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OPTIMAL BOUNDARY CONTROL FOR A TIME DEPENDENT
THERMISTOR PROBLEM

VOLODYMYR HRYNKIV

ABSTRACT. An optimal control of a two dimensional time dependent thermis-
tor problem is considered. The problem consists of two nonlinear partial differ-
ential equations coupled with appropriate boundary conditions which model
the coupling of the thermistor to its surroundings. Based on physical con-
siderations, an objective functional to be minimized is introduced and the
convective boundary coefficient is taken to be the control. Existence of solu-
tions to the state system and existence of the optimal control are proven. To
characterize this optimal control, the optimality system consisting of the state
and adjoint equations is derived.

1. INTRODUCTION

Thermistor is a thermally sensitive resistor whose electrical conductivity changes
drastically by orders of magnitude as the temperature reaches a certain threshold.
Thermistors are used as temperature control elements in a wide variety of military
and industrial equipment ranging from space vehicles to air conditioning controllers.
They are also used in the medical field for localized and general body temperature
measurement, in meteorology for weather forecasting as well as in chemical indus-
tries as process temperature sensors [11 [T3].

We consider the two-dimensional time-dependent thermistor problem

uy — Au—o(u)|Vel> =0 in Qx (0,7),
V- (oc(u)Vy) =0 in Q x (0,7),

ou

— u=0 onIy x(0,7T),

on +4 nx(0,T)
u=0 onIpx(0,7),
w=¢po ondx(0,T),

u=1up on Qx {0},

where ¢(x,t) is the electric potential, u(x,t) is the temperature, and o(u) is the
electrical conductivity. Here n denotes the outward unit normal and 9/0n =n -V
is the normal derivative on 92. The elliptic-parabolic system (|1.1)) describes the
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heating of a conductor produced by an electric current. It is the consequence of
Ohm’s law and Fourier’s law

I=—-0(u)Vy, Q= —k(u)Vu, (1.2)
coupled with the conservation laws of energy and current

pcg—u+V'Q:I~E, (1.3)

t
V-I=0, (1.4)

where E denotes the electric field, p is the density of the conductor, and c is its heat
capacity. Since the nonlinearity k(u) varies only slightly with w, it is of secondary
importance, and therefore we can assume k(u) = 1. As the density p of the material
and its specific heat ¢ typically are constants, we assume that pc = 1 (see [1]). A
more detailed discussion of equations can be found in [1, 2, [7, O} 17]. Boundary
conditions show how the thermistor is connected thermally and electrically to its
surroundings. To describe boundary conditions for the temperature we decompose
the boundary 92 into two disjoint sets T'p UT ;y = 9. The Robin boundary condi-
tion for temperature represents the physically significant case of convection and/or
radiation in situations where u is not too different from the ambient temperature.
It is precisely this boundary condition that will be used as a control.

It has been observed that large temperature gradients may cause the thermistor
to crack. Numerical experiments indicate (see [7, 23]) that low values of the heat
transfer coefficient 3 lead to small temperature variations. On the other hand,
low values of the heat transfer coefficient result in high operating temperatures
of a thermistor which are also undesirable. This motivated us to take the heat
transfer coefficient as a control and to consider the optimal control problem of
minimizing the heat transfer coefficient while keeping the operating temperature
of the thermistor reasonably low. These physical considerations lead us to the
following objective functional

T
J(ﬁ):/ /uda:dt—i—/ B2 ds dt.
0 JQ I'n x(0,T)

Denoting the set of admissible controls by
Uy ={B€L®00%(0,T): 0< A< (<M},

the optimal control problem is

Find 8% € Uy such that J(8*) = min J(B). (1.5)
BEUM
Henceforth we use the standard notation for Sobolev spaces, we denote || - ||, =

| - [|zr () for each p € [1,00]; other norms will be clearly marked. We also denote
Q:=Qx(0,T)and 'Y, :=Ty x (0,7).

Analysis of both the steady-state and time-dependent thermistor equations with
different types of boundary and initial conditions has received a great deal of at-
tention. See [T1, 2, B, 4 [7, [9] [T, 18] M9, 22] for existence of weak solutions, exis-
tence/nonexistence of classical solutions, uniqueness and related regularity results
in different settings with various assumptions on the coefficients.

We mention in passing that few authors consider a thermistor problem which
consists of two parabolic equations coupled with some boundary conditions (see [12}
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15]). This fully parabolic system comes from (1.2)), (1.3]), and the time dependent
version of charge conservation (1.4)), i.e.,

Z4+V.-I1=0. (1.6)

However, the vast majority of the existing literature on time dependent thermistor
deals with the elliptic-parabolic system . This reflects a feasible thermistor
scenario where the time derivative in is dropped considering that the relaxation
time for the potential is very small, hence giving the equation (see [6l [17]).
The first optimal control paper on a thermistor problem is the paper by Lee and
Shilkin [I2] where a fully parabolic system is considered and the source is taken to
be the control. Optimal control of a nonlocal elliptic-parabolic case is studied in [5],
where the applied potential is taken to be the control. Optimal control of a steady
state thermistor problem is considered in [I0], where the heat transfer coefficient is
the control.

The motivation for our work is threefold. First, the results from [10] are extended
to the time dependent elliptic-parabolic thermistor system. As it was mentioned
before, such an elliptic-parabolic thermistor model represents a reasonably realistic
situation where we neglect the time derivative in by taking into consideration
the difference in time scale with the thermal processes. One of the technical diffi-
culties in dealing with such an elliptic-parabolic system lies in the fact that there
is no information on time derivative of the potential ¢, and as a result one cannot
use directly the standard compactness result from [I6] to obtain strong convergence
of sequences of potentials in appropriate spaces. To circumvent this difficulty one
needs to incorporate the structure of the system. This is different from [12] in that
a fully parabolic system and a different type of control were considered there. Sec-
ondly, we present a complete and self-contained derivation of the optimality system,
whereas in [5] the optimality system was given only for the special case of constant
o(u). Thirdly, the choice of the convective boundary condition as a control for
this time dependent problem seems to be quite appropriate from point of view of
practical applications.

