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SIGMA-CONVERGENCE OF STATIONARY NAVIER-STOKES
TYPE EQUATIONS

GABRIEL NGUETSENG, LAZARUS SIGNING

Abstract. In the framework of homogenization theory, the Σ-convergence

method is carried out on stationary Navier-Stokes type equations on a fixed
domain. Our main tools are the two-scale convergence concept and the so-

called homogenization algebras.

1. Introduction

We study the homogenization of stationary Navier-Stokes type equations in a
fixed bounded open subset of the N -dimensional numerical space. Here, the usual
Laplace operator involved in the classical Navier-Stokes equations is replaced by an
elliptic linear differential operator of order two, in divergence form, with variable
coefficients. Let us give a detailed description of our object.

Let Ω be a smooth bounded open set in RN
x (the N -dimensional numerical space

RN of variables x = (x1, . . . , xN )), where N is a given positive integer; and let ε be
a real number with 0 < ε < 1. We consider the partial differential operator

P ε = −
N∑

i,j=1

∂

∂xi

(
aε

ij

∂

∂xj

)
in Ω, where aε

ij(x) = aij(x
ε ) (x ∈ Ω), aij ∈ L∞(RN

y ; R) (1 ≤ i, j ≤ N) with

aij = aji, (1.1)

and the assumption that there is a constant α > 0 such that
N∑

i,j=1

aij(y)ξjξi ≥ α|ξ|2 for all ξ = (ξi) ∈ RN and for almost all y ∈ RN , (1.2)

where | · | denotes the usual Euclidean norm in RN . The operator P ε acts on scalar
functions, say ϕ ∈ H1(Ω) = W 1,2(Ω). However, we may as well view P ε as acting
on vector functions u = (ui) ∈ H1(Ω)N in a diagonal way, i.e.,

(P εu)i = P εui (i = 1, . . . , N).
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Remark 1.1. For any Roman character such as i, j (with 1 ≤ i, j ≤ N), ui (resp.
uj) denotes the i-th (resp. j-th) component of a vector function u in L1

loc(Ω)N or
in L1

loc(RN
y )N . On the other hand, for any real 0 < ε < 1, we define uε as

uε(x) = u(
x

ε
) (x ∈ Ω)

for u ∈ L1
loc(RN

y ), as is customary in homogenization theory. More generally, for
u ∈ L1

loc(Ω× RN
y ), it is customary to put

uε(x) = u(x,
x

ε
) (x ∈ Ω)

whenever the right-hand side makes sense (see, e.g., [7, 8]). There is no danger of
confusion between the preceding notation.

Having made these preliminaries, let f = (f i) ∈ H−1(Ω; R)N . For any fixed
0 < ε < 1, we consider the boundary value problem

P εuε +
N∑

j=1

uj
ε

∂uε

∂xj
+ grad pε = f in Ω, (1.3)

div uε = 0 in Ω, (1.4)

uε = 0 on ∂Ω, (1.5)

where
∂uε

∂xj
=

(∂u1

∂xj
, . . . ,

∂uN

∂xj

)
.

We will later see that if N is either 2 or 3, and if f is “small enough”, then (1.3)-
(1.5) uniquely define (uε, pε) with uε = (ui

ε) ∈ H1
0 (Ω; R)N and pε ∈ L2(Ω; R)/R,

where
L2(Ω; R)/R =

{
v ∈ L2(Ω; R) :

∫
Ω

vdx = 0
}
.

Our main goal is to investigate the limiting behavior, as ε→ 0, of (uε, pε) under
an abstract assumption on aij (1 ≤ i, j ≤ N) covering a wide range of concrete
behaviour beyond the classical periodicity hypothesis. The linear version of this
problem (i.e., the homogenization of (1.3)-(1.5) without the term

∑N
j=1 u

j
ε

∂uε

∂xj
) was

first studied by Bensoussan, Lions and Papanicolaou [2] under the periodicity hy-
pothesis on the coefficients aij . These authors presented a detailed mathematical
analysis of the problem by the well-known approach combining the use of asymp-
totic expansions with Tartar’s energy method.

The present study deals with a more general situation involving two major dif-
ficulties: 1) the equations are nonlinear; 2) the homogenization problem for (1.3)-
(1.5) is considered not under the periodicity hypothesis, as is classical, but in the
general setting characterized by an abstract assumption on aij(y) covering a wide
range of behaviours with respect to y, such as the periodicity, the almost periodicity,
the convergence at infinity, and others.

The motivation of the present study lies in the fact that the homogenization
problem for (1.3)-(1.5) is connected with the modelling of heterogeneous fluid flows,
in particular multi-phase flows, fluids with spatially varying viscosities, and others;
see, e.g., [16] for more details about such heterogeneous media.

Our approach is the Σ-convergence method derived from two-scale convergence
ideas [1], [11] by means of so-called homogenization algebras [9], [10].
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Unless otherwise specified, vector spaces throughout are considered over the
complex field, C, and scalar functions are assumed to take complex values. Let
us recall some basic notation. If X and F denote a locally compact space and a
Banach space, respectively, then we write C(X;F ) for the continuous mappings of
X into F , and B(X;F ) for those mappings in C(X;F ) that are bounded. We shall
assume B(X;F ) to be equipped with the supremum norm ‖u‖∞ = supx∈X ‖u(x)‖
(‖ · ‖ denotes the norm in F ). For shortness we will write C(X) = C(X; C) and
B(X) = B(X; C). Likewise in the case when F = C, the usual spaces Lp(X;F ) and
Lp

loc(X;F ) (X provided with a positive Radon measure) will be denoted by Lp(X)
and Lp

loc(X), respectively. Finally, the numerical space RN and its open sets are
each provided with Lebesgue measure denoted by dx = dx1 . . . dxN .

The rest of the study is organized as follows. In Section 2 we discuss the ho-
mogenization of (1.3)-(1.5) under the periodicity hypothesis on the coefficients aij .
In Section 3 we reconsider the homogenization of problem (1.3)-(1.5) in a more
general setting. The periodicity hypothesis on the coefficients aij is here replaced
by an abstract assumption covering a variety of concrete behaviour including the
periodicity as a particular case. A few concrete examples are worked out.

2. Periodic homogenization of stationary Navier-Stokes type
equations

We assume once for all that N is either 2 or 3. We set Y = (− 1
2 ,

1
2 )N , Y consid-

ered as a subset of RN
y (the space RN of variables y = (y1, . . . , yN )). Our purpose

is to study the homogenization of (1.3)-(1.5) under the periodicity hypothesis on
aij , i.e., under the assumption that aij is Y -periodic.

