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EXISTENCE OF SOLUTIONS TO FRACTIONAL ORDER
ORDINARY AND DELAY DIFFERENTIAL EQUATIONS AND

APPLICATIONS

SYED ABBAS

Abstract. In this article, we discuss the existence and uniqueness of solution
to fractional order ordinary and delay differential equations. We apply our re-
sults on the single species model of Lotka Volterra type. Fixed point theorems
are the main tool used here to establish the existence and uniqueness results.
First we use Banach contraction principle and then Krasnoselskii’s fixed point
theorem to show the existence and uniqueness of the solution under certain
conditions. Moreover, we prove that the solution can be extended to maximal
interval of existence.

1. Introduction

Fractional differential equations is a generalization of ordinary differential equa-
tions and integration to arbitrary non integer orders. The origin of fractional cal-
culus goes back to Newton and Leibniz in the seventieth century. It is widely and
efficiently used to describe many phenomena arising in engineering, physics, econ-
omy, and science. Recent investigations have shown that many physical systems
can be represented more accurately through fractional derivative formulation [29].
Fractional differential equations, therefore find numerous applications in the field of
visco-elasticity, feed back amplifiers, electrical circuits, electro analytical chemistry,
fractional multipoles, neuron modelling encompassing different branches of physics,
chemistry and biological sciences [31]. There have been many excellent books and
monographs available on this field [11, 24, 30, 31, 34, 38]. In [24], the authors
gave the most recent and up-to-date developments on fractional differential and
fractional integro-differential equations with applications involving many different
potentially useful operators of fractional calculus. In a recent work by Jaimini et.al.
[23] the authors have given the corresponding Leibnitz rule for fractional calculus.
For the history of fractional calculus, interested reader may see the recent review
paper by Machado et. al. [28].

Many physical processes appear to exhibit fractional order behavior that may
vary with time or space. The fractional calculus has allowed the operations of in-
tegration and differentiation to any fractional order. The order may take on any
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real or imaginary value. Recently theory of fractional differential equations at-
tracted many scientists and mathematicians to work on [7, 18, 19, 31, 32, 33, 39].
For the existence of solutions for fractional differential equations, one can see
[13, 12, 14, 3, 6, 8, 9, 10, 15, 16, 20, 21, 22, 25, 26, 40] and references therein. The
results have been obtained by using fixed point theorems like Picard’s, Schauder
fixed-point theorem and Banach contraction mapping principle. About the devel-
opment of existence theorems for fractional functional differential equations, many
contribution exists [1, 14, 2, 5, 7, 27, 41]. Many applications of fractional cal-
culus amount to replacing the time derivative in a given evolution equation by a
derivative of fractional order. The results of several studies clearly stated that
the fractional derivatives seem to arise generally and universally from important
mathematical reasons. Recently, interesting attempts have been made to give the
physical meaning to the initial conditions for fractional differential equations with
Riemann-Liouville fractional derivatives were proposed in [17, 19, 32, 33].

Ahmed et. al. [4] considered the fractional order predator-prey model and the
fractional order rabies model. They have shown the existence and uniqueness of so-
lutions of the model system and also studied the stability of equilibrium points. The
motivation behind fractional order system are discussed in [4]. Lakshmikantham
and Vatsala in [25, 26] and Lakshmikantham in [27] defined and proved existence
of the solution of fractional initial value problems.

In this article our aim is to show the existence of the solutions of the differential
equations

dαx(t)
dtα

= g(t, x(t)), t ∈ [0, T ]

x(0) = x0, 0 < α < 1,
(1.1)

and
dαx(t)

dtα
= f(t, x(t), x(t− τ)), t ∈ [0, T ]

x(t) = φ(t), t ∈ [−τ, 0] 0 < α < 1,
(1.2)

under suitable conditions on g, f and φ. We assume that g satisfies Lipschitz
condition with Lipschitz constant Lg and f(t, x, y) can be written as f1(t, x) +
f2(t, x, y), where both f1, f2 are Lipschitz continuous with Lipschitz constants Lf1

and Lf2 respectively. Moreover, we show the existence of maximum interval of
existence for the problems (1.1) and (1.2). As far as I know these kind of results
are new for fractional differential equations.

