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APPROXIMATION IN THE SENSE OF KATO FOR THE
TRANSPORT PROBLEM

MOHAMED AMINE CHERIF, HASSAN EMAMIRAD

Abstract. Using Chernoff’s Theorem, we present an approximation of the

family {S(t) : t ≥ 0} that converges in the sense of Kato to the transport
semigroup.

1. Introduction

Let us recall the Chernoff’s Theorem as it is given in [1].

Theorem 1.1. Let X be a Banach space and {V (t)}t≥0 be a family of contractions
on X with V (0) = I. Suppose that the derivative V ′(0)f exists for all f in a set D
and the closure Λ of V ′(0)

∣∣
D generates a C0-semigroup S(t) of contractions. Then,

for each f ∈ X,

lim
n→∞

‖V (
t

n
)nf − S(t)f‖ = 0, (1.1)

uniformly for t in compact subsets of R+.

We will use the Chernoff’s theorem to prove the following result.

Theorem 1.2. Let A be the generator of a C0-semigroup S0(t) such that ‖S0(t)‖ ≤
e−ωt (ω ≥ 0), and B a bounded perturbation operator such that ‖B‖ ≤ ω; thus
A + B defined on D(A) generates a C0-semigroup S(t) of contractions. Then, the
conclusion of (1.1) holds for V (t) := S0(t) +

∫ t

0
S0(s)Bds.

Proof. We remark that V (0) = I, V ′(0)f = (A + B)f for all f ∈ D(A) and finally
V (t) is a contraction. In fact,

‖V (t)‖ ≤ ‖S0(t)‖+ ‖
∫ t

0

S0(s)Bds‖

≤ e−ωt + b

∫ t

0

e−ωsds =
(
1− b

ω

)
e−ωt +

b

ω
≤ 1,

where b = ‖B‖. Since all the assumptions of Theorem 1.1 are fulfilled, the conclu-
sion infers from this Theorem. �
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In the next section, we define the convergence in the sense of Kato. In the last
section we construct the approximation spaces convergence in the sense of Kato
and we prove that an approximating family of operators constructed by mean of
V (t) in the transport problem converges in the sense of Kato to the solution of this
problem. This gives a new look to the transport processes given by Hejtmanek in
[2]. In fact, Hejtmanek used these processes only for Euler approximation of the
transport equation, but we will show in our forthcoming paper that these processes
can be applied not only to Euler schemes but also to Crank-Nicolson and Predictor-
Corrector algorithms.

2. Convergence in the Kato sense

In this article we give an approximation processus for the transport equation
not only in time but also in space. For approximation in space we have to recall
the convergence in the sense of Kato (see [3]). We say that a sequence of Banach
spaces {(Xn, ‖.‖n) : n = 1, 2, . . . } converges to a Banach space (X, ‖.‖) in the sense
of Kato and we write

Xn
K→ X

if for any n there is a linear operator Pn ∈ L(X, Xn) (called an approximating
operator) satisfying the following two conditions:

(K1) limn→∞ ‖Pnf‖n = ‖f‖ for f ∈ X;
(K2) for each fn ∈ Xn, there exists f (n) ∈ X such that fn = Pnf (n) with

‖f (n)‖ ≤ C‖fn‖n (C is independent of n).

Let Xn
K→ X, Bn ∈ L(Xn) and B ∈ L(X). We say that Bn converges to B in

the sense of Kato and we write Bn
K→ B if limn→∞ ‖BnPnf −PnBf‖n = 0 for any

f ∈ X. Let An and A be the generators of the C0-semigroups {Tn(t)}t≥0 ⊆ L(Xn)
and {T (t)}t≥0 ⊆ L(X), respectively. Consider the following three conditions:

(A) (Consistency). There is a complex number λ contained in the resolvent
sets

⋂
n∈N ρ(An) and ρ(A), respectively, such that

(λ−An)−1 K→ (λ−A)−1.