2.1. Preliminaries. Let us first recall that a function u ∈ L1
loc(RN

y ) is said to be
Y -periodic if for each k ∈ ZN (Z denotes the integers), we have u(y + k) = u(y)
almost everywhere (a.e.) in y ∈ RN . If in addition u is continuous, then the
preceding equality holds for every y ∈ RN , of course. The space of all Y -periodic
continuous complex functions on RN

y is denoted by Cper(Y ); that of all Y -periodic
functions in Lp

loc(RN
y ) (1 ≤ p < ∞) is denoted by Lp

per(Y ). Cper(Y ) is a Banach
space under the supremum norm on RN , whereas Lp

per(Y ) is a Banach space under
the norm

‖u‖Lp(Y ) =
( ∫

Y

|u(y)|pdy
)1/p

(u ∈ Lp
per(Y )).

We need the space H1
#(Y ) of Y -periodic functions u ∈ H1

loc(RN
y ) = W 1,2

loc (RN
y )

such that
∫

Y
u(y)dy = 0. Provided with the gradient norm,

‖u‖H1
#(Y ) =

( ∫
Y

|∇yu|2dy
)1/2

(u ∈ H1
#(Y )),

where ∇yu = ( ∂u
∂y1

, . . . , ∂u
∂yN

), H1
#(Y ) is a Hilbert space.

Before we can recall the concept of Σ-convergence in the present periodic setting,
let us introduce one further notation. The letter E throughout will denote a family
of real numbers 0 < ε < 1 admitting 0 as an accumulation point. For example,
E may be the whole interval (0, 1); E may also be an ordinary sequence (εn)n∈N
with 0 < εn < 1 and εn → 0 as n → ∞. In the latter case E will be referred
to as a fundamental sequence. Let us observe that E may be neither (0, 1) nor
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a fundamental sequence, of course. Let Ω be a bounded open set in RN
x and let

1 ≤ p <∞.

Definition 2.1. A sequence (uε)ε∈E ⊂ Lp(Ω) is said to be:
(i) weakly Σ-convergent in Lp(Ω) to some u0 ∈ Lp(Ω;Lp

per(Y )) if as E 3 ε→ 0,∫
Ω

uε(x)ψε(x)dx→
∫∫

Ω×Y

u0(x, y)ψ(x, y) dx dy (2.1)

for all ψ ∈ Lp′(Ω; Cper(Y )) ( 1
p′ = 1− 1

p ), where ψε(x) = ψ(x, x
ε ) (x ∈ Ω);

(ii) strongly Σ-convergent in Lp(Ω) to some u0 ∈ Lp(Ω;Lp
per(Y )) if the following

property is verified: Given η > 0 and v ∈ Lp(Ω; Cper(Y )) with ‖u0 −
v‖Lp(Ω×Y ) ≤ η

2 , there is some α > 0 such that ‖uε − vε‖Lp(Ω) ≤ η provided
E 3 ε ≤ α.

We will briefly express weak and strong Σ-convergence by writing uε → u0 in
Lp(Ω)-weak Σ and uε → u0 in Lp(Ω)-strong Σ, respectively.

Remark 2.2. It is of interest to know that if uε → u0 in Lp(Ω)-weak Σ, then (2.1)
holds for ψ ∈ C(Ω;L∞per(Y )). See [8, Proposition 10] for the proof.

In the present context the concept of Σ-convergence coincides with the well-
known one of two-scale convergence. Consequently, instead of repeating here the
main results underlying Σ-convergence theory for periodic structures, we find it
more convenient to draw the reader’s attention to a few references regarding two-
scale convergence, e.g., [1], [6], [8] and [17].

However, we recall below two fundamental results which constitute the corner
stone of the two-scale convergence theory.

Theorem 2.3. Assume that 1 < p <∞ and further E is a fundamental sequence.
Let a sequence (uε)ε∈E be bounded in Lp(Ω). Then, a subsequence E′ can be ex-
tracted from E such that (uε)ε∈E′ weakly Σ-converges in Lp(Ω).

Theorem 2.4. Let E be a fundamental sequence. Suppose a sequence (uε)ε∈E is
bounded in H1(Ω) = W 1,2(Ω). Then, a subsequence E′ can be extracted from E
such that, as E′ 3 ε→ 0,

uε → u0 in H1(Ω)-weak,

uε → u0 in L2(Ω)-weak Σ,
∂uε

∂xj
→ ∂u0

∂xj
+
∂u1

∂yj
in L2(Ω)-weak Σ (1 ≤ j ≤ N),

where u0 ∈ H1(Ω), u1 ∈ L2(Ω;H1
#(Y )).

The proofs of the above theorems can be found in, e.g., [1, 6, 8] .
Now, it is not apparent that the boundary value problem (1.3)- (1.5) has a

solution (uε, pε), and that the latter is unique. With a view to elucidating this, we
introduce, for fixed 0 < ε < 1, the bilinear form aε on H1

0 (Ω; R)N × H1
0 (Ω; R)N

defined by

aε(u,v) =
N∑

k=1

N∑
i,j=1

∫
Ω

aε
ij

∂uk

∂xj

∂vk

∂xi
dx
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for u = (uk) and v =(vk) in H1
0 (Ω; R)N . According to (1.1), the form aε is sym-

metric. On the other hand, in view of (1.2),

aε(v,v) ≥ α‖v‖2H1
0 (Ω)N (2.2)

for every v =(vk) ∈ H1
0 (Ω; R)N and 0 < ε < 1, where

‖v‖H1
0 (Ω)N =

( N∑
k=1

∫
Ω

|∇vk|2dx
)1/2

with ∇vk = (∂vk

∂x1
, . . . , ∂vk

∂xN
). Furthermore, it is clear that a constant c0 > 0 exists

such that
|aε(u,v)| ≤ c0‖u‖H1

0 (Ω)N ‖v‖H1
0 (Ω)N (2.3)

for all u, v ∈ H1
0 (Ω; R)N and all 0 < ε < 1.

We also need the trilinear form b on H1
0 (Ω; R)N ×H1

0 (Ω; R)N ×H1
0 (Ω; R)N given

by

b(u,v,w) =
N∑

k=1

N∑
j=1

∫
Ω

uj ∂v
k

∂xj
wkdx

for u =(uk), v =(vk) and w =(wk) in H1
0 (Ω; R)N . The trilinear form b has some

nice properties. Let

V =
{
u ∈ H1

0 (Ω; R)N : div u = 0
}
.

Then
b(u,v,v) = 0 for u ∈ V, v ∈ H1

0 (Ω; R)N , (2.4)

and further there exists a constant c(N) > 0 such that

|b(u,v,w)| ≤ c(N)‖u‖H1
0 (Ω)N ‖v‖H1

0 (Ω)N ‖w‖H1
0 (Ω)N (2.5)

for all u, v, w ∈ H1
0 (Ω; R)N (see [5, 15] for the proofs of these classical results).

We are now in a position to verify the following result.