In section [2| we derive a priori estimates under the assumption of small boundary
data and prove existence of solutions to the state system. In section |3| we prove
existence of an optimal control. The optimality system is derived and an optimal
control is characterized in section [

2. A PRIORI ESTIMATES AND EXISTENCE OF SOLUTIONS TO THE STATE SYSTEM

We make the following assumptions:
e O C R? is a bounded domain with smooth boundary;
o(s) € CY(R), 0 < Cy < a(s) < Cy for all s € R;
o(s) is Lipschitz: |o(s1) — o(s2)| < K |s1 — sg| for all s1,s2 € R;
p, € W (09 x (0,7));
Extending ¢g to the whole domain € x (0,7) and using the same notation,

i.e., o € W7 (Q), we assume that lleollw.e(qy is sufficiently small.

The following lemma guarantees a better regularity for solutions of equations in
divergence form. It is taken from [20]. More information about this lemma can be
found in [14].
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Lemma 2.1. Let Q C R" be a bounded domain with a smooth boundary. Assume
that g € (L*(Q))™ and a € C() with ming a > 0. Let u be the weak solution of the
following problem

-V (aVu)=V-g inQ
u=0 on 0.

Then for each p > 2 there exists a positive constant ¢* depending only on n,, a,
and p such that if g € (L*(Q))" then we have

IVullp < e (lgllp + IVull2)-

Let Vp := {v € H(Q) : v =0 on I'p}. By a weak solution to (1.I)) we mean a
pair (u, ) such that u € L?(0,T; Vp(R)),p — po € L?(0,T; H(Q)) and
T
/ (ug,v) —|—/ Vu - Vudrdt+ Buv ds dt :/ o(u)|V|?v du dt,
0 Q i Q (2.1)
/ o(u)Ve - Vwdzdt =0,
Q

for all v € L2(0,T; H (Q)) N L*°(Q) and w € L?(0,T; H}(Q2)), where (-,-) denotes
duality bracket between V}, and Vp, with V}, being the dual of Vp.

The quadratic term on the right hand side of the first equation in can be
dealt with as in |21} [I7], and we obtain

T
/ (ug,v) dt+/ Vu-Vudzdt + Buv ds dt
0 Q

Y

=/(<po—¢)0(U)V<p-Vvdmdt+/(a(u)vw-v@o)vdxdt, (2.2)
Q Q

/ o(u)Ve - Vwdx dt =0,
Q

for all v € L2(0,T; HY(Q)) N L>=(Q) and w € L(0,T; H}(Q)). By taking p = r in
Lemma we can say that for each r > 2, ¢(-,t) € WhT(Q) for a.e. t € (0,7).
Therefore, since Vip(-,t) € L™(2) and Vo(-,t) € L*(Q) ae. t € (0,T), it follows
that there exists s’ such that V(- ) - Vo (-, t) € L¥ (Q) and

1 1 1

A 2.3

s 2 * T (23)
Next, since Q C R? it follows v(-,t) € H(Q) cC L*(Q) for s € [1,00), conjugate
of s’ in (2.3)):
1 1
—4+-=1 24
713 (2.4)
Also, by the weak maximum principle (see [I7), formula (2.14)])
l#lz~(q) < sup|pol. (2.5)

D

Note that r > 2 is chosen from Lemma[2.1] then s’ and s are determined and satisfy
s’ < 2 < s. First, we show existence of solutions to the state system. Define

W(0,T) := {v e L*(0,T;Vp) : v; € L*(0, T; V})}.
Theorem 2.2. There exists a weak solution to the state system (1.1)).
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We show existence of solutions to the state system by using the Schauder’s fixed
point theorem (see, for example [§]). Let R : W(0,T) — W(0,T) be the operator
defined as follows R := So7 : 9 — u, with 7 : L?(0,T; H'(Q)) N L>®(Q) > ¥
¢ € L?(0,T; H}(Q)) where for a given o, the function ¢ solves uniquely

/ o(9) Ve - Vwdzdt =0, (2.6)
Q

for all w € L?(0,T; H}(Q)), and where S is defined as follows S : L?(0,T; HE(Q)) x
L2(0,T; HY(Q)) N L>=(Q) > (p,9) — u € L?(0,T; H(Q)) N L>=(Q), with u being
the unique solution to

T
/ (ut,v>dt+/ Vu - Voudxdt+ Buv ds dt
0 @ Iy (2.7)
= / (po — @)o(V)Ve - Vodrdt + / (c(N)Ve - Vo) vdzdt,
Q Q

for all v € L?(0,T; H'(Q)) N L>=(Q). Standard theory implies that there exists a
unique solution to (2.6]), (2.7) which means that the map R is well-defined. Before
we proceed with the proof of the theorem, we need to derive a priori estimates.