Next we apply our results on the following fractional order Lotka Volterra model
for 0 < α < 1,

dαx(t)
dtα

= (t)
(
r(t)− a(t)x(t− τ)

)
, t ∈ [0, T ], τ ≥ 0,

x(t) = φ(t), t ∈ [−τ, 0].
(1.3)

where dα

dtα denotes RiemannLiouville derivative of order α, 0 < α < 1. The coeffi-
cients r(t) and a(t) satisfy

r∗ ≤ r(t) ≤ r∗, a∗ ≤ a(t) ≤ a∗

which are biologically feasible. We use fixed point theory to show the existence of
a solution. For the fixed point theory and many related results, interested reader
may consult [37].
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2. Preliminaries and Results

Definition 2.1. The fractional integral of order α > 0 of a function f : R+ → R
of order α ∈ R+ is defined by

Iα
0 f(t) =

1
Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

provided the right side exists pointwise on R+. Γ is the gamma function.

For instance, Iαf exists for all α > 0, when f ∈ C0(R+) ∩ L1
loc(R+); note also

that when f ∈ C0(R+
0 ) then Iαf ∈ C0(R+

0 ) and moreover Iαf(0) = 0.

Definition 2.2. The fractional derivative of order α > 0 of a function f : R+ → R
is given by

dα

dtα
f(t) =

1
Γ(1− α)

d

dt

∫ t

0

(t− s)−αf(s)ds =
d

dt
I1−α
0 h(t).

Using fractional calculus, the equation (1.1) can be represented by following
integral form

x(t) = x0 +
1

Γα

∫ t

0

(t− s)α−1g(s, x(s))ds.

First we discuss the existence of the solution of the following ordinary fractional
differential equation (1.1)

dαx(t)
dtα

= g(t, x(t)), t ∈ [0, T ]

x(0) = x0.

Define the operator

Tx(t) = x0 +
1

Γα

∫ t

0

(t− s)α−1g(s, x(s))ds.

Let the function g : B(a, β) → R be bounded by M , where

B(a, β) = {(t, x) : |t| ≤ a, |x− x0| ≤ β}.

We assume that our function g is Lipschitz continuous with respect to x with
Lipschitz constant Lg. Denote b = min{a, β

M }. Let C be the set of all continuous
functions from [−b, b] to B(a, β). Consider

|Tx(t)− x0| ≤
1

Γα

∫ t

0

(t− s)α−1|g(s, x(s))|ds

≤ M

Γα

∫ t

0

(t− s)α−1ds ≤ M

Γα

∫ t

0

sα−1ds

≤ M

Γ(α + 1)
tα ≤ M

Γ(α + 1)
Tα
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Thus for x bounded, continuous, Tx is also bounded, continuous. We denote B(a, β)
by B in short. For x, y ∈ B, we have

|Tx(t)− Ty(t)| ≤ 1
Γα

∫ t

0

(t− s)α−1|g(s, x(s))− g(s, y(s))|ds

≤ Lg

Γα

∫ t

0

(t− s)α−1|x(s)− y(s)|ds

≤ Lg

Γα

( ∫ t

0

(t− s)α−1ds
)

sup
x∈[0,T ]

|x(s)− y(s)|

≤ Lg

Γα
‖x− y‖

∫ t

0

sα−1ds

≤ Lg

Γ(α + 1)
‖x− y‖Tα

Thus for
LgT

α

Γ(α + 1)
< 1,

we have ‖Tx− Ty‖ < ‖x− y‖.
By the contraction mapping principle, we therefore know that T has a unique

fixed point in B. This implies that our problem has a unique solution in B. Hence
we summarize our result in the following theorem.

Theorem 2.3. Problem (1.1) has a unique solution in B provided that

LgT
α

Γ(α + 1)
< 1.

Now we prove the existence of maximal interval of existence for the fractional
differential equation (1.1). The analysis is similar to analysis done by [36] for
ordinary differential equation. Let Ω be the open, connected subset of [0, T ]× R.

Theorem 2.4. Assume that g : Ω → R is continuous and let x be a solution of the
problem defined on some interval I. Then x may be extended as a solution of (1.1)
to a maximal interval of existence (ω−, ω+) and (t, x(t)) → ∂Ω as t → ω±.