Proposition 2.5. Suppose f (the right-hand side of (1.3)) is “small enough” so
that

c(N)‖f‖H−1(Ω)N < α2, (2.6)

where α (resp. c(N)) is that constant in (1.2) (resp. (2.5)). Then, the boundary
value problem (1.3)-(1.5) determines a unique pair (uε, pε) with uε ∈ H1

0 (Ω; R)N ,
pε ∈ L2(Ω; R)/R.

Proof. For fixed 0 < ε < 1, consider the variational problem

uε ∈ V :

aε(uε,v) + b(uε,uε,v) = (f ,v) for all v = (vk) ∈ V
(2.7)

with

(f ,v) =
N∑

k=1

(fk, vk),

where (, ) denotes the duality pairing between H−1(Ω; R) and H1
0 (Ω; R) as well

as between H−1(Ω; R)N and H1
0 (Ω; R)N . Thanks to (2.2)-(2.5), this variational

problem admits at least one solution, as is easily seen by following [5, p.99] or [15,
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p.164]. Let us check that (2.7) has at most one solution. To begin, observe that
any u∗ satisfying (2.7) (i.e., with u∗ in place of uε) verifies

‖u∗‖H1
0 (Ω)N ≤ 1

α
‖f‖H−1(Ω)N , (2.8)

as is straightforward by (2.2). Now, suppose u∗ and u∗∗ are two solutions of (2.7).
Then, letting u = u∗ − u∗∗, we have in an obvious manner

aε(u,v) + b(u∗,u,v) + b(u,u∗,v)− b(u,u,v) = 0

and that for any v ∈ V . By choosing in particular v = u and recalling (2.4), it
follows by (2.2),

α‖u‖2H1
0 (Ω)N + b(u,u∗,u) ≤ 0.

Hence, in view of (2.5),

α‖u‖2H1
0 (Ω)N ≤ c(N)‖u‖2H1

0 (Ω)N ‖u∗‖H1
0 (Ω)N .

By (2.8) this gives (
α− c(N)

α
‖f‖H−1(Ω)N

)
‖u‖2H1

0 (Ω)N ≤ 0.

Hence u = 0, by virtue of (2.6). This shows the unicity in ( 2.7), and so (2.7)
determines a unique vector function uε. Now, by taking in (2.7) the particular test
functions v ∈ V with

V =
{
ϕ ∈ D(Ω; R)N : divϕ = 0

}
and using a classical argument (see, e.g., [15, p.14]), we get a distribution pε ∈ D′(Ω)
such that (1.3) holds (in the distribution sense on Ω), with in addition (1.4)-(1.5),
of course. Let us show that pε lies in L2(Ω; R). First of all, since N = 2 or 3, we
have H1

0 (Ω; R) ⊂ L4(Ω; R) (see, e.g., [15, pp.291, 296]). Thus, uε ∈ L4(Ω; R)N .
Consequently, ui

εu
j
ε ∈ L2(Ω; R) (1 ≤ i, j ≤ N). Observing that

N∑
j=1

uj
ε

∂uε

∂xj
=

N∑
j=1

∂

∂xj
(uj

εuε) (use (1.4) ),

it follows that
∑N

j=1 u
j
ε

∂uε

∂xj
∈ H−1(Ω; R)N . By (1.3), we deduce that grad pε ∈

H−1(Ω; R)N . Therefore, thanks to a well-known result (see, e.g., [15, p.14, Propo-
sition 1.2]), the distribution pε is actually a function in L2(Ω; R), and further the
said function is unique up to an additive constant; in other words, pε is unique
in L2(Ω; R)/R. Conversely, it is an easy exercise to verify that if (uε, pε) lies in
H1(Ω; R)N ×L2(Ω; R) and is a solution of (1.3)- (1.5), then uε satisfies (2.7). This
completes the proof. �

2.2. A global homogenization theorem. Before we can establish a so-called
global homogenization theorem for (1.3)-(1.5), we require a few basic notation and
results. To begin, let

VY =
{
ψ ∈ C∞per(Y ; R)N :

∫
Y

ψ(y)dy = 0, divyψ =0
}
,

VY = {w ∈ H1
#(Y ; R)N : divyw =0},

where: C∞per(Y ; R) = C∞(RN ; R)∩Cper(Y ), divy denotes the divergence operator in
RN

y . We provide VY with the H1
#(Y )N -norm, which makes it a Hilbert space. There
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is no difficulty in verifying that VY is dense in VY (proceed as in [13, Proposition
3.2]). With this in mind, set

F1
0 = V × L2(Ω;VY ).

This is a Hilbert space with norm

‖v‖F1
0

=
(
‖v0‖2H1

0 (Ω)N + ‖v1‖2L2(Ω;VY )

)1/2

, v =(v0,v1) ∈ F1
0.

On the other hand, put
F∞0 = V×[D(Ω; R)⊗ VY ],

where D(Ω; R) ⊗ VY stands for the space of vector functions ψ on Ω × RN
y of the

form
ψ(x, y) =

∑
ϕi(x)wi(y) (x ∈ Ω, y ∈ RN )

with a summation of finitely many terms, ϕi ∈ D(Ω; R), wi ∈ VY . It is clear that
F∞0 is dense in F1

0 (see [15, p.18]). Now, let

âΩ(u,v) =
N∑

i,j,k=1

∫∫
Ω×Y

aij

(∂uk
0

∂xj
+
∂uk

1

∂yj

)(∂vk
0

∂xi
+
∂vk

1

∂yi

)
dx dy

for u =(u0,u1) and v =(v0,v1) in F1
0. This defines a symmetric continuous bilinear

form âΩ on F1
0 × F1

0. Furthermore, âΩ is F1
0-elliptic. Specifically,

âΩ(u,u) ≥ α‖u‖2F1
0

(u ∈ F1
0)

as is easily checked using (1.2) and the fact that
∫

Y
∂uk

1
∂yj

(x, y)dy = 0.
In the sequel we put

bΩ(u,v,w) = b(u0,v0,w0),

L(v) = (f ,v0)

for u = (u0,u1), v = (v0,v1) and w = (w0,w1) in F1
0, which defines a continuous

trilinear form on F1
0 × F1

0 × F1
0 and a continuous linear form on F1

0, respectively,
with further bΩ(u, v,v) = 0 for u, v ∈ F1

0.
Here is one fundamental lemma.

Lemma 2.6. Suppose (2.6) holds. Then the variational problem

u ∈ F1
0 :

âΩ(u,v) + bΩ(u,u,v) = L(v) for all v ∈ F1
0

(2.9)

has at most one solution.

The proof of the above lemma follows by the same line of argument as in the
proof of Proposition 2.5; so we omit it. We are now able to prove the desired
theorem. Throughout the remainder of the present section, it is assumed that aij

is Y -periodic for any 1 ≤ i, j ≤ N .