Lemma 2.3. Given ¥ € L?(0,T; H*(Q)) N L>=(Q), let p = T () and u = S(p, 1)

be solutions satisfying (@ and . Then there exist constants c1,cg,c3, and cy4
independent of 9 such that

llell L2 (0,11 () < e, (2.8)
lull 22(0,7;vp () < c2s (2.9)
lullz2(0,1;L2(rn)) < 35 (2.10)
lwellz20,1v () < € (2.11)

Proof of Lemma[2.3 Taking w = ¢ — ¢o in (2.6) and using properties of o, we
obtain ([2.8)). Taking v = u in (2.7]), we have

T
/ <ut,u>dt+/ |Vu|2dxdt+/ Bu? ds dt
0 Q rT

N

:/(<P0—W)U(ﬁ)vw-Vudxdt—i—/(a(q?)Vap-Vgpo)udxdt.
Q Q

Using properties of § we obtain

2
/ “——/ / /|vu\2dxdt+A/ / u? ds dt
ax{T} 2 Qx {0} 2 Iy
/ / wo—¢)o()Vep - Vudasdt—l—/ / IV - Vo) ude dt.

We can write

/ / /|Vu|2dxdt+)\/ / u? ds dt

ax{r} 2 I

g/i+cs/ /|w|-|Vu\dxdt+c4/ [ Vel lul s
o 2 o Ja 0o Jo
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T
<o+ Col [ A9l IVulla+ [Vl - ul} )

T 1 /T
<Cs+ C'g/ Vell3 dt + */ / |Vu|? dz dt,
0 2Jo Ja

where we used Poincare inequality. We obtained

w1 T T
/ ——l—f/ / \Vu|2dmdt—|—)\/ / u? ds dt
ax{ty 2 2Jo Ja o Jry

(2.12)
T
<Cs;+ 08/ [Vell3 dt < Co,
0
where the last inequality in follows from (also, see the estimate (2.15)
on p. 245 of [I7]). This implies estimates and (2.10). Using the PDE and the
previous estimates one can show (2.11)). This ends the proof of Lemma .

We continue the proof of Theorem 2.2} Let Wy := {v € W(0,T) : ||[v]|L2(0,7;v,) <
c2, [[vll20,13vy) < €a,v(,0) = ug(w,0)f. We show that the operator R : Wy — Wy
is continuous with respect to weak convergence in W (0,7). Then, since Wy is
weakly compact, it will follow that R has a fixed point in Wy. Let {9;} C Wy
be a sequence such that ¥; = ¢ in W(0,T), and let u; = u(9;) and p; = @(9;)
be the corresponding sequences of solutions. A priori estimates imply that on a
subsequence

9; =9 in L*(0,T;Vp(9)), (2.13)
19' w 19 .

% = %t in L2(0,T; Vh(Q)), (2.14)
u; = u in L*(0,T;Vp(Q)), (2.15)

8 ] W a .

% w a%b in L2(0,T; V5(Q)), (2.16)
¢ =@ in L*(0,T; H'(Q)), (2.17)
uj > u in L*(0,T; L*(Tw)). (2.18)

Note that by the standard compactness result (see [16]), convergence in (2.13),
(2.14)), (2.15)), and (2.16]), imply that on a subsequence, not relabeled, we have

¥; 59 in L*(Q), (2.19)
uj > u in L*(Q), (2.20)
o) > o) in L*Q). (2.21)

Moreover, it can be shown that
p; ¢ in LX(Q), (2.22)
Ve; = Ve in L*(Q). (2.23)

Note that (2.22)) and (2.23) can be obtained by incorporating the structure of the
PDE system as we do not have information on ¢;. For the proof of (2.22)) and
(2.23]) the reader is referred to [1], p. 1132-1133.
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‘We have

T
/0 ((uj)t,wdt—l—/QVuj-Vvdxdt—&— Bujvdsdt

Yy

— [ o= eo0)Vey - Vodzdit [ (000,96 Voo vt (224)
Q Q

/ o(¥;)Ve; - Vwdx dt =0,
Q
for all v € L?(0,T; H*(2)) N L*°(Q) and w € L*(0,T; HE(2)). It is immediate that

T T
/ <u§a ’U> dt — / <ut’ v> dta
0 0

/Vuj~Vvd:vdtﬂ/Vu~Vvdmdt,
Q Q

Bujvdsdt — Suvdsdt as j — oo.

Yy Yy

We show
/Q(<po —;)o(¥;)Ve; - Vodz dt — /Q(<po —¢)o(9)Vy - Vudzdt. (2.25)
We estimate the difference between the sequence terms and the limit
| (00 e)o0,) Ve, - Vudzdt = [ (co =)o)V Ve
<| /Qa(ﬂj)(% —©))Vp; - Vv —a(0)(po — ¢;) Ve - Vo dz dt|
. /Qaw)(goo )V Vo — o(¥)(¢o — )V Vodudt| = A+ B,
where B := ‘ fQ oc(0)(p—p;)Ve-Vodz dt’ — 0 by the weak convergence ¢; — ¢ in

L2(0,T; L*(9)) (by Lemmal[2.1and the fact that o(9)Ve - Vo € L2(0,T; L* (2))).
For term A, we have

A= |/Q(<Po — @) (0(¥;) — 0(9)Ve; - Vuda dt|

+ | / (o — 0j)a(9)(V; — V) - Vodzdt| = Ay + As.
Q
Note that

A= /Q(%Oo —)(0(0;) — a(9))Ve; - Vudz dt|
- T
- 2MK/ / [9; =9 - V5] - Vo] da dt
o Ja
T
< C'A 19; = Is|Veslr[ Vo2 dt

T
<Csw Vel [ 19, = ool
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< CN95 = 20,100 @) Vol L2 @) — 0
by the Simon compactness result [16], i.e., W (0,T) cC L?(0,T; L*(£2)). Also, note

sup [|Veg;lr < Coo (2.26)

by [10, formula (2.9)], and Cy, here denotes a constant which depends on the
boundary data ¢o. Hence on a subsequence ¢; > ¢ in L2(0,T;L*(Q2)). In the
above, C'is a generic constant and M := supg, |¢o|. For Az, we write