(B) (Stability). There exists a positive constant M and a real number ω such
that

‖Tn(t)‖ ≤ Meωt,

for any t ≥ 0 and any n ∈ N.
(C) (Convergence). For any finite T > 0,

Tn(t) K→ T (t)

uniformly on [0, T ], i.e.

lim
n→∞

sup
t∈[0,T ]

‖Tn(t)Pnf − PnT (t)f‖n = 0 for any f ∈ X. (2.1)

In [4] one can retrieve the standard version of the Lax equivalence theorem which
says that the conditions (A) and (B) hold if and only if (C) holds.
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3. Approximation of transport equation

Here we consider a matter of particles, constituted of neutrons, electrons, ions
and photons. Each particle moves on a straight line with constant velocity until
it collides with another particle of the supporting medium resulting in absorption,
scattering or multiplication. The unknown of the transport equation is the particle
density function u(x,v, t). This is a function in the phase space (x,v) ∈ Ω× V ⊂
R2n at the time t ≥ 0, which belongs to its natural space X = L1(Ω, V ). Actually,∫
Ω×V

u(x,v, t) dx dv designates the total number of particles in the whole space
Ω× V at the time t. The general form of the transport problem is the following

∂u

∂t
= −v · ∇u− σ(x,v)u +

∫
V

p(x,v′,v)u(x,v′, t)dv′ in Ω× V ;

u(x,v, t) = 0 if x · v < 0, for all x ∈ ∂Ω;

u(x,v, 0) = f(x,v) ∈ X.

(3.1)

In this equation which is known as linear Boltzmann equation the first term of the
right hand side −v·∇u(x,v, t) illustrates the movement of the classical group of the
particles in the absence of the absorption and production interactions. The second
term represents the lost of the particles caused by the diffusion or absorption at
the point (x,v) in the phase space. Finally the integral of the last term represents
the production of the particles at the point (x,v) in the phase space. The kernel
p(x,v′,v) in this integral generates the transition of the states of particles at the
position x and having the velocity v′ to the particles at the same position having
the velocity v. The velocity space V is in general a spherical shell in Rn, namely

V = {v ∈ Rn : 0 ≤ vmin ≤ |v| ≤ vmax ≤ +∞}.

In this article. we study the particular feature of the transport equation in which
we replace Ω with (−a, a) and we take V := [−1, 1]. We assume that σ is a strictly
positive continuous function with

0 < sm ≤ σ(x) ≤ sM for almost any x ∈ (−a, a) (3.2)

and we replace the kernel p(x, v, v′) by 1
2p(x) which is a positive continuous function

independent of (v, v′), such that

0 < sup
x∈[−a,a]

p(x) = kM . (3.3)

With these assumptions the transport problem (3.1) can be replaced by the
following particular problem

∂u

∂t
= −v · ∇u− σ(x)u +

1
2

∫ 1

−1

p(x)u(x, v, t)dv in (−a, a)× [−1, 1];

u(−a, v ≥ 0, t) = 0, u(a, v ≤ 0, t) = 0 for all t > 0;

u(x, v, 0) = f(x, v) ∈ L1((−a, a)× [−1, 1]).

(3.4)

Remark 3.1. We denote the production term Af = 1
2

∫ 1

−1
p(x)f(x, v)dv = p(x)Pf ,

with

Pf =
1
2

∫ 1

−1

f(x, v)dv, (3.5)
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which is a rank one projection on L1((−a, a)× [−1, 1]). This space being generating
we get ‖P‖ = 1, and ‖A‖ = kM , since ‖A‖ ≤ kM and for the constant function
p(x) = kM we get the equality.

Theorem 3.2. In the Banach space X = L1((−a, a) × [−1, 1]) let us define the
operators

T0f := −v∂f/∂x, T1f := T0f − σ(x)f, T̃ f := T0f + Af, Tf := T1f + Af ,

where A is defined in Remark 3.1. Any of these operators defined on D(T0) := {f ∈
X : v∂f/∂x ∈ X, f(−a, v ≥ 0) = 0 and f(a, v ≤ 0) = 0} generates a C0-semigroup
which is given respectively by:

(0) U0(t) which are contractions;
(1) U1(t) with ‖U1(t)‖ ≤ e−smt;
(2) V (t) with ‖V (t)‖ ≤ ekM t;
(3) U(t) with ‖U(t)‖ ≤ e(kM−sm)t.

Proof. (0). For t > 0 such that, |x − tv| < a, the semigroup U0(t)f(x, v) = f(x −
tv, v), satisfies ‖U0(t)f‖ = ‖f‖ and if x−tv < −a or x−tv > a, then U0(t)f(x, v) =
0.

(1). The C0-semigroup generated by T1 is

[U1(t)f ](x,v) := e−
R t
0 σ(x−sv)dsf(x− tv,v) (3.6)

and ∫ a

−a

∫ 1

−1

|[U1(t)f ](x,v)| dx dv ≤ e−tsm

∫ a

−a

∫ 1

−1

|f(x− tv,v)| dx dv.