Theorem 2.7. Suppose (2.6) holds. For each real 0 < ε < 1, let uε = (uk
ε) ∈

H1
0 (Ω; R)N be defined by (1.3)-(1.5) (or equivalently by (2.7)). Then, as ε→ 0,

uε → u0 in H1
0 (Ω)N -weak, (2.10)

∂uk
ε

∂xj
→ ∂uk

0

∂xj
+
∂uk

1

∂yj
in L2(Ω)-weak Σ (1 ≤ j, k ≤ N), (2.11)

where u = (u0,u1) is the (unique) solution of (2.9).
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Proof. Let 0 < ε < 1. It is clear that

aε(uε,v) + b(uε,uε,v)−
∫

Ω

pε div vdx = (f ,v) (2.12)

for all v = (vk) ∈ H1
0 (Ω; R)N . Taking in particular v = uε and using (2.2) and

(2.4), it follows immediately that the sequence (uε)0<ε<1 is bounded in H1
0 (Ω; R)N .

On the other hand, starting from (2.12) and recalling (2.3) and (2.5), we see that

|(grad pε,v)| ≤ (‖f‖H−1(Ω)N + c(N)‖uε‖2H1
0 (Ω)N + c0‖uε‖H1

0 (Ω)N )‖v‖H1
0 (Ω)N

for all v ∈ H1
0 (Ω; R)N . In view of the preceding result, it follows that the se-

quence (grad pε)0<ε<1 is bounded in H−1(Ω; R)N . Thanks to a classical argument
[15, p.15], we deduce that the sequence (pε)0<ε<1 is bounded in L2(Ω; R). Thus,
given any arbitrary fundamental sequence E, appeal to Theorems 2.3-2.4 yields
a subsequence E′ from E and functions u0 = (uk

0) ∈ H1
0 (Ω; R)N , u1 = (uk

1) ∈
L2(Ω;H1

#(Y ; R)N ), p ∈ L2(Ω;L2
per(Y ; R)) such that as E′ 3 ε→ 0, we have (2.10)-

(2.11) and
pε → p in L2(Ω)-weak Σ. (2.13)

Let us note at once that, according to (1.4), we have div u0 = 0 and divy u1 = 0.
Therefore u = (u0,u1) ∈ F1

0. Now, for each real 0 < ε < 1, let

Φε = ψ0 + εψε
1 with ψ0 ∈ D(Ω; R)N , ψ1 ∈ D(Ω; R)⊗ VY , (2.14)

i.e., Φε(x) = ψ0(x) + εψ1(x, x
ε ) for x ∈ Ω. We have Φε ∈ D(Ω; R)N . Thus, in view

of (2.12),

aε(uε,Φε) + b(uε,uε,Φε)−
∫

Ω

pε div Φεdx = (f ,Φε). (2.15)

The next point is to pass to the limit in (2.15) as E′ 3 ε→ 0. To this end, we note
that as E′ 3 ε→ 0,

aε(uε,Φε) → âΩ(u,Φ),
where Φ =(ψ0, ψ1) (proceed as in the proof of the analogous result in [12, p.179]).
On the other hand, thanks to the Rellich theorem, we have from (2.10) that uε → u0

in L2(Ω)N . Combining this with (2.11), it follows by [9, Proposition 4.7] (see also
[8, Proposition 8]) that as E′ 3 ε→ 0,

b(uε,uε,Φε) → bΩ(u,u,Φ),

where u and Φ are defined above. Now, based on ( 2.13), there is no difficulty in
showing that as E′ 3 ε→ 0,∫

Ω

pε div Φεdx→
∫∫

Ω×Y

pdivψ0 dx dy.

Finally, it is an easy exercise to check that Φε → ψ0 in H1
0 (Ω)N -weak as ε → 0

(this is a classical result).
Having made this point, we can pass to the limit in (2.15) when E′ 3 ε → 0,

and the result is that

âΩ(u,Φ) + bΩ(u,u,Φ)−
∫

Ω

p0 divψ0dx = (f , ψ0), (2.16)

where p0 denotes the mean of p, i.e., p0 ∈ L2(Ω; R) and p0(x) =
∫

Y
p(x, y)dy a.e.

in x ∈ Ω; and where Φ =(ψ0, ψ1), ψ0 ranging over D(Ω; R)N and ψ1 ranging over
D(Ω; R) ⊗ VY . Taking in particular ψ0 in V and using the density of F∞0 in F1

0,
one quickly arrives at (2.9). The unicity of u = (u0,u1) follows by Lemma 2.6.
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Consequently, (2.10) and ( 2.11) still hold when E 3 ε→ 0 (instead of E′ 3 ε→ 0),
hence when 0 < ε → 0, by virtue of the arbitrariness of E. The theorem is
proved. �

For further needs, we wish to give a simple representation of the vector function
u1 in Theorem 2.7 (or Lemma 2.6). For this purpose we introduce the bilinear form
â on VY × VY defined by

â(v,w) =
N∑

i,j,k=1

∫
Y

aij
∂vk

∂yj

∂wk

∂yi
dy

for v = (vk) and w = (wk) in VY . Next, for each pair of indices 1 ≤ i, k ≤ N , we
consider the variational problem

χik ∈ VY :

â(χik,w) =
N∑

l=1

∫
Y

ali
∂wk

∂yl
dy for all w = (wj) in VY ,

(2.17)

which determines χik in a unique manner.

Lemma 2.8. Under the hypothesis and notation of Theorem 2.7, we have

u1(x, y) = −
N∑

i,k=1

∂uk
0

∂xi
(x)χik(y) (2.18)

almost everywhere in (x, y) ∈ Ω× RN .

Proof. In (2.9), choose the test functions v = (v0,v1) such that v0 = 0, v1(x, y) =
ϕ(x)w(y) for (x, y) ∈ Ω × RN , where ϕ ∈ D(Ω; R) and w ∈ VY . Then, almost
everywhere in x ∈ Ω, we have

â(u1(x, .),w) = −
N∑

l,j,k=1

∂uk
0

∂xj
(x)

∫
Y

alj
∂wk

∂yl
dy ∀w = (wk) ∈ VY . (2.19)

But it is clear that u1(x, .) (for fixed x ∈ Ω) is the sole function in VY solving the
variational equation (2.19). On the other hand, it is an easy matter to check that
the function of y on the right of (2.18) solves the same variational equation. Hence
the lemma follows immediately. �

2.3. Macroscopic homogenized equations. Our goal here is to derive a well-
posed boundary value problem for (u0, p0). To begin, for 1 ≤ i, j, k, h ≤ N , let

qijkh = δkh

∫
Y

aij(y)dy −
N∑

l=1

∫
Y

ail(y)
∂χk

jh

∂yl
(y)dy,

where: δkh is the Kronecker symbol, χjh = (χk
jh) is defined exactly as in (2.17). To

the coefficients qijkh we attach the differential operator Q on Ω mapping D′(Ω)N

into D′(Ω)N (D′(Ω) is the usual space of complex distributions on Ω) as

(Qz)k = −
N∑

i,j,h=1

qijkh
∂2zh

∂xi∂xj

(1 ≤ k ≤ N) for z =(zh), zh ∈ D′(Ω). (2.20)

Q is the so-called homogenized operator associated to P ε (0 < ε < 1).
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We consider now the boundary value problem

Qu0 +
N∑

j=1

uj
0

∂u0

∂xj
+ grad p0 = f in Ω, (2.21)

div u0 = 0 in Ω, (2.22)

u0 = 0 on ∂Ω. (2.23)

Lemma 2.9. Suppose (2.6) holds. Then, the boundary value problem (2.21)-(2.23)
admits at most one weak solution (u0, p0) with u0 ∈ H1

0 (Ω; R)N , p0 ∈ L2(Ω; R)/R.