Ay <| /Q (60 — 9)o(0) (Vs — Vig) - Vo da ]

+ | /Q(w —;)o(0)(Ve; — Vo) - Vudz dt| —0
by (2.23)). Similarly, it can be shown that
/ o(¥;)(Ve; - Vo)vdr dt — / o(9) (Ve - Vg)v dz dt,
Q Q
/ o(¥;)Ve; - Vwdz dt — / o()Ve - Vw dx dt.
Q Q

Letting j — oo in ([2.24)), we conclude by the Schauder theorem that R has a fixed
point in Wy and hence (u, ¢) with ¢ = 7 (u) solves (L.1)). O
3. EXISTENCE OF AN OPTIMAL CONTROL

Now we proceed to the proof of existence of an optimal control.
Theorem 3.1. There exists a solution to the optimal control problem .
Proof. Let {8,}22, C Uy be a minimizing sequence,
lim J(8,) = inf J(B).
A J(Bn) = inf J(5)
Let u, = u(8,) and ¢, = p(8,) be the corresponding solutions to
T
/ (uy, vy dt + / Vu,Vvdzdt + / Bnunvds dt
0 Q %
= / (0o — pn)o(un)Ve,Vuoda dt + / (o(un)Ven - Vo) vdadt, (3.1)
Q Q
/ o (un)Vey, - Vwdz dt = 0,
Q
for all v € L?(0,T; HY(Q)) N L*(Q) and w € L?(0,T; H:(R)). Note that the

existence of an optimal control can be derived from the proof of Theorem and

the estimates (2.8, (2.9), (2.10), and (2.11)). In passing to the limit as n — oo in

(3.1)), we only need to check the term with 3,,. We have (in addition to convergences
from the previous section):

Bn X6 in L®(0Q x (0,T)),
Up > u* in L2(0,T; L?(0N2)).



EJDE-2009/83 OPTIMAL CONTROL FOR A THERMISTOR PROBLEM 9
This implies

Brunpvds — B *u*vds asn — oo.
rT rT
N N
Letting n — oo in (3.1)), we obtain that (u*, ¢*) is a weak solution associated with
B*, ie., u* = u(f*) and ¢* = p(5*). Using weak lower semicontinuity of J(3) with
respect to L? norm one can show that the infimum is achieved at 3*. O

4. DERIVATION OF THE OPTIMALITY SYSTEM

To characterize an optimal control, we need to derive an optimality system which
consists of the original state system coupled with an adjoint system. To obtain
the necessary conditions for the optimality system, we differentiate the objective
functional with respect to the control. Since the objective functional also depends
on u which depends on the control 5 and is coupled to ¢ through the PDE ,
we will need to differentiate u and ¢ with respect to control 3.

Theorem 4.1 (Sensitivities). If the boundary data ¢, are sufficiently small; i.e.,
if lollw.e(q) is small enough, then the mapping B +— (u,p) is differentiable in
the following sense:

wB+el) =ulB) w i 120, HL(9)),

< (4.1)

(8 + ei) — PO oy, i 20,7 HA(Q) ase— 0

for any B € Upr and £ € L>°(02 x (0,T)) such that (8 + &) € Uy for small e.
Moreover, the sensitivities, 11 € L?(0,T; HE(Q)) and 1o € L*(0,T; H} (2)), satisfy

(1) + A1 + 0" ()| Vo1 +20(u) Ve - Vi =0 in Q x (0, 7),
V- [0/ ()1 Vo + o(u)Vips] =0 in Q x (0,T),

%+ﬁ¢l+éu:0 on Ty x (0,T),

on
1[)1:0 onT'p x (07T),
Yo =0 ondQx(0,T),
1 =0 onQx{0}.

Proof. Recall that we denoted: v = wu(f) and ¢ = ¢(8). Now we also denote
u® = u(B%), ¢° = p(5°), where 8¢ := § 4 ef. The weak formulation for (u®, %) is

T
/ <u§7v>dt+/Vu8Vdedt+ Bufvdsdt
0 Q rT

= / (po — ©°)o(u)Ve*Vudr dt + / (o(u®)V® - Vo) vda dt, (4.3)
Q Q

/ o(uf)Ve® - Vwdz dt = 0,
Q
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for all v € L?(0,T; H'(2)) N L>°(Q) and w € L?(0,T; Hg(£2)). Similarly, for (u, )

T
/ (ug, D) dt+/ VuVodzdt + Out ds dt
0 Q

ry

= / (po — p)o(u)VeVidedt + / (c(u)Ve - Vo) vddt, (4.4)
Q Q

/ oc(uw)Ve - Vo drdt =0,
Q

for all o € L?(0,T; HY(Q)) N L>=(Q) and w € L*(0,T; H}(£2)). Take test functions
(u® —u)/e and (¢ — @) /e, subtract the corresponding equations, and divide by e:

T € € € €
U — Ut U —U u —u u —u
/0<7€ L= >dt+/QV( —)V() dedr
u® —u, uf —u
+/FT6( ) (=) dsat

€

I
u —u
_ €
N /FTKU( e
N

) dsdt
(4.5)

+ i/@ {(@0 — %) o (uf) Ve — (pg — @)U(U)Vw} . V(“E _ u) e di
* é /Q [U(UE)V@E - U(U)Vﬂp} ~ Vsﬁo(ue s_ u) dz dt,
%/Q [U(uE)V@E ' V(wt )~ o(u)Ve- V(SO:_ <p)] da dt = 0.

