\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2010(2010), No. 15, pp. 1--10.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2010 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2010/15\hfil Entire solutions] {Entire solutions for a class of $p$-Laplace equations in $\mathbb{R}^2$} \author[Z. Zhou\hfil EJDE-2010/15\hfilneg] {Zheng Zhou} \address{Zheng Zhou \newline College of Mathematics and Econometrics, Hunan University, Changsha, China} \email{zzzzhhhoou@yahoo.com.cn} \thanks{Submitted September 15, 2009. Published January 21, 2010.} \subjclass[2000]{35J60, 35B05, 35B40} \keywords{Entire solution; $p$-Laplace Allen-Cahn equation; \hfill\break\indent Variational methods} \begin{abstract} We study the entire solutions of the $p$-Laplace equation \[ -\mathop{\rm div}(|\nabla u|^{p-2}\nabla u)+a(x,y)W'(u(x,y))=0, \quad (x,y)\in {\mathbb{R}}^2 \] where $a(x,y)$ is a periodic in $x$ and $y$, positive function. Here $W:\mathbb{R}\to\mathbb{R}$ is a two well potential. Via variational methods, we show that there is layered solution which is heteroclinic in $x$ and periodic in $y$ direction. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{remark}[theorem]{Remark} \section{Introduction} In this paper we consider the $p$-Laplacian Allen-Cahn equation \begin{equation}\label{eq1.1} \begin{gathered} -\mathop{\rm div}(|\nabla u|^{p-2}\nabla u)+a(x,y)W'(u(x,y))=0, \quad (x,y)\in {\mathbb{R}}^2\\ \lim_{x\to \pm\infty}u(x,y)=\pm\sigma \quad \text{uniformly w.r.t. }y\in \mathbb{R}. \end{gathered} \end{equation} where we assume $2
\sigma$ such that $W(s)>W(R_0)$ for any
$|s|>R_0$.
\end{itemize}
\end{itemize}
For example, here we may take
$W(t)=\frac{p-1}{p}|\sigma^2-t^2|^{p}$. This is similar with case
$p=2$, where the typical examples of $W$ are given by
$W(t)=\frac{1}{4}\prod_{i=1}^{k}(t-z_{i})^2$, where
$z_{i}$, $i=1,2,\ldots k<\infty$ are zeros of $W(t)$. The case $p=2$
can be viewed as stationary Allen-Cahn equation introduced in 1979
by Allen and Cahn. We recall that the Allen-Cahn equation is
a model for phase transitions in binary metallic alloys which
corresponds to taking a constant function $a$ and the double well
potential $W(t)$. The function $u$ in these models is considered as
an order parameter describing pointwise the state of the material.
The global minima of $W$ represent energetically favorite pure
phases and different values of $u$ depict mixed configurations.
In 1978, De Giorgi \cite{De} formulated the following question.
Assume $N>1$ and consider a solution $u\in C^2({\mathbb{R}}^{N})$
of the scalar Ginzburg-Laudau equation:
\begin{equation} \label{eq1.2}
\Delta u = u(u^2-1)
\end{equation}
satisfying $|u(x)|\leq1$, $\frac{\partial u}{\partial x_N}>0$ for
every $x=(x', x_N)\in {\mathbb{R}}^{N}$ and
$\lim\limits_{x_N\to\pm\infty} u(x',x_N)=\pm1$. Then the level
sets of $u(x)$ must be hyperplanes; i.e., there exists
$g\in C^2(\mathbb{R})$ such that $u(x)=g(ax'-x_n) $ for some fixed
$a\in{\mathbb{R}}^{N-1}$. This conjecture was first proved for $N=2$
by Ghoussoub and Gui in \cite{GG} and for $N=3$ by Ambrosio
and Cabr\'{e} in \cite{AC}. For $4\leq N\leq8$ and assuming an
additional limiting condition on $u$, the conjecture has been proved
by Savin in \cite{Sa} .
Alessio, Jeanjean and Montecchiari \cite{AJM} studied the equation
$-\triangle u+a(x)W'(u)=0$ and obtained the existence of layered
solutions based on the crucial condition that there is some discrete
structure of the solutions to the corresponding ODE.