Proof. We need to show only the existence of a right maximal interval of existence.
For the left maximal interval of existence a similar argument will work. Combining
both argument together will imply the existence of a maximal interval of existence.
Let x be a solution of (1.1) with the given initial condition x(0) = x0 defined on
an interval I = [0, ax) for ax > 0. We say that two solutions x1, x2 of the problem
(1.1) satisfy x1 ≺ x2, if and only if

x ≡ x1 ≡ x2 on [0, ax],

x1 is defined on Ix1 = [0, ax1), ax1 > ax,

x2 is defined on Ix2 = [0, ax2), ax2 > ax,

and ax2 ≥ ax1 , also x1 ≡ x2 on Ix1 .
To show ≺ is a partial order on the set of all solutions S of (1.1) which coincide

with x on I, we need to show that it is reflexive, antisymmetric and transitive. It
is easy to see that x1 ≺ x1 always holds. Now if x1 ≺ x2 and x2 ≺ x1 we have
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x1 ≡ x2 on Ix by choosing ax1 = ax2 . Now, if x1 ≺ x2, x2 ≺ x3, we have

x ≡ x1 ≡ x2 on [0, ax],

x1 is defined on Ix1 = [0, ax1), ax1 > ax,

x2 is defined on Ix2 = [0, ax2), ax2 > ax,

and ax2 ≥ ax1 , also x1 ≡ x2 on Ix1 ; and

x ≡ x2 ≡ x3 on [0, ax],

x2 is defined on Ix2 = [0, ax2), ax2 > ax,

x3 is defined on Ix3 = [0, ax3), ax3 > ax,

and ax3 ≥ ax2 , also x2 ≡ x3 on Ix2 .
From these two conditions, we can easily obtain

x ≡ x1 ≡ x3 on [0, ax],

x1 is defined on Ix1 = [0, ax1), ax1 > ax,

x3 is defined on Ix3 = [0, ax3), ax3 > ax,

and ax3 ≥ ax1 , also x3 ≡ x1 on Ix3 . Thus x1 ≺ x3.
Thus ≺ is a partial order. Now we verify that the conditions of the Hausdroff

maximum principle ([35]) hold and hence that S contains a maximal element, say
x̄. This maximal element x̄ cannot be further extended to the right. Let x be a
solution of (1.1) with right maximal interval of existence [0, ω+). Now, we must
show that (t, x(t)) → ∂Ω as t → ω+; that is, given any compact set K ⊂ Ω, there
exists tK , such that (t, x(t)) 6∈ K, for t > tK .

For the case ω+ = ∞, the conclusion clearly holds. For the other case, that is if
ω+ < ∞, we proceed indirectly. In the later case there exists a compact set K ⊂ Ω,
such that for every n = 1, 2, . . . there exists tn, 0 < ω+ − tn < 1

n , and (tn, x(tn)) ∈
K. Since K is compact, there will be a subsequence, for the convenience call it
again {(tn, x(tn))} such that {(tn, x(tn))} converges to (ω+, x∗) which belongs to
K. Since (ω+, x∗) ∈ K, it is an interior point of Ω. We may therefore choose a
constant a > 0, such that Q = {(t, x) : |ω+ − t| ≤ a, |x− x∗| ≤ a} ⊂ Ω. Thus for n
large (tn, x(tn)) ∈ Q. Let m = max(t,x)∈Q |f(t, x)|, and let n be so large that

0 < ω+ − tn ≤
a

2m
, |x(tn)− x∗| ≤ a

2
.

Then
|x(tn)− x(t)| < m(ω+ − tn) ≤ a

2
,

for t < ω+, by an easy argument. Therefore, limt→ω+ x(t) = x∗. Hence we may
extend x to the right of ω+ contradicting the maximality of x. Hence the result is
proved for the fractional ordinary differential equation (1.1). �

Consider the following function g(t, x(t)) = x(t)(r(t)−a(t)x(t)), where we assume
that r(t) ∈ [r∗, r∗] and a(t) ∈ [a∗, a∗]. The corresponding fractional differential
equations represent the evolution model of a single species without delay. It is easy
to see that the function f is Lipschitz and bounded for any x ∈ B. Thus from the
above analysis we obtain the existence of the solution which can be extended to
the maximal interval. One can easily observe that the above results can be easily
extended to Rn.
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Moreover, for the fractional delay differential equation (1.2), it is easy to see that
if t ∈ [0, τ ], our function x(t−τ) = φ(t−τ). Thus in this interval the delay fractional
differential equations behave like non-delay fractional differential equations,

dαx(t)
dtα

= f(t, x(t), φ(t− τ)), t ∈ [0, τ ]

x(t) = φ(t), t ∈ [−τ, 0], 0 < α < 1.

A similar analysis we described above for problem (1.1) can be used to show the local
existence and uniqueness of the solution of fractional delay differential equation
(1.2).