Proof. It can be proved without the slightest difficulty that if a pair (u0, p0) ∈
H1

0 (Ω; R)N × L2(Ω; R) verifies (2.21)-(2.23), then the vector function u = (u0,u1)
[with u1 given by (2.18)] satisfies (2.9) (use (2.16)). Hence the unicity in (2.21)-
(2.23) follows by Lemma 2.6. �

This leads us to the following theorem.

Theorem 2.10. Suppose (2.6) holds. For each real 0 < ε < 1, let (uε, pε) ∈
H1

0 (Ω; R)N × (L2(Ω; R)/R) be defined by (1.3)-(1.5). Then, as ε → 0, we have
uε → u0 in H1

0 (Ω)N -weak and pε → p0 in L2(Ω)-weak, where the pair (u0, p0) lies
in H1

0 (Ω; R)N × (L2(Ω; R)/R) and is the unique weak solution of (2.21)-(2.23).

Proof. A quick review of the proof of Theorem 2.7 reveals that from any given
fundamental sequence E one can extract a subsequence E′ such that as E′ 3 ε →
0, we have ( 2.10)-(2.11) and pε → p0 in L2(Ω)-weak (use (2.13) if necessary),
and further (2.16) holds for all Φ =(ψ0, ψ1) ∈ D(Ω; R)N × [D(Ω; R)⊗ VY ], where
u = (u0,u1) ∈ F1

0. Now, substituting (2.18) in (2.16) and then choosing therein
the Φ’s such that ψ1 = 0, a simple computation leads to (2.21) with evidently
(2.22)-(2.23). Hence the theorem follows by Lemma 2.8 and use of an obvious
argument. �

Remark 2.11. The operator Q is elliptic, i.e., there is some α0 > 0 such that
N∑

i,j,k,h=1

qijkhξikξjh ≥ α0

N∑
k,h=1

|ξkh|2

for all ξ = (ξkh), ξkh ∈ R. Indeed, by following a classical line of argument (see,
e.g., [2]), we can give a suitable expression of qijkh, viz.

qijkh = â(χik − πik, χjh − πjh),

where, for each pair of indices 1 ≤ i, k ≤ N , the vector function πik = (π1
ik, . . . , π

N
ik) :

RN
y → R is given by πr

ik(y) = yiδkr (r = 1, . . . , N) for y = (y1, . . . , yN ) ∈ RN .
Hence, the above ellipticity property follows in a classical fashion (see [2]).

3. General deterministic homogenization of stationary
Navier-Stokes type equations

Our purpose here is to extend the results of Section 2 to a more general setting
beyond the periodic framework. The basic notation and hypotheses (except the
periodicity assumption) stated before are still valid. In particular N is either 2 or
3, and Ω denotes a bounded open set in RN

x .
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3.1. Preliminaries and statement of the homogenization problem. We re-
call that B(RN

y ) denotes the space of bounded continuous complex functions on
RN

y . It is well known that B(RN
y ) with the supremum norm and the usual algebra

operations is a commutative C∗-algebra with identity (the involution is here the
usual one of complex conjugation).

Throughout the present Section 3, A denotes a separable closed subalgebra of
the Banach algebra B(RN

y ). Furthermore, we assume that A contains the constants,
A is stable under complex conjugation (i.e., the complex conjugate, u, of any u ∈ A
still lies in A), and finally, A has the following property: For any u ∈ A, we have
uε →M(u) in L∞(RN

x )-weak ∗ as ε→ 0 (ε > 0), where:

uε(x) = u(
x

ε
) (x ∈ RN ),

the mapping u → M(u) of A into C, denoted by M , being a positive continuous
linear form on A with M(1) = 1 (see [9]).
A is called an H-algebra (H stands for homogenization). It is clear that A is

a commutative C∗-algebra with identity. We denote by ∆(A) the spectrum of A
and by G the Gelfand transformation on A. For the benefit of the reader it is
worth recalling that ∆(A) is the set of all nonzero multiplicative linear forms on A,
and G is the mapping of A into C(∆(A)) such that G(u)(s) = 〈s, u〉 (s ∈ ∆(A)),
where 〈, 〉 denotes the duality pairing between A′ (the topological dual of A) and
A. The appropriate topology on ∆(A) is the relative weak ∗ topology on A′. So
topologized, ∆(A) is a metrizable compact space, and the Gelfand transformation
is an isometric isomorphism of the C∗ -algebra A onto the C∗-algebra C(∆(A)). See,
e.g., [4] for further details concerning the Banach algebras theory. The appropriate
measure on ∆(A) is the so-called M -measure, namely the positive Radon measure
β (of total mass 1) on ∆(A) such that M(u) =

∫
∆(A)

G(u)dβ for u ∈ A (see [9,
Proposition 2.1]).

The partial derivative of index i (1 ≤ i ≤ N) on ∆(A) is defined to be the
mapping ∂i = G ◦Dyi ◦ G−1 (usual composition) of

D1(∆(A)) = {ϕ ∈ C(∆(A)) : G−1(ϕ) ∈ A1}

into C(∆(A)), where A1 = {ψ ∈ C1(RN
y ) : ψ, Dyiψ ∈ A (1 ≤ i ≤ N)}, Dyi =

∂
∂yi

. Higher order derivatives can be defined analogously (see [9]). Now, let A∞ be
the space of ψ ∈ C∞(RN

y ) such that

Dα
yψ =

∂|α|ψ

∂yα1
1 . . . ∂yαN

N

∈ A

for every multi-index α = (α1, . . . , αN ) ∈ NN , and let

D(∆(A)) = {ϕ ∈ C(∆(A)) : G−1(ϕ) ∈ A∞}.

Endowed with a suitable locally convex topology (see for example [9] ), A∞ (re-
spectively D(∆(A))) is a Fréchet space and further, G viewed as defined on A∞ is
a topological isomorphism of A∞ onto D(∆(A)).