In \cite{AJc}, when $a(x,y)>0$ is periodic in $x$ and $y$, the
authors got the existence of infinite multibump type solutions,
where $a(x,y)=a(x,-y)$ takes an important role \cite{AJc}(see also
\cite{AJc,R,Ra,Rab,RS1,RS2}).
Inherited from the above results, I wonder under what condition
p-Laplace type equation \eqref{eq1.1} would have two dimensional
layered solutions periodical in $y$. Adapting the renormalized
variational introduced in \cite{AJM,AJc} (see also
\cite{Ra,Rab}) to the p-Laplace case, we prove
\begin{theorem}\label{th1.1}
Assume {\rm (H1)--(H2)}. Then there exists entire
solution for \eqref{eq1.1}, which behaves heteroclinic in $x$ and
periodic in $y$ direction.
\end{theorem}
\section{The periodic problem}
To prove Theorem \ref{th1.1}, we first consider the equation
\begin{equation}\label{eq2.1}
\begin{gathered}
-\mathop{\rm div}(|\nabla u|^{p-2}\nabla u)+a(x,y)W'(u(x,y))=0,
\quad (x,y)\in {\mathbb{R}}^2\\
u(x,y)=u(x,y+1)\\
\lim_{x\to\pm\infty}u(x,y)=\pm\sigma \quad
\text{uniformly w.r.t. } y\in \mathbb{R}.
\end{gathered}
\end{equation}
The main feature of this problem is that it has mixed boundary
conditions, requiring the solution to be periodic in the $y$
variable and of the heteroclinic type in the $x$ variable.
Letting $S_0={\mathbb{R}}\times[0,1]$, we look for minima of the
Euler-Lagrange functional
\[
I(u)=\int_{S_0}\frac{1}{p}|\nabla u(x,y)|^p+a(x,y)W(u(x,y))\,dx\,dy
\]
on the class
$$
\Gamma=\{u\in
W_{\rm loc}^{1,p}(S_0):\|u(x,\cdot)\mp\sigma\|_{L^p(0,1)}\to0.\;
x\to\pm\infty\}
$$
where
$\|u(x_1,\cdot)-u(x_2,\cdot)\|_{L^p(0,1)}^p=\int_0^1
|u(x_1,y)-u(x_2,y)|^pdy$.
Setting
\begin{gather*}
\Gamma_p=\{u\in\Gamma:u(x,0)=u(x,1)\text{for a.e. }
x\in{\mathbb{R}}\} \\
c_p=\inf_{\Gamma_p} I\quad \text{and}\quad
{\mathcal {K}}_p=\{u\in\Gamma_p : I(u)=c_p\}
\end{gather*}
Then we use the reversibility assumption (H1)-(ii) to show that
the minima $c$ on $\Gamma$ equals minima $c_p$ on $\Gamma_p$, and so
solutions of \eqref{eq2.1}.
Note the assumptions on $a$ and $W$ are sufficient to prove that $I$
is lower semicontinuous with respect to the weak convergence in
$W_{\rm loc}^{1,p}(S_0)$; i.e., if $u_n\to u$ weakly in
$W_{\rm loc}^{1,p}(\Omega)$ for any $\Omega$ relatively compact in
$S_0$, then $I(u)\leq\liminf_{n\to\infty}I(u_n)$. Moreover we have
\begin{lemma} \label{lem2.1}
If $(u_n)\subset W_{\rm loc}^{1,p}(S_0)$ is such that $u_n\to u$
weakly in $W_{\rm loc}^{1,p}(S_0)$ and $I(u_n)\to I(u)$, then
$I(u)\leq\liminf_{n\to\infty}u_n$ and
\begin{gather*}
\int_{S_0}a(x,y)W(u_n)\,dx\,dy\to\int_{S_0}a(x,y)W(u)\,dx\,dy\\
\int_{S_0}|\nabla u_n|^p\,dx\,dy\to\int_{S_0}|\nabla u|^p\,dx\,dy
\end{gather*}
\end{lemma}
\begin{proof}
Since $u_n\to u$ weakly in $W_{\rm loc}^{1,p}(S_0)$,
$\|\nabla u\|_{L^p(S_0)}\leq\liminf_{n\to\infty} \|\nabla
u_n\|_{L^p(S_0)}$ by the lower semicontinuous of the norm. By
compact embedding theorem, we have $u_n\to u$ in
$L_{\rm loc}^p(S_0)$, using pointwise convergence and Fatou lemma, we
have
$\int_{S_0}a(x,y)W(u)\,dx\,dy\leq\liminf_{n\to\infty}
\int_{S_0}a(x,y)W(u_n)\,dx\,dy$, then
\begin{align*}
\int_{S_0}a(x,y)W(u)\,dx\,dy&\leq \limsup_{n\to\infty}
\int_{S_0}a(x,y)W(u_n)\,dx\,dy\\
&= \limsup_{n\to\infty}\Big[I(u_n)-\int_{S_0}\frac{1}{p}
|\nabla u_n|^p\,dx\,dy\Big]\\
&= I(u)-\liminf_{n\to\infty}\int_{S_0}\frac{1}{p}
|\nabla u_n|^p\,dx\,dy\\
&\leq \int_{S_0}a(x,y)W(u)\,dx\,dy.