(2). For V (t) we will use the Dyson-Phillips formula:

V0(t) = U0(t), V (t) :=
∞∑

n=0

Vn(t),

where

Vn+1(t) =
∫ t

0

V0(t− s)AVn(s)ds.

Suppose that ‖Vn(s)‖ ≤ (kMs)n/n!, then by induction we get

‖Vn+1(t)f‖ ≤
∫ t

0

‖V0(t− s)AVn(s)f‖ds

≤
∫ t

0

‖AVn(s)f‖ds ≤
∫ t

0

kM
(kMs)n

n!
‖f‖ds

=
(kMs)n+1

(n + 1)!
‖f‖.

in which we have used Remark 3.1. Consequently,

‖V (t)‖ ≤
∞∑

n=0

‖Vn(t)‖ ≤
∞∑

n=0

(kM t)n

n!
= ekM t.

(3). We argue as in (2), but we replace the Dyson-Phillips formula by U(t) :=∑∞
n=1 Un(t) and we deduce by induction for ‖Un+1(t)‖ ≤ e−tsm(kM t)n/n! that

‖U(t)‖ ≤
∞∑

n=1

‖Un(t)‖ ≤
∞∑

n=1

e−tsm
(kM t)n−1

(n− 1)!
= e(kM−sm)t.
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�

Let us define the approximating spaces Xn in this special case. We divide the
phase space (−a, a)× [−1, 1] into a finite number of cells by chopping the x interval
(−a, a) into 2mn equal parts and the v interval [−1, 1] into 2µn equal parts; hn and
kn are the lengths of these parts, that is,

hn =
a

mn
, kn =

1
µn

.

Then each cell can be labeled by a pair of integers (i, j) ∈ N , where

N := {(i, j) : i = −mn, . . . ,−1, 0, 1, . . . ,mn. j = −µn, . . . ,−1, 0, 1, . . . , µn}.
The number of the particles in cell γ(i, j) = [ihn, (i + 1)hn] × [jkn, (j + 1)kn] is
written ξi,j .

We define the set of all real vectors ξi,j as the Banach space Xn with the norm

‖ξ‖n =
∑
i,j

|ξi,j |, ξ ∈ Xn .

At this point let us prove that the approximating space Xn converges in the sense
of Kato to X.

Lemma 3.3. For Pnf = {ξi,j : (i, j) ∈ N} where

ξi,j =
∫ (i+1)hn

ihn

∫ (j+1)kn

jkn

f(x, v) dx dv,

we have
(i) ‖Pnf‖n = ‖f‖ for all 0 ≤ f ∈ X;
(ii) ‖Pn‖L(X,Xn) = 1;
(iii) limn→∞ ‖Pnf‖n = ‖f‖ for any f ∈ X.

Proof. (i) For every f(x, v) ≥ 0, we get

‖Pnf‖n =
∑
i,j

∫ (i+1)hn

ihn

∫ (j+1)kn

jkn

f(x, v) dx dv = ‖f‖.

(ii) Since ‖Pnf‖n ≤ ‖f‖, (ii) follows from (i).
(iii) Let f ∈ C(Ω× V ) the space of the continuous functions on Ω× V . For any

ε > 0, there exists a large N >> 1, such that for n ≥ N there exists a collection Γ
of small cells γ(i, j) so that on each γ(i, j) ∈ Γ, f has a constant sign and∣∣∣ ∫

(−a,a)×[−1,1]

|f(x, v)| dx dv −
∑

γ(i,j)∈Γ

∫
γ(i,j)

|f(x, v)| dx dv
∣∣∣ < ε,

which implies (iii) for the continuous functions and the assumption follows from
the density of C(Ω× V ) in X = L1(Ω, V ). �

The condition (K1) follows from Lemma 3.3(iii) and for the condition (K2) we
denote by χi,j the characteristic function of the cell γ(i, j), and for any {ξi,j} ∈ Xn

we define f (n) ∈ X as f (n)(x) =
∑

i,j
ξi,j

hnkn
χi,j and we have∫

(−a,a)×[−1,1]

|f (n)(x)| dx dv ≤
∑
i,j

∫
γ(i,j)

∣∣ ξi,j

hnkn
χi,j

∣∣ dx dv =
∑
i,j

|ξi,j |,

since
∫

γ(i,j)
χi,j

hnkn
dx dv = 1.
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In this section we consider the system (3.4), with the notation of Remark 3.1,
Af = pPf , where P is the projection defined in (3.5).