Let us consider the function f(t, x(t), x(t− τ)) = x(t)(r(t)−a(t)x(t− τ)), where
we assume that r(t) ∈ [r∗, r∗] and a(t) ∈ [a∗, a∗]. These kind of function come from
the modelling of interspecific competition in one species with τ as a maturity time
period. The corresponding fractional differential equations for this function f is
(1.3). Thus for t ∈ [0, τ ], our function is x(t)(r(t)− a(t)φ(t− τ)). It is easy to see
that the function f is Lipschitz and bounded for any x ∈ B. Hence by using similar
analysis as mentioned above, we obtain local existence of the solution.

Now our next target is to use Krasnoselskii’s fixed point theorem to prove the
existence and uniqueness of the solution of fractional delay differential equations
(1.2). A similar analysis yield the existence of solution of the problem (1.1).

By a solution x(t) of (1.2) we mean that it satisfy the relation

x(t) = φ(0) +
1

Γα

∫ t

0

(t− s)α−1f(s, x(s), x(s− τ))ds

for t ∈ [0, T ] and x(t) = φ(t) for t ∈ [−τ, 0].
First we mention statement of Krasnoselskii’s fixed point theorem.

Theorem 2.5 (Krasnoselskii). Let B be a nonempty closed convex subset of a
Banach space (X, ‖ · ‖). Suppose that Λ1 and Λ2 map B into X such that

(i) for any x, y ∈ B, Λ1x + Λ2y ∈ B,
(ii) Λ1 is a contraction,
(iii) Λ2 is continuous and Λ2(B) is contained in a compact set.

Then there exists z ∈ B such that z = Λ1z + Λ2z.

Now we prove existence of the solutions for the delay fractional differential equa-
tions (1.2) using Krasnoselskii’s fixed point theorem. We begin with the assumption
that our function f can be written as the sum of two functions of the following form

f(t, x(t), y(t)) = f1(t, x(t)) + f2(t, x(t), y(t)),

where fi, i = 1, 2 are Lipschitz continuous functions with Lipschitz constants Lfi

for i = 1, 2. Define the operators F1 and F2 by

F1x(t) = φ(0) +
1

Γα

∫ t

0

(t− s)α−1f1(s, x(s))ds,

F2x(t) =
1

Γα

∫ t

0

(t− s)α−1f2(s, x(s), x(s− τ))ds.
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It is easy to see that

|F1x(t)− F1y(t)| ≤ 1
Γα

∫ t

0

(t− s)α−1|f1(s, x(s))− f1(s, y(s))|ds

≤ Lf1

Γα

∫ t

0

(t− s)α−1|x(s)− y(s)|ds

≤ Lf1

Γα
‖x− y‖

∫ t

0

sα−1ds

≤ Lf1

Γ(α + 1)
‖x− y‖Tα.

We obtain

‖F1x− F1y‖ ≤
Lf1T

α

Γ(α + 1)
‖x− y‖.

Thus F1 is a contraction provided Lf1T α

Γ(α+1) < 1.
Further assume that the functions fi, i = 1, 2 satisfy the relations

|f1(t, x(t))| ≤ M1|x(t)|,
|f2(t, x(t), y(t))| ≤ M2|x(t)| × |y(t)|.

Let BC([−τ, T ], R) denote the collection of all bounded and continuous function
from [−τ, T ] to R. Consider the set

D = {x ∈ BC([−τ, T ], R) : |x| ≤ r}

where r satisfies

|φ(0)|+ M1r + M2r
2

Γ(α + 1)
Tα ≤ r.

For x ∈ D, calculating the norm of the function F = F1 + F2, we have

|F1x(t) + F2x(t)|

≤ |φ(0)|+ 1
Γα

∫ t

0

(t− s)α−1|f1(s, x(s)) + f2(s, x(s), x(s− τ))|ds

≤ |φ(0)|+ M1‖x‖+ M2‖x‖2

Γα

∫ t

0

(t− s)α−1ds

≤ |φ(0)|+ M1r + M2r
2

Γ(α + 1)
Tα.

Thus F1x + F2x ∈ D. Moreover for x ∈ D, we obtain

|F2x(t)| ≤ 1
Γα

∫ t

0

(t− s)α−1|f2(s, x(s), x(s− τ))|ds

≤ M2‖x‖2

Γα

∫ t

0

(t− s)α−1ds

≤ M2r
2

Γ(α + 1)
Tα ≤ r.
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To prove the continuity of F2, let us consider a sequence xn converging to x.
Taking the norm of F2xn(t)− F2x(t), we have

|F2xn(t)− F2x(t)|

≤ 1
Γα

∫ t

0

(t− s)α−1|f2(s, xn(s), xn(s− τ))− f2(s, x(s), x(s− τ))|ds

≤ Lf2

Γα

∫ t

0

(t− s)α−1(|xn(s)− x(s)|+ |xn(s− τ)− x(s− τ)|)ds

≤ 2Lf2

Γα

( ∫ t

0

sα−1ds
)
‖xn − x‖

≤ 2Lf2

Γ(α + 1)
Tα‖xn − x‖.