\end{align*}
Thus, $\int_{S_0}a(x,y)W(u_n)\,dx\,dy\to\int_{S_0}a(x,y)W(u)\,dx\,dy$,
and since $I(u_n)\to I(u)$, we have
$\int_{S_0}|\nabla u_n|^p\,dx\,dy\to\int_{S_0}|\nabla u|^p\,dx\,dy$.
\end{proof}
By Fubini's Theorem, if $u\in W_{\rm loc}^{1,p}(S_0)$, then
$u(x,\cdot)\in W^{1,p}(0,1)$, and for all $x_1,x_2\in{\mathbb{R}}$,
we have
\begin{align*}
\int_0^1|u(x_1,y)-u(x_2,y)|^pdy
&= \int_0^1|\int_{x_1}^{x_2} \partial_xu(x,y)dx|^pdy\\
&\leq |x_1-x_2|^{p-1}\int_0^1
\int_{x_1}^{x_2}|\partial_xu(x,y)dx|^p\,dx\,dy\\
&\leq pI(u)|x_1-x_2|^{p-1}.
\end{align*}
If $I(u)<+\infty$, the function $x\to u(x,\cdot)$ is H\"older
continuous from a dense subset of $\mathbb{R}$ with values in
$L^p(0,1)$ and so it can be extended to a continuous function on
$\mathbb{R}$. Thus, any function $u\in
W_{\rm loc}^{1,p}(S_0)\cap\{I<+\infty\}$ defines a continuous trajectory
in $L^p(0,1)$ verifying
\begin{equation}
\begin{aligned}
\mathrm{d}(u(x_1,\cdot),u(x_2,\cdot))^p
&= \int_0^1|u(x_1,y)-u(x_2,y)|^pdy \\
&\leq pI(u)|x_1-x_2|^{p-1}, \forall x_1,x_2\in
\mathbb{R}.
\end{aligned}\label{eq2.2}
\end{equation}
\begin{lemma}\label{lem2.2}
For all $r>0$, there exists $\mu_r>0$, such that if
$u\in W_{\rm loc}^{1,p}(S_0)$ satisfies
$\min\|u(x,\cdot)\pm\sigma\|_{W^{1,p}(0,1)}\geq r$ for a.e.