We present the detailed derivation of the L?(0,T; H'(2)) estimate for (¢° — ¢)/e.
Since (¢f — p)/e € L*(0,T; H}(Q)) it follows from Poincaré’s inequality that it is
enough to derive a bound on ||V(¢® — ¢)/el|12(q)

From the second equation in we obtain

— w°—p _ @ v°—p
/Qo(u )V()~V(s)d;vdt—/Qa(u)V(E)-V( :

3

Taking into account . we can write

/ \v( )\ dx dt
Q g

:/o(u)v(so — )V (EE) dzdt
Q g

3

:/ (M)w V(=) da dt.
Q 3

9

Using (4.6]) and ( we obtain

Cl//|v 2V P dt
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/ / S0)]%@@5
/(%)v “ V(T aran

Vel - HV(

11

—p
)| dt

U =
AV EZ2)ar

— P
HL2 0,T;L* Q))Hv( - )HL2(0,T;L2(Q))’
where we used (2.26] - We can write

Smewwm/|

< Oy ||

uE
HV( )||L2(Q) = C||7||L2(0TL s(Q)) = CH HL?(OTHI(Q)) (4.8)

Since L2 (0, T; H(Q)) C L?(0,T; L*(Q)), it follows by Poincaré’s inequality
-
20 s @) < CsaoHiHLz (073112 (4.9)
Now we proceed to the derivation of H!-norm estimate of (u® — u)/e using (4.5)):

1/ (2 gy “ _u)|2d:cdt+)\/ ()2 gsar
2 Qx{T} € Q T €
gy_/T zue(“t“)dsdt

r

/ V¢—w¢-><>VAVU‘;”ﬁwﬁ

+é/ {a )W —of )V@]Vgpo(

/ Eus
r

) da dt|

Q

‘We have
1 Ut — u\2 — Uy 2 U — U\ 2
2/QX{T}( - ) do + )| drdi + A FT( =) ds
S/ || - |u |u

L

U — U
< erllullz2omszara) - H7HL2(O,T;L2(FN)) + |C| + D]

uE
< esllw oo - =l oo ripaqrny + 11+ DL
We estimate C term first

ICI</|¢0 )Vt 6_0( W] \V( “)ydxdt

/|‘/’ )| - [ (E ”){dg:dt
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<onr [ |7 =00 e 9 () e
Q
+olT a(u).yv(*f‘*@)\.yv(“‘“)\dmdt
Q
+02/|¢ e [V () e d
Q 13
ch/ “ (= )\dxdt
Q
+03/ V(=) |V (L) | de at
Q 13
+C4/ 12 Ve - [V () | da .
Q £

Note that cs, c3, ¢5, and cqg depend on the data ¢o. We continue estimating |C|:

erse | 1" ST
+Cw/|“” w,.ws—u),dm
<09/y (= Hth—l—c;»,/‘
< v (= >||2dt+cw / ||“’ *“nz v (=" >||2
/ uv [V 4 / 195,
NV e [ ||“’ ], v (- -l
<cu||v<*>r|m IV e +c3||v< o

V() 2 +eoll = ﬁlm(@ v e

< 011||V(T)HL2(Q el V—) g +013HV(

M

uf —u
< Cl4||v(7)Hi2(Q)’

where we used Poincaré’s inequality on (u® —u)/e and the Cauchy inequality. Sim-
ilarly, for D we obtain

D) <C5/

< e[ (-

ik o YR TP
g g

©°] |7|dxdt+06/ v (£

)220

Notice that c14 and c¢15 depend on ¢y. Hence, we obtain

1 u® — w — s
2/Q><{T}( c ) d$+||v( )HLQ(Q)—’_)\/FTA“I( . ) dsdt

3
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HU —Uu

< csllu® || 220,701 (0)) - 7HL20TL2(FN +616Hv( € )HL2

A uf
< curla B mmy + 5 H*HMWM e =T,
Observe that ||u® ||Lz(0 7.1 () 18 bounded by (2 . Take g small enough to get
L u A u®
e [ A

where k :=1— ¢y > 0. Collecting the estimates and using the pde (4.3) to get the
estimate of the time derivative quotient, gives
H u® —u

- HLz(o,T;Hg(Q)) <6

uf —u
I <e

||L2(o T;L2(DN)) =
||LH <c
- L2(0,T;H-1(Q)) =

H%HLQ(O,T;HWQ)) sc
where the generic constant ¢ > 0 does not depend on €. Claim: we can derive a
better estimate on (p® — ¢)/e than we have. This better estimate is needed to pass
to the limit as € — 0 in the derivation of the sensitivity equations. Indeed, we can
write for a.e. t € (0,7

V- (c(u®)Ve®) =0 in Q,
V- (oc(u)Vp)=0 in Q.

Subtract these equations as well as appropriate boundary conditions to obtain

€ _ o(u)—o(w) g ] .
Vo (ewv(EE)) = v [T gp] g, (4.10)

g _
%ZO on 0f).

By Lemma 2.1} for a.e. t € (0,T), we have |[V¢*[|2, < ¢, where 7 > 2 and ¢ solves
V. (c(u®)Ve®) =0 in 0,
0 =@ on 0.