Here, we do not have at our disposition an explicit expression of the semigroup
as U0(t)f(x, v) = f(x − tv, v) or U1(t)f(x, v) = e−

R t
0 σ(x−sv)dsf(x − tv, v), but we

can introduce the operator

[V (t)f ](x, v) := e−
R t
0 σ(x−sv)dsf(x− tv, v)

+
1
2

∫ t

0

e−
R s
0 σ(x−rv)drp(x− sv)

∫ 1

−1

f(x− sv, v′)dv′ds (3.7)

= U1(t)f +
∫ t

0

U1(s)pPfds = U1(t)f +
∫ t

0

U1(s)Afds. (3.8)

The operator V (t) is not itself a semigroup as U0(t) or U1(t), but it can act as the
operator function V (t) in Chernoff’s theorem (Theorem 1.1).

We approximate this operator by

Un(kτn) := U1,n(t)(I + τnAn)k, (3.9)

where

[Anξ]i,j :=
knpi

2

µn−1∑
l=−µn

ξi,l, (3.10)

for every j, −µn ≤ j ≤ µn − 1, with pi = p(θ), θ ∈ [ihn, (i + 1)hn). (In Remarks
3.5 (a) below, we will explain the precise feature of this approximation).

Now, let U(t) be the transport semigroup defined in Theorem 3.2.

Theorem 3.4. Under the assumption 2kM < sm, we have the convergence of Un(t)
to U(t) in the sense of Kato.

Proof. We have to prove that

‖Un(t)Pnf − PnU(t)f‖n → 0, (3.11)

as n →∞. First we prove that

Un(kτn)Pnf = PnV (τn)kf. (3.12)

In fact,

PnV (τn)f = Pn

[
e−

R τn
0 σ(x−sv)dsf(x− τnv, v)

+
1
2

∫ τn

0

e−
R s
0 σ(x−rv)drp(x− sv)

∫ 1

−1

f(x− sv, v′)dv′ds
]

= exp(−τnσi−j)ξi−j,j +
knτn

2
pi−je

−τnσi−j

µn−1∑
l=−µn

ξi−j,l

=
[
U1,n(τn)(I + τnAn)ξ

]
i,j

= U1,n(τn)(I + τnAn)Pnf = Un(τn)Pnf.

Hence, by taking g = V (τn)f , we obtain

PnV (τn)2f = PnV (τn)g = Un(τn)Png = Un(τn)2Pnf,
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and by induction we retrieve (3.12). Once the identity (3.12) is proven, we replace
Un(t)Pnf by PnV (τn)nf in (3.11) and we use the isometric character of Pn (see
Lemma 3.3), then we get

‖Un(t)Pnf − PnU(t)f‖n = ‖V (t/n)nf − U(t)f‖.
Now, if ω = sm − kM , thanks to Theorem 3.2(3), U(t) satisfies ‖U(t)‖ ≤ e−ωt, and
since 2kM < sm, we get kM < ω. So we can replace in Theorem 1.2, S0(t) by U1(t)
and B by the production operator A, the formula (3.8) show that we can use this
Theorem to prove that (3.11) holds. �

Remark 3.5. (a) We can approximate the integral
∫ t

0
σ(ihn−sjkn)ds by σ

(n)
i,j ,

where

σ
(l)
i,j := τn

l∑
k=1

σ(ihn − jkτnkn). (3.13)

In this case the approximation of U1 given by (3.6) would be

U1,n(t) = exp
(
− σ

(n)
i,j

)
f(ihn − njτnkn, jkn),

where σi−kj = σ(hn(i− kj)). Replacing f(ihn − jnτnkn, jkn) by ξi−nj,j as
before we get

[U1,n(t)ξ]i,j = exp
(
− σ

(n)
i,j

)
ξi−nj,j . (3.14)

So [U1,n(τn)ξ]i,j = e−τnσi−j ξi−j,j .
(b) We note that by taking k = n, Un(t) given in (3.9), can be written as

Un(t) = U1,n(t)
( n∑

k=0

Ck
n(τnAn)k

)
.

Hence

[Un(t)ξ]i,j = [U1,n(t)ξ]i,j + U1,n(t)
( n∑

k=1

Ck
n(τnpi)k

)kn

2

µn−1∑
l=−µn

ξi,l.
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