$x\in (x_1,x_2)$, then
\begin{equation}\label{eq2.3}
\begin{aligned}
&\int_{x_1}^{x_2}\Big[\int_0^1\frac{1}{p}|\nabla
u|^p+a(x,y)W(u(x,y))dy\Big]dx\\
&\geq \frac{1}{p(x_2-x_1)^{p-1}}\mathrm{d}(u(x_1,\cdot),u(x_2,\cdot))^p
+\frac{p-1}{p}\mu_r^{\frac{p}{p-1}}(x_2-x_1)\\
&\geq \mu_r\mathrm{d}(u(x_1,\cdot),u(x_2,\cdot))
\end{aligned}
\end{equation}
\end{lemma}
\begin{proof}
We define the functional
\[
F(u(x,\cdot))=\int_0^1\frac{1}{p}|\partial_yu(x,y)|^p+
\underline{a}W(u(x,y))dy
\]
on $W^{1,p}(0,1)$, where
$\underline{a}=\min_{{\mathbb{R}}^2}a(x,y)>0$. To prove the lemma,
we first to claim that:
\par
For any $r>0$, there exists $\mu_r>0$, such that if $q(y)\in
W^{1,p}(0,1)$ is such that $\min\|q(y)\pm\sigma\|_{W^{1,p}(0,1)}\geq
r$, then$ F(q(y))\geq\frac{p-1}{p}\mu_r^{\frac{p}{p-1}}$. Namely, if
$q_n(\cdot)\in W^{1,p}(0,1)$ and $F(q_n)\to0$, then
$\min\|q_n\pm\sigma\|_{W^{1,p}(0,1)}\to0$.
Assume by contradiction that if $F(q_n)\to0$ and
$\min\|q_n\pm\sigma\|_{L^\infty(0,1)}\geq\varepsilon_0>0$. Then
there exists a sequence $(y_n^1)\subset[0,1]$ such that
$\min|q_n(y_n^1)\pm\sigma|\geq\varepsilon_0$. Since
$\int_0^1\underline{a}W(q_n)dy\to0$ there exists a sequence
$(y_n^2)\subset[0,1]$ such that
$|q_n(y_n^2)\pm\sigma|<\frac{\varepsilon_0}{2}$. Then
\begin{align*}
\frac{\varepsilon_0}{2}
&\leq |q_n(y_n^2)-q_n(y_n^1)|\\
&\leq |\int_{y_n^1}^{y_n^2}|\dot{q}_n(t)|dt~|\\
&\leq |y_n^2-y_n^1|^{1-\frac{1}{p}}\Big[\int_0^1|\dot{q}_n(t)|^pdt\Big]
^{1/p}\\
&\leq p^{\frac{1}{p}}(F(q_n))^{1/p}\to0.
\end{align*}
It is a contradiction.
Since $\min\|q_n\pm\sigma\|_{L^\infty(0,1)}\to0$ as $F(q_n)\to0$,
then $\int_0^1|\dot{q}_n(y)|^pdy\to0$, and it follows that
$\|q_n-\sigma\|_{W^{1,p}(0,1)}\to0$ as $F(q_n)\to0$.
Observe that if $(x_1,x_2)\subset\mathbb{R}$ and $u\in
W_{\rm loc}^{1,p}(S_0)$ are such that
$F(u(x,\cdot))\geq\frac{p-1}{p}\mu_r^{\frac{p}{p-1}}$ for a.e.
$x\in(x_1,x_2)$, by H\"older's and Yung's inequalities we
have
\begin{align*}
& \int_{x_1}^{x_2}\Big[\int_0^1\frac{1}{p}|\nabla
u|^p+a(x,y)W(u(x,y))dy\Big]dx\\
&\geq \int_{x_1}^{x_2}\int_0^1\frac{1}{p}|\partial_xu|^p\,dy\,dx+
\int_{x_1}^{x_2}\int_0^1\frac{1}{p}|\partial_yu|^p+\underline{a}W(u)\,dy\,dx\\
&= \frac{1}{p}\int_0^1\int_{x_1}^{x_2}|\partial_xu|^p\,dx\,dy+
\int_{x_1}^{x_2}F(u(x,\cdot))dx\\
&\geq \frac{1}{p(x_2-x_1)^{p-1}}\mathrm{d}(u(x_1,\cdot),u(x_2,\cdot))^p
+\frac{p-1}{p}\mu_r^{\frac{p}{p-1}}(x_2-x_1)\\
&\geq \mu_r\mathrm{d}(u(x_1,\cdot),u(x_2,\cdot)).
\end{align*}
The proof is complete.
\end{proof}
As a direct consequence of Lemma \ref{lem2.2}, we have the following
result.
\begin{lemma}\label{lem2.3}
If $u\in W_{\rm loc}^{1,p}(S_0)\cap \{I<+\infty\}$, then
$\mathrm{d}\big(u(x,\cdot),\pm\sigma\big)\to0$ as $x\to\pm\infty$.