By a distribution on ∆(A) is understood any continuous linear form on D(∆(A)).
The space of all distributions on ∆(A) is then the dual, D′(∆(A)), of D(∆(A)). We
endow D′(∆(A)) with the strong dual topology. In the sequel it is assumed that
A∞ is dense in A (this is always verified in practice), which amounts to assuming
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that D(∆(A)) is dense in C(∆(A)). Then Lp(∆(A)) ⊂ D′(∆(A)) (1 ≤ p ≤ ∞) with
continuous embedding (see [9] for more details). Hence we may define

H1(∆(A)) = {u ∈ L2(∆(A)) : ∂iu ∈ L2(∆(A)) (1 ≤ i ≤ N)},
where the derivative ∂iu is taken in the distribution sense on ∆(A) (exactly as the
Schwartz derivative is defined in the classical case). This is a Hilbert space with
norm

‖u‖H1(∆(A)) =
(
‖u‖2L2(∆(A)) +

N∑
i=1

‖∂iu‖2L2(∆(A))

)1/2

(u ∈ H1(∆(A))).

However, in practice the appropriate space is not H1(∆(A)) but its closed sub-
space

H1(∆(A))/C =
{
u ∈ H1(∆(A)) :

∫
∆(A)

u(s)dβ(s) = 0
}

equipped with the seminorm

‖u‖H1(∆(A))/C =
( N∑

i=1

‖∂iu‖2L2(∆(A))

)1/2

(u ∈ H1(∆(A))/C).

Unfortunately, the pre-Hilbert space H1(∆(A))/C is in general nonseparated and
noncomplete. We introduce the separated completion, H1

#(∆(A)), of H1(∆(A))/C,
and the canonical mapping J of H1(∆(A))/C into its separated completion. See
[9] (and in particular Remark 2.4 and Proposition 2.6 there) for more details.

We will now recall the notion of Σ-convergence in the present context. Let
1 ≤ p <∞, and let E be as in Section 2.

Definition 3.1. A sequence (uε)ε∈E ⊂ Lp(Ω) is said to be:
(i) weakly Σ-convergent in Lp(Ω) to some u0 ∈ Lp(Ω×∆(A)) = Lp(Ω;Lp(∆(A)))
if as E 3 ε→ 0,∫

Ω

uε(x)ψε(x)dx→
∫∫

Ω×∆(A)

u0(x, s)ψ̂(x, s)dxdβ(s)

for all ψ ∈ Lp′(Ω;A) ( 1
p′ = 1 − 1

p ), where ψε is as in Definition 2.1 , and where

ψ̂(x, .) = G(ψ(x, .)) a.e. in x ∈ Ω;
(ii) strongly Σ-convergent in Lp(Ω) to some u0 ∈ Lp(Ω × ∆(A)) if the following
property is verified: Given η > 0 and v ∈ Lp(Ω;A) with ‖u0 − v̂‖Lp(Ω×∆(A)) ≤ η

2 ,
there is some α > 0 such that

‖uε − vε‖Lp(Ω) ≤ η provided E 3 ε ≤ α.

Remark 3.2. The existence of such v’s as in (ii) results from the density of
Lp(Ω; C(∆(A))) in Lp(Ω;Lp(∆(A))).

We will use the same notation as in Section 2 to briefly express weak and strong
Σ-convergence.

Theorem 2.3 (together with its proof) carries over to the present setting. Instead
of Theorem 2.4, we have here the following notion.

Definition 3.3. The H-algebra A is said to be H1- proper (or simply proper when
there is no risk of confusion) if the following conditions are fulfilled.
(PR1) D(∆(A)) is dense in H1(∆(A)).
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(PR2) Given a fundamental sequence E, and a sequence (uε)ε∈E which is bounded
inH1(Ω), one can extract a subsequence E′ from E such that as E′ 3 ε→ 0,
we have uε → u0 in H1(Ω)-weak and ∂uε

∂xj
→ ∂u0

∂xj
+ ∂ju1 in L2(Ω)-weak Σ

(1 ≤ j ≤ N), where u0 ∈ H1(Ω), u1 ∈ Lp(Ω;H1
#(∆(A))).

The H-algebra A = Cper(Y ) (see Section 2) is H1-proper. Other examples of
H1-proper H-algebras can be found in [9] and [10].

Having made the above preliminaries, let us turn now to the statement of a
general deterministic homogenization problem for (1.3)-(1.5). For this purpose, let
Ξ2 be the space of functions u ∈ L2

loc(RN
y ) such that

‖u‖Ξ2 = sup
0<ε≤1

( ∫
BN

|u(x
ε
)|2dx

)1/2

<∞,

where BN denotes the open unit ball in RN
y . Ξ2 is a complex vector space, and the

mapping u → ‖u‖Ξ2 , denoted by ‖.‖Ξ2 , is a norm on Ξ2 which makes it a Banach
space (this is a simple exercise left to the reader). We define X2 to be the closure
of A in Ξ2. We provide X2 with the Ξ2-norm, which makes it a Banach space.

Our main goal in the present section is to discuss the homogenization of (1.3)-
(1.5) under the assumption

aij ∈ X2 (1 ≤ i, j ≤ N). (3.1)

As is pointed out in [9], [10] and [12], assumption (3.1) covers a great variety of
concrete behaviors. In particular, (3.1) generalizes the usual periodicity hypothesis
(see Section 2). Indeed, for A = Cper(Y ), we have X2 = L2

per(Y ) (use Lemma 1 of
[8]).

The approach we follow here is analogous to that which was presented in Section
2. Throughout the rest of the section, it is assumed that (3.1) is satisfied, and A is
H1-proper.

3.2. A global homogenization theorem. We need a few preliminaries. To be-
gin, we set

G(ψ) = (G(ψi))1≤i≤N

for any ψ =(ψi) with ψi ∈ A (1 ≤ i ≤ N). We have G(ψ) ∈ C(∆(A))N , and
the transformation ψ → G(ψ) of AN into C(∆(A))N maps in particular (A∞R )N

isomorphically onto D(∆(A); R)N , where we denote

A∞R = A∞ ∩ C(RN ; R).

Likewise, letting J(u) = (J(ui))1≤i≤N for u =(ui) with ui ∈ H1(∆(A))/C (1 ≤
i ≤ N), we have J(u) ∈ H1

#(∆(A))N and the transformation u → J(u) of
[H1(∆(A))/C]N into H1

#(∆(A))N maps in particular [H1(∆(A); R)/C]N isomet-
rically into H1

#(∆(A); R)N , where we denote

H1
#(∆(A); R) = {u ∈ H1

#(∆(A)) : ∂iu ∈ L2(∆(A); R) (1 ≤ i ≤ N)}.