From the above analysis we obtain

‖F2xn − F2x‖ ≤
2Lf2

Γ(α + 1)
Tα‖xn − x‖

and hence whenever xn → x, Fxn → Fx. This proves the continuity of F2.
Now for t1 ≤ t2 ≤ T , we have

|F2x(t2)− F2x(t1)|

≤ 1
Γα

∣∣∣ ∫ t2

0

(t2 − s)α−1f2(s, x(s), x(s− τ)ds

−
∫ t1

0

(t1 − s)α−1f2(s, x(s), x(s− τ)ds
∣∣∣

≤ 1
Γα

∣∣∣ ∫ t1

0

(t2 − s)α−1f2(s, x(s), x(s− τ)ds

+
∫ t2

t1

(t2 − s)α−1f2(s, x(s), x(s− τ)ds

−
∫ t1

0

(t1 − s)α−1f2(s, x(s), x(s− τ)ds
∣∣∣

≤ 1
Γα

∫ t1

0

|((t2 − s)α−1 − (t1 − s)α−1)||f2(s, x(s), x(s− τ)|ds

+
1

Γα

∫ t2

t1

|(t2 − s)α−1| × |f2(s, x(s), x(s− τ)|ds

≤ M1r
2

Γα

∫ t1

0

|(t2 − s)α−1 − (t1 − s)α−1|ds +
M2r

2

Γα

∫ t2

t1

|(t2 − s)α−1|ds

≤ r2

Γ(α + 1)
max{M1,M2}

∣∣∣− 2(t2 − t1)α + tα2 − tα1

∣∣∣
≤ r2

Γ(α + 1)
max{M1,M2}(t2 − t1)α

The right-hand side of above expression does not depends on x. Thus we conclude
that F2(D) is relatively compact and hence F2 is compact by Arzela-Ascoli theorem.
Using Krasnoselskiis fixed point theorem, we obtain that there exists z ∈ D such
that Fz = F1z + F2z = z, which is a fixed point of F . Hence the problem (1.2)
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has at least one solution in D. We summarize the above results in the form of the
following theorem.

Theorem 2.6. Model (1.2) has a solution in the set D provided Lf1T α

Γ(α+1) < 1 and

|φ(0)|+ M1r + M2r
2

Γ(α + 1)
Tα ≤ r .

Consider the function f(t, x(t), x(t − τ)) = x(t)(r(t) − a(t)x(t − τ)) and let us
denote

f1(t, x(t)) = x(t)r(t), f2(t, x(t), x(t− τ)) = −a(t)x(t)x(t− τ).

It is easy to see that

|f1(t, x(t))| ≤ r∗|x(t)|,
|f2(t, x(t), x(t− τ))| ≤ a∗|x(t)||x(t− τ)|.

Using fractional calculus, (1.3) can be representable as an integral form of the
type

x(t) = φ(0) +
1

Γ(α)

∫ t

0

(t− s)α−1x(s)
(
r(s)− a(s)x(s− τ)

)
ds

x(t) = φ(t), t ∈ [−τ, 0].

Define a mapping Λ by
Λx(t) = Λ1x(t) + Λ2x(t),

where

Λ1x(t) =
1

Γ(α)

∫ t

0

(t− s)α−1x(s)r(s)ds,

Λ2x(t) = − 1
Γ(α)

∫ t

0

(t− s)α−1x(s)a(s)x(s− τ)ds.

One can easily see that in this case our operator F1 coincide with Λ1 and F2

coincides with Λ2. Thus our model systems (1.3) have at least one solution. We
summarize the result for problem (1.3) in the form of the following theorem.

Theorem 2.7. The model (1.3) has a solution in the set D provided Lf1T α

Γ(α+1) < 1
and

|φ(0)|+ r∗r + a∗r2

Γ(α + 1)
Tα ≤ r .

Remark 2.8. The above result can be extended for n species competitive system
of the form

dαxi(t)
dtα

= xi(t)
(
ri(t)−

n∑
j=1

aij(t)xj(t− τij)
)
, t ∈ [0, T ], i = 1, 2, . . . , n.

xi(t) = φi(t), t ∈ [−τ, 0],

where α, 0 < α < 1, ri(t) ∈ [r∗, r∗], and aij ∈ [a∗, a∗].
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