\end{lemma}
\begin{proof}
Note that since
\[
I(u)=\int_{S_0}\frac{1}{p}|\nabla
u|^p+a(x,y)W(u(x,y))\,dx\,dy<+\infty,
\]
$W(u(x,y))\to0$ as $|x|\to+\infty$. Then by Lemma \ref{lem2.2},
$\liminf_{x\to+\infty}\mathrm{d}\big(u(x,\cdot),\sigma\big)=0$.
Next we show that $\limsup_{x\to+\infty} \mathrm{d}\big(u(x,\cdot),
\sigma\big)=0$ by contradiction. We assume that there exists
$r\in(0,\sigma/4)$ such that
$\limsup_{x\to+\infty}\mathrm{d}(u(x,\cdot),\sigma)>2r$,
by \eqref{eq2.2} there exists infinite
intervals $(p_i,s_i),i\in \mathbb{N}$ such that
$\mathrm{d}\big(u(p_i,\cdot),\sigma\big)=r$,
$\mathrm{d}\big(u(s_i,\cdot),\sigma\big)=2r$ and
$r\leq \mathrm{d}\big(u(x,\cdot),\sigma\big)\leq2r$ for
$x\in\cup_i(p_i,s_i)$,
$i\in \mathbb{N}$ by Lemma \ref{lem2.2}, this implies
$I(u)=+\infty$, it's a contradiction. Similarly, we can prove that
$\lim_{x\to-\infty}\mathrm{d}\big(u(x,\cdot),-\sigma\big)=0$.
\end{proof}
Now we consider the functional on the class
$$\Gamma=\{u\in W_{\rm loc}^{1,p}(S_0):I(u)<+\infty,
~{\rm d}\big(u(x,\cdot),\pm\sigma\big)\to0{\rm
~as~x\to\pm\infty}\}
$$
Let
\begin{equation}\label{eq2.4}
c=\inf_\Gamma I\quad\text{and}\quad
{\mathcal {K}}= \{u\in\Gamma:I(u)=c\}
\end{equation}
We will show that $\mathcal {K}$ is not
empty, and we start noting that the trajectory in $\Gamma$ with
action close to the minima has some concentration properties.
For any $\delta>0$, we set
\begin{equation}\label{eq2.5}
\lambda_\delta=\frac{1}{p}\delta^p+\max_{\mathbb{R}^2}a(x,y)\cdot
\max_{|s\pm\sigma|\leq p^{1/p}\delta}W(s).
\end{equation}
\begin{lemma}\label{lem2.4}
There exists $\bar{\delta}_0\in(0,\sigma/2)$ such that for any
$\delta\in(0,\bar{\delta}_0)$ there exists $\rho_\delta>0$ and
$l_\delta>0$, for which, if $u\in\Gamma$ and $I(u)\leq
c+\lambda_\delta$, then
\begin{itemize}
\item[(i)] $\min\|u(x,\cdot)\pm\sigma\|_{W^{1,p}(0,1)}\geq\delta$
for a.e.
$x\in(s,p)$ then $p-s\leq l_\delta$.
\item[(ii)] if $\|u(x_-,\cdot)+\sigma\|_{W^{1,p}(0,1)}\leq\delta$, then
$\mathrm{d}(u(x_-,\cdot),-\sigma)\leq\rho_\delta$ for any $x\leq x_-$,
and if $\|u(x_+,\cdot)-\sigma\|_{W^{1,p}(0,1)}\leq\delta$, then
$\mathrm{d}(u(,\cdot),\sigma)\leq\rho_\delta$ for any $x\geq x_+$.
\end{itemize}
\end{lemma}
\begin{proof}
By Lemma \ref{lem2.2}, as in this case, there exists $\mu_\delta>0$
such that
\[
\int_s^p\int_0^1\frac{1}{p}|\nabla
u|^p+a(x,y)W(u)\,dx\,dy\geq \mu_\delta(p-s).
\]
Since $I(u)\leq c+\lambda_\delta$ there exists $l_\delta<+\infty$
such that $p-s