We will set

E1
0 = H1

0 (Ω; R)N × L2(Ω;H1
#(∆(A); R)N ),

E∞0 = D(Ω; R)N ×
(
D(Ω; R)⊗ J[D(∆(A); R)/C]N

)
,
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where D(∆(A); R)/C = D(∆(A); R) ∩ [H1(∆(A))/C]. E1
0 is topologized in an ob-

vious way and E∞0 is considered without topology. It is clear that E∞0 is dense in
E1

0.
At the present time, let

âΩ(u,v) =
N∑

i,j,k=1

∫∫
Ω×∆(A)

âij

(∂uk
0

∂xj
+ ∂ju

k
1

)(∂vk
0

∂xi
+ ∂iv

k
1

)
dx dβ

for u = (u0,u1) and v = (v0,v1) in E1
0 with, of course, u0 = (uk

0), u1 = (uk
1) (and

analogous expressions for v0 and v1), where âij = G(aij). This gives a bilinear
form âΩ on E1

0 × E1
0, which is symmetric, continuous, and coercive (see [9]). We

also define bΩ and L as in Subsection 2.2 but with E1
0 in place of F1

0.
Now, let

VA = {u =(ui) ∈ H1
#(∆(A); R)N : d̂ivu =0},

where

d̂ivu =
N∑

i=1

∂iu
i.

Equipped with the H1
#(∆(A))N -norm, VA is a Hilbert space. We next put

F1
0 = V × L2(Ω;VA)

provided with an obvious norm. It is an easy exercise to check that Lemma 2.6
together with its proof can be carried over mutatis mutandis to the present setting.
This leads us to the analogue of Theorem 2.7.

Theorem 3.4. Suppose (3.1) holds and further A is H1-proper. On the other
hand, let (2.6) be satisfied. For each real 0 < ε < 1, let uε = (uk

ε) ∈ H1
0 (Ω; R)N be

defined by (1.3)-(1.5) (or equivalently by (2.7)). Then, as ε→ 0,

uε → u0 in H1
0 (Ω)N -weak, (3.2)

∂uk
ε

∂xj
→ ∂uk

0

∂xj
+ ∂ju

k
1 in L2(Ω)-weak Σ (1 ≤ j, k ≤ N), (3.3)

where u = (u0,u1) (with u0 = (uk
0) and u1 = (uk

1)) is the unique solution of (2.9).

Proof. This is an adaptation of the proof of Theorem 2.7 and we will not go too
deeply into details. Starting from (2.12), we see that the generalized sequences
(uε)0<ε<1 and (pε)0<ε<1 are bounded in H1

0 (Ω; R)N and L2(Ω; R)/R, respectively.
Hence, from any given fundamental sequence E one can extract a subsequence
E′ such that as E′ 3 ε → 0, we have (2.13), (3.2) and (3.3), where p lies in
L2(Ω;L2(∆(A); R)) and u = (u0,u1) lies in F1

0.
Now, for each real 0 < ε < 1, let

Φε = ψ0 + εψε
1 with ψ0 ∈ D(Ω; R)N , ψ1 ∈ D(Ω; R)⊗ (A∞R /C)N (3.4)

and
Φ =

(
ψ0,J(ψ̂1)

)
,

where: A∞R /C ={ψ ∈ A∞R : M(ψ) = 0}, ψ̂1 stands for the function x→ G(ψ1(x, .))
of Ω into [D(∆(A); R)/C]N (ψ1 being viewed as a function say in C(Ω;AN )), J(ψ̂1)
stands for the function x → J(ψ̂1(x, .)) of Ω into H1

#(∆(A); R)N . It is clear that
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Φ ∈ E∞0 . With this in mind, we can pass to the limit in (2.15) (with Φε given by
(3.4 )) as E′ 3 ε→ 0, and we obtain

âΩ(u,Φ) + bΩ(u,u,Φ)−
∫∫

Ω×∆(A)

p(divψ0 + d̂ivψ̂1)dxdβ = (f , ψ0).

Therefore, thanks to the density of E∞0 in E1
0,

âΩ(u,v) + bΩ(u,u,v)−
∫∫

Ω×∆(A)

p(div v0 + d̂ivv1)dxdβ = (f ,v0), (3.5)

and that for all v =(v0,v1) ∈ E1
0. Taking in particular v ∈ F1

0 leads us immediately
to (2.9). Hence the theorem follows by the same argument as used in the proof of
Theorem 2.7. �

As pointed out in Section 2, it is of interest to give a suitable representation of
u1 (in Theorem 3.4). To this end, let

â(v,w) =
N∑

i,j,k=1

∫
∆(A)

âij∂jv
k∂iw

kdβ

for v =(vk) and w =(wk) in H1
#(∆(A); R)N . This defines a bilinear form â on

H1
#(∆(A); R)N × H1

#(∆(A); R)N , which is symmetric, continuous and coercive.
For each pair of indices 1 ≤ i, k ≤ N , we consider the variational problem

χik ∈ VA :

â(χik,w) =
N∑

l=1

∫
∆(A)

âli∂lw
kdβ for all w =(wj) ∈ VA,

(3.6)

which uniquely determines χik.

Lemma 3.5. Under the assumptions and notation of Theorem 3.4, we have

u1(x, s) = −
N∑

i,k=1

∂uk
0

∂xi
(x)χik(s) (3.7)

almost everywhere in (x, s) ∈ Ω×∆(A).

Proof. This is a simple adaptation of the proof of Lemma 2.8; the verification is
left to the reader. �

3.3. Macroscopic homogenized equations. The aim here is to derive from (3.5)
a well-posed boundary value problem for the pair (u0, p0), where u0 is the weak
limit in (3.2) and p0 is the mean of p (in (3.5)), i.e., p0(x) =

∫
∆(A)

p(x, s)dβ(s) for
x ∈ Ω. We will proceed exactly as in Subsection 2.3.

First, for 1 ≤ i, j, k, h ≤ N , let

qijkh = δkh

∫
∆(A)

âij(s)dβ(s)−
N∑

l=1

∫
∆(A)

âil(s)∂lχ
k
jh(s)dβ(s),

where χjh = (χk
jh) is defined as in (3.6). To these coefficients we associate the

differential operator Q on Ω given by (2.20). Finally, we consider the boundary
value problem (2.21)-(2.23).
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Lemma 3.6. Under the hypotheses of Theorem 3.4, the boundary value problem
(2.21)-(2.23) admits at most one weak solution (u0, p0) with u0 ∈ H1

0 (Ω; R)N , p0 ∈
L2(Ω; R)/R.

Proof. It is an easy exercise to show that if a pair (u0, p0) ∈ H1
0 (Ω; R)N ×L2(Ω; R)

is a solution of (2.21)-(2.23), then the pair u =(u0,u1) (in which u1 is given by
(3.7)) satisfies (2.9) and is therefore unique. Hence Lemma 3.6 follows at once. �

We are now in a position to state and prove the next theorem.

