positive root of the polynomial equation

(c2 + c5

c2

)2

y2 +
(
c2 + c5 + c6 +

(c2 + c5

c2

)
(2x0 − 1)

)
y + x0(x0 − 1) = 0.

We study this system near the parameter values given in Figure 3 above. We will
keep the recovery rate, r, small so that we are near to the 3 dimensional system
studied above. Also, to keep x0 fixed as in the above analysis, we will need to keep
c1 + c4 constant. In Figure 4 we show graphs of x(t) and y(t) with two nearby sets
of parameter values. The graph on the left shows persistent periodic behavior as
in Figure 3, while the graph on the right shows damped periodic behavior. For the
second graph, we have lowered the value of c4 below c∗4, while raising c1 to keep x0

constant.
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Figure 4. Graphs of x(t) and y(t) for the full four dimensional
model. In the left, the parameter values are c1 = 1, c2 = 1,
c3 = 1.2, c4 = 99, c5 = 0.01, and c6 = 4. In the right, the
parameter values are c1 = 10, c2 = 1, c3 = 1.2, c4 = 90, c5 = 0.01,
and c6 = 4. Here we see the trend to a stable endemic diseased
population
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The Jacobian for the four dimensional system is

J =

(
1−2x−2y−2w−c1y−z 1−2x−2y−2w−c1x −x 1−2x−2y−2w

c1y+z c1x−(c2+c5+c6) x 0
0 c3c4 −c3 0
0 c5 0 −c2

)
.

Using the parameter values c1 = 1, c2 = 1, c3 = 1.2, c4 = 99, c5 = 0.01, and
c6 = 4, one can calculate that the equilibrium is at the point (x0, y0, z0, w0) =
(0.0501, 0.0116, 1.1455, 0.0001). Evaluating the Jacobian at this point yields

J1 =


−0.2806 0.8263 −0.0501 0.8764
1.1571 −4.9599 0.0501 0

0 118.8 −1.2 0
0 0.01 0 −1

 ,

whose eigenvalues are λ1 = 0.00878 + 0.9418
√
−1, λ2 = 0.00878 − 0.9418

√
−1,

λ3 = −6.4583, and λ4 = −0.9998. The positive real parts of the complex eigenvalues
explains the persistent periodic behavior at these parameter values.

Similarly, if we compute the Jacobian at the values c1 = 10, c2 = 1, c3 = 1.2,
c4 = 90, c5 = 0.01, and c6 = 4, one can calculate that the equilibrium is at the
point (x0, y0, z0, w0) = (0.0501, 0.0116, 1.1455, 0.0001). Evaluating the Jacobian at
this point yields

J2 =


−0.2806 0.3754 −0.0501 0.8764
1.1571 −4.509 0.0501 0

0 108.8 −1.2 0
0 0.01 0 −1

 ,

whose eigenvalues are λ1 = −0.0174+0.9806
√
−1, λ2 = −0.0174−0.9806

√
−1, λ3 =

−5.955, and λ4 = −0.9998. The negative real parts of the complex eigenvalues show
that solutions for these parameter values damp to the equilibrium point.

Concluding Remarks. The analytic and numerical results of the previous sec-
tions indicate that a secondary transmission route for an infectious disease provides
a robust feedback mechanism that can give rise to sustained periodic epidemics. Of
course this is a very crude model which does not take into account detailed mod-
elling of the secondary transmission route, but it is simple enough that dependence
of solutions on the parameters can be studied analytically, and so lends insight into
how the feedback affects the general behavior of solutions.
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