Also, since Q C R? it follows that H*(Q) € L4(f) for any ¢ € [1,00). Thus, we can
write for a.e. t € (0,7,
Hu —u ut —u

7“111(9) <c (4.11)

Iz <l
Therefore, returning to , we obtain
o -y (o) —o(u)
IV, < e (17
We can estimate the first term on the right hand side of ,

HU(U );U(U)ngH: :/ ’U(“ );U(U)V |VeE|" dx

c =
Vee|l, + [V (

2). (4.12)

" lf|" de
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‘- T
< O(I“ 2+ 19elB) <

Therefore,

0°— 0 —
V=), <c =, <c (4.13)

where a generic constant C' > 0 is independent of €. This implies that
©* > in L7(Q),
Ve© 5 Ve in L"(Q)

as ¢ — 0. Moreover, by reiterating this argument we can show that for a.e. ¢ €
(0,7)

- -
V) s 6 [—ll,, =€ (4.14)
This proves the claim. Now we can proceed to the derivation of sensitivity equa-
tions, starting with

T e _ g __ g __
/ <u,v>dt+/ v(Z u)Vvd;vdt+/ B(—")vds dt
0 Q € €

3 Fﬁ

1
=— éuevdsdt—i—f/
r7 €JqQ

1
+ 7/ [a(ue)chs - a(u)Vg@} - Vpov dz dt,
Q

{(‘PO —¢%)o(u®)Ve® — (o — @)U(U)Vgo} -Voudxdt

€
1

g/Q (o) Vef — 0(w)Ve] - Vwdrdt = 0.

(4.15)
The following convergence are immediate

/OT<u§ ;Ut,v>dt = /OT(wl)t,v> dt,

/V(u _U)Vvdxdte/ Vi, - Vudx dt,
Q € Q

/ B(* _u)vdsdt—>/ By ds dt,
'y Yy

e

T
/ lufvdsdt — fuv ds dt.
ry

Yy

We write the second term on the right hand side of (4.15) in the form

2 | [0 = #9009 90— (g, — ot T 0] o
= i/Q(% —¥°) [U(UE)VSDE - U(u)Vw] - Vodzdt
+ i/@(@ —¢%)o(u)Ve - Vudz dt

=G+7F
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As far as the term F is concerned, we have that o(u)Vy - Vv € L%(Q) and (¢ —
©°) /e 2 —ihy in L*(Q), and therefore

F — 7/ oo (u)Vy - Vodz dt
Q

as € — 0. Now we consider terms coming from G. We write

G= i/Q(goo —¢%) {U(uE)V@E — a(u)Vg@] -Vodxdt
= i/@(cpo — %) {O'(UE) - cr(u)}chE -Vudzdt
+ é /Q(<p0 —¢)o(u) [WE - V@} Vodedt =G, +Gs

Using (4.14) and the fact that V(g — ¢)/e 2 Vb in L2(Q), one can show

Gy — / Yo — w)Vipg - Vodz dt ase — 0. (4.16)

To illustrate terms from Gp, observe that
o(u) — o(u) KX
€
Indeed, since N = 2 we have H} (Q) CC L4(Q) for any g € [1,00), L2(0,T; H}(Q)) C
L2(0,T; L*(Q2)), and

||u —Uu

o'(u)yy in L*(0,T;L5(Q)) ase— 0.

< c”u <C. (4.17)

||L2(o T;L= () HLz(o,T;Hg(Q))

Therefore,

Uy — Ut

H € HL2(0,T;H 1(Q))
where can be derived from the PDE. Since 2 s+ % + % =1and r > 2,
we have that s = -2 > 2. If we define W := {v : v € L2(0,T;L*(Q)),v; €
L2(0,T; H=1(2))}, then, because H}(Q) CcC L*(2) c H-Y(Q), it follows from
[16] that W cc L2(0,T;L*(2)). Hence, the estimates (4.18) imply that on a
subsequence

<C, (4.18)

uf —u
H c w1HL2(O,T;LS(Q))

—0 ase—0,
and therefore,

H o(u®) —o(u) _

- U/(U)Z/JIHL?(O,T;LS(Q)) —0 ase—0. (4.19)

Now, we are ready show

G dff/(tpo - )(M)Vwe-wdmdt

H/ wo — @)’ ()1 Ve - Vo de dt.

To show this convergence we estimate

|/ E);U( ))VSD vvdiﬁdt/@(sﬁoSO)U/(U)dJlVﬁp'Vvdxdt
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< \/Q{(% — ) [f - a’(u)wl}vcf Vo
(0 — )a’(u)wlvw ) Vol dedt]
+|/ - o) (2T ) v v
°)o’ (u)wlw - Vo da dt|
|/ w0 —0){ (% o) —olu)y _ o' (u)in }V° - Vo du di|

€
+|/ wo —@)o’ (u)1V (goe—go)'Vvdﬂcdﬂ

+|/(@‘@E)(w—a’(u)¢1)V<p5~Vvd:cdt|

+|/ (¢ — )0’ (W1 Vo© - Vudadt| =T+ 11+ I11 +1V.
We deal with the term I first. We have
I<|e- <P0HL°°<Q>/ /| — o' (w)h| - |Ve| - Vo] dadt
<lo=vollima [ Hfﬁilgiﬂﬁl o'y, - IVl Vol d

T
o(u") ~ o(u)
<lle =~ pollim@sup IV, [ [T oy, - [Vl

o(u®) —o(u)
< Cuf - 0/(u)¢1||L2(07T;L5(Q)) : ||V’U||L2(Q) —0 ase—0,

by (4.19). Similarly, we obtain
T
= | / /(goo — )’ (W1 V(e — ) - Vodz dt|
0 Q
T
<C [ Wl 19" = @)l - IVl
< CllYrllz 05209 - 1IVVllLz ) - sup [V(g® = @)llr =0 ase—0,

where we used (4.13)). Analogously, it can be shown that I71,IV — 0 as ¢ — 0.
One can show that the third term on the right hand side of (4.15) satisfies