Theorem 3.7. Let the hypotheses of Theorem 3.4 be satisfied. For each real 0 <
ε < 1, let (uε, pε) ∈ H1

0 (Ω; R)N × [L2(Ω; R)/R] be defined by (1.3)-(1.5). Then, as
ε → 0, we have uε → u0 in H1

0 (Ω)N -weak and pε → p0 in L2(Ω)-weak, where the
pair (u0, p0) lies in H1

0 (Ω; R)N × [L2(Ω; R)/R] and is the unique weak solution of
(2.21)- (2.23).

Proof. As was pointed out above, from any arbitrarily given fundamental sequence
E one can extract a subsequence E′ such that as E′ 3 ε → 0, we have (3.2)-
(3.3) and (2.13) hence pε → p0 in L2(Ω)-weak, where p0 is the mean of p and
thus p0 ∈ L2(Ω; R)/R, and where u =(u0,u1) ∈ F1

0. Furthermore, (3.5) holds
for all v =(v0,v1) ∈ E1

0. Substituting (3.7) in (3.5) and then choosing therein the
particular test functions v =(v0,v1) ∈ E1

0 with v1 = 0 leads to Theorem 3.7, thanks
to Lemma 3.6. �

It is possible to present qijkh in a suitable form as in Remark 2.11. For this
purpose, we introduce the space M of all N ×N matrix functions with entries in
L2(∆(A); R). Specifically, M denotes the space of F =(F ij)1≤i,j≤N with F ij ∈
L2(∆(A); R). Provided with the norm

‖F‖M =
( N∑

i,j=1

‖F ij‖2L2(∆(A))

)1/2

, F = (F ij) ∈M,

M is a Hilbert space. Now, let

A(F,G) =
N∑

i,j,k=1

∫
∆(A)

âij(s)F jk(s)Gik(s)dβ(s)

for F =(F jk) and G =(Gik) in M. This gives a bilinear form A on M×M, which
is symmetric, continuous and coercive. Furthermore,

â(u,v) = A
(
∇̂u, ∇̂v

)
, u,v ∈ H1

#(∆(A); R)N ,

where ∇̂u =(∂ju
k) for any u = (uk) ∈ H1

#(∆(A); R)N . Now, by the same line of
proceeding as followed in [2] (see also [8]) one can quickly show that

qijkh = A(∇̂χik − θik, ∇̂χjh − θjh),

where, for any pair of indices 1 ≤ i, k ≤ N , χik is defined by (3.6), and θik =
(θlm

ik ) ∈ M with θlm
ik = δilδkm. Having made this point, Remark 2.11 can then be

carried over to the present setting.
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3.4. Some concrete examples. In the present subsection we consider a few ex-
amples of homogenization problems for (1.3)-(1.5) in a concrete setting (as opposed
to the abstract assumption (3.1)) and we show how their study leads naturally to
the abstract setting of Subsection 3.1 and so we may conclude by merely applying
Theorems 3.4 and 3.7.

Example 3.8 (Almost periodic setting). The aim here is to study the homoge-
nization of (1.3)-(1.5) under the almost periodicity hypothesis

aij ∈ L2
AP (RN

y ) (1 ≤ i, j ≤ N), (3.8)

where L2
AP (RN

y ) denotes the space of all functions w ∈ L2
loc(RN

y ) that are almost
periodic in the sense of Stepanoff (see, e.g., [14, Section 4]). According to [14,
Proposition 4.1], the hypothesis (3.8) yields a countable subgroupR of RN

y such that
aij ∈ L2

AP,R(RN
y ) (1 ≤ i, j ≤ N), where L2

AP,R(RN
y ) = {u ∈ L2

AP (RN
y ) : Sp(u) ⊂

R}, Sp(u) being the spectrum of u, i.e., Sp(u) = {k ∈ RN : M(uγk) 6= 0} with
γk(y) = exp(2iπk.y) (y ∈ RN ). The appropriate H-algebra is here APR(RN

y ) =
{u ∈ AP (RN

y ) : Sp(u) ⊂ R}, where AP (RN
y ) denotes the space of almost periodic

continuous complex functions on RN
y (see, e.g., [3, Chapter 5] and [4, Chapter 10]).

The H-algebra A = APR(RN
y ) is H1-proper (see [9]) and further (3.1) is satisfied,

since L2
AP,R(RN

y ) ⊂ X2 (use [8, Lemma 1]). Hence the study of the problem under
consideration reduces to the abstract analysis in Subsections 3.2 and 3.3.

Example 3.9. Let (L2, `∞) be the space of all u ∈ L2
loc(RN

y ) such that

‖u‖2,∞ = sup
k∈ZN

( ∫
k+Y

|u(y)|2dy
)1/2

<∞,

where Y = (− 1
2 ,

1
2 )N . This is a Banach space under the norm ‖ · ‖2,∞. We denote

by L2
∞,per(Y ) the closure in (L2, `∞) of the space of all finite sums∑

ϕiui (ϕi ∈ B∞(RN
y ), ui ∈ Cper(Y )), (3.9)

where Cper(Y ) is defined in Subsection 2.1, and B∞(RN
y ) is the space of all u ∈

C(RN
y ) such that lim|y|→∞ u(y) = ξ ∈ C (ξ depending on u, |y| the Euclidean norm

of y in RN ). The problem to be worked out here states as in Example 3.8 except
that (3.8) is replaced by

aij ∈ L2
∞,per(Y ) (1 ≤ i, j ≤ N). (3.10)

We define A to be the closure in B(RN
y ) of the finite sums in (3.9). This is an

H1 -proper homogenization algebra on RN
y (see [9, Example 5.4]) and further (3.1)

holds because the space (L2, `∞) is continuously embedded in Ξ2 (use [8, Lemma
1]). Therefore, we arrive at the same conclusion as above.

Example 3.10. We assume here that the coefficients aij are constant on each cell
k + Y (k ∈ ZN , Y as above). More precisely, we assume that there exists a family
of functions rij : ZN → R (1 ≤ i, j ≤ N) such that for each k ∈ ZN , we have
aij(y) = rij(k) a.e. in y ∈ k + Y , and that for 1 ≤ i, j ≤ N . We also assume
the following behaviour: rij ∈ B∞(ZN ) (1 ≤ i, j ≤ N), i.e., each rij(k) tends to
a finite limit as |k| → ∞. Under these hypotheses in place of (3.10), we consider
the above homogenization problem. As is explained in detail in [10], one can find
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an H1-proper homogenization algebra A on RN
y such that (3.1) holds true, which

leads us to the same conclusion as above.

Acknowledgements. The authors wish to thank the anonymous referees for their
useful suggestions.
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