1/ [ (u )chg—a(u)vcp} - Vv dz dt

—>/ w1 Vo - Vipgu dxdt—i—/ o(u)Vis - Vogudr dt as e — 0.
Q



EJDE-2009/83 OPTIMAL CONTROL FOR A THERMISTOR PROBLEM 17

Finally, the equation for ¢ in (4.15)) can be shown to satisfy
1

2 [ [o)9e - - ow)Ve - V] drar

Q
— / o' (w1 Ve - Vwdz dt —|—/ o(u)Vipgy - Vwdrdt ase — 0.
Q Q

Letting ¢ — 0 in (4.15)), we obtain

T
/ <(¢1)t,v>dt—|—/ Vw1Vvdxdt+/ (81 + Lu)vds dt
0 Q r

= / (po — @)’ (u)1 Vi - Vo dz dt + / (po — p)o(u)Vipe - Vo da dt
Q Q
— / Yoo (u)Ve - Vudz dt + / o' (u)1 Ve - Vv dx dt (4.20)
Q Q
+ / a(u)Vipy - Vou dx dt,
Q

/ (o' (u)1Vip + o(u)Vips) - Vw dx dt =0
Q

for all v € L2(0,T; HY(Q)) N L>(Q) and w € L*(0,T; Hi(2)). This leads to the

sensitivity system (4.2)).
The weak formulation for (4.2)) is given by

T

5 (4.21)
:/ 0’(u)1/)1|Vgo\2vdxdt+2/ o(u)Ve - Vipov dz dt,
Q Q

T
/ (= (Y1), v) dt +/ Vi1 - Vo dmdt—i—/ (81 + lu)v ds dt
0 Q r

/Q(cr'(u)z/;1ch +o(u)Vips) - Vwdx dt =0 (4.22)

for all v € L2(0,T; HY(Q)) N L*>°(Q) and w € L*(0,T; HE(£2)) which can be shown
to be equivalent to (4.20)). O

To characterize the optimal control, we need to introduce adjoint functions and
the adjoint operator associated with 1, and 1. Using g—g +6*p=00onTyNx(0,T),
q=1v2=00n 902 x (0,T),p=0o0nTp x (0,T), p(x,T) = 0, and the notation £
for the operator in the sensitivity system gives:

/Q(p q)c(ﬁ) dx dt

:/p(—wl)tda:dt—k/pAwldxdt—F/po’(u)|V<p|2w1 dx dt
Q Q Q
+2/ po(u)V - Vipy d:cdt—i—/ qV - [o(u) V] d:cdt—i—/ qV - [0 (w)1 V| da dt
Q Q Q
:/ wlptdxdt—i—/ wlApdxdt+/ Y10’ (u)|V|*pdz dt
Q Q Q

— 2/ YoV - [po(u)V| dx dt — / 1o’ (u)Ve - Vadz dt
Q Q
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+ [ YoV - [o(u)Vq]dadt

:/Q(@p1 o) L* (2) da dt,

L (P _ [P+ Ap+0'(w)|Vel*p — o' (u)Ve - Vg
£ (q) - ( V- [-2po(u)Ve + o(u)Vq] ) '

Thus, the adjoint system is given by
P+ Ap+ o' () |Vel*’p — o' (u)Vep - Vg=1 in Qx (0,T),
V- [2po(u)Ve+o(u)Vq =0 in Q x (0,T),

2

5 +B'p=0 onTy x (0,7),

p=0 onIpx(0,7),
g=0 ondQx(0,T),
p=0 onQx{T},

(4.23)

where the nonhomogeneous term “1” comes from differentiating the integrand of
J(0B) with respect to the state u.

Theorem 4.2. Let ||po|lwr.~q) be sufficiently small. Then, given an optimal
control 8* € Uy and corresponding states w,p, there exists a solution (p,q) €
L2(0,T; H3 () x L*(0,T; H} () to the adjoint system ([£.23). Furthermore, 3*
can be explicitly characterized as:

ﬁ*(m,t):min(max(—%J\),M). (4.24)

Proof. The weak formulation of (4.23) is
T
/ <pt,v>dt—/ Vp~Vvda:dtf/ B puvdsdt
0 Q

' % (0,T)
—|—/ a’(u)|ch|2pvdxdt—/ a’(u)(V<p~Vq)vda:dt=/ vdx dt, (4.25)
Q Q Q

2/ po(u)Ve - Vwdz dt — / o(u)Vq-Vwdrdt =0
Q Q

for all v € L2(0,T; H*(Q)) N L>=(Q) and w € L?(0,T; H} (2)).
We show that the solution to the adjoint system (4.23)) exists. Define the map
F : L2(0,T; HY(Q)) x L%(0,T; H}(Q)) — L*(0,T; HY(Q)) x L*(0,T; H} () with
F(V,W) = (p,q) as follows:
pt + Ap+ ' ()| V>V — o' (u)Ve - VIW =1 in Q x (0,7),
V- [-2Vo(u)Ve+o(u)Vgl =0 in Q x (0,T),
dp

%"‘,6*]3:0 on I'y X (07T),

p=0 onTpx(0,7),
g=0 ondQdx(0,T),
p=0 onQx{T},

(4.26)
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The weak formulation of (4.26]) is

T
/ <pt,6>dt—/vp.v9dxdt— B*pO ds dt
0 Q

Yy
+/ o' (u)|Ve|*VO dr dt —/ o' (u) (Ve - VW)O dx dt = / O dz dt,
Q Q Q
2/ Vo(u)Ve - VU dedt = / o(u)Vq- VU dxdt
Q Q
for all © € L2(0,T; HY(Q))NL*>®(Q) and ¥ € L2(0,T; H}(Q)). We use the Banach

fixed point theorem. Let F(V1,W1) = (p1,q1) and F(Va, Wa) = (p2, q2). We show
the contraction property

Iy =Pl + s = aalligy < 8(IVA = Valls + W3 = Wally)  (4.27)
for some 0 < § < 1. Indeed, for F(Vy,W1) = (p1,q1), we have
T
/ ((pl)t,®>dt—/ Vp1 - VO dxdt — B ;1O dsdt
0 Q 'y

+/ g’(u)|w|2v1@dxdt—/ a’(u)(V<p~VW1)@dxdt:/ O dux dt,
Q Q Q

2/ Vie(u)Ve - VU dzdt = / o(uw)Vaq - V¥ dz dt,
Q Q

and similarly, for F'(Va, W) = (p2,¢2). Let us denote p := p1 — p2, 7 := q1 — qo,
W =Wy — Wy, and V :=V; — V5. Take © = p, then equations for p; and py give

T
/ ((p)t,@dt—s—/ 0’(u)|V<p|2Vﬁdmdt—/ o W)V - VIV da dt
0 Q Q

:/ |Vp|2dxdt+/ B*p? ds dt.
Q ry

Thus, we obtain

1
f/ deer/ |Vp|2d:cdt+A/ P> dsdt
2 Jaxqo Q T

N

< ‘/ 0'(u)|Vgp\2Vﬁdxdt‘ —|—‘/ o' (u)VpVWpdz dt|.
Q Q
We have
— T —
| [ v Vodsa| < Caup 196l [ 171 ol
0

< ColV 2o, 10l 2(@)
< CullVlz2 0,50 ) 1Pl 20,1511 (92)) »

and

’/ o (W) V- VIWVpda dt| < Col VW (0 18] 2oz -
Q
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The above three inequalities give
12l 20,711 (9)) < CollV L2001 11 () + é¢||WHL2(O,T;H1(Q))a (4.28)
where the constants C,, and C~'<p depend on the boundary data ¢g. A similar estimate
can be derived for q
gl 220,001 ) < CollV |2 0,117 (92))- (4.29)
Adding (4.28) and (4.29)) we get

1D 20,7501 () + M@l 20,7501 ) < oIV 20,0301 @2y + W |22 (0,m3m1 (02)))-

Now, choosing g so that |[l@o||y1.e(g) is small, we obtain ¢ < 1. This proves
, the contraction property, which gives the desired fixed point of the map and
therefore the existence of solutions to the adjoint system.

Recall that for variation ¢ € L>°(I'L), with 8* + el € Uy for ¢ small, the weak

formulation of the sensitivity system (4.2) is given by equations (4.21)) and (4.22).

Now we are ready to characterize the optimal control. Since the minimum of J is
achieved at 0* and for small € > 0, *+ef € Uy, and denoting u® = u(S*+ef), p° =
©(0* 4 &), we obtain

o< tm 1D =B

e—0*t €

:/wldxdt—i—/ 208" dsdt

Q rL

::J/ (1 o) (1> dxcﬁA+”/j 28*( ds dt
Q 0 r

T
N

_ / ((n)eop) dt — / VPV do dt — / B p by ds dt
Q Q T

+/ z/Jlal(u)|V<p|2pdxdt—/ VY10’ (u)Vp - Vadz dt
Q Q

o(u)Vq - Vg dx dt + / 206%L ds dt
r

+2/p0(u)V<p'V1/J2dxdtf/
Q Q

T
N

:{—/VpVMMﬁ—/[ﬁWMMt
Q ry
+ / V10" (u)|V|*p dx dt + 2/ po(u)Ve - Vipo dx dt}
Q Q
+ [—/ o’ (u)Ve - Vqdx dt—/ o(u)Vq - Vs da dt} +/ 23*0ds dt
Q Q r

T
N
/rg

where we integrated by parts and used the sensitivity system (4.21f), (4.22]) with
test functions p,q. Thus, we obtain

Lupdsdt + / 260 ds dt,
ry

(26" 4+ up) ds > 0. (4.30)

Yy

We use this inequality with three cases to characterize 3*:
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(i) Take the variation £ to have support on the set {z € 'Y, : A < 8*(z,t) < M}.
The variation ¢(x,t) can be of any sign, therefore we obtain 24* + up = 0 whence
fr=—t.

(ii) On the set {(z,t) € T'y x (0,T) : 8*(x,t) = M}, the variation must satisfy
{(z,t) <0 and therefore we get 26" + up < 0 implying M = *(x,t) < -2,

(iii) On the set {(z,t) € T' x (0,T) : f*(x,t) = A}, the variation must satisfy

{(x,t) > 0. This implies 28" + up < 0 and hence A = 3*(z) > —<. Combining

cases (i), (ii), and (iii) gives us the explicit characterization (4.24]) of the optimal
control f3. O

Substituting (4.24)) into the state system (|1.1]) and the adjoint equations (4.23))

we obtain the optimality system:
uy — Au— a(u)|Vel|> =0 in Q x (0,T),
V- (o(u)Vep)=0 in Qx (0,7),
pe+Ap+0' ()| Velp — o' (u) V- Vg =1 inQx(0,7),
V- [-2po(u)Ve +o(u)Vq =0 in Qx (0,T),

2N, M)p=0 onTy x(0,T),
uzj,)\),M u=0 onIlyx(0,T),
u=p=0 onTpx(0,7T),

u=wo onQx {0},

w=1o ondQdx(0,T),

g=0 ondQx(0,T),

p=0 onQx{T},

0
—p—l—min max(—

— + min max(—

on

Note that existence of solution to the above optimality system follows from the
existence of solution to the state system (|1.1)) and Theorem
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