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EXISTENCE OF SOLUTIONS FOR AN OLDROYD MODEL OF
VISCOELASTIC FLUIDS

GERALDO M. DE ARA(JJO, SILVANO B. DE MENEZES, ALEXANDRO O. MARINHO

ABSTRACT. In this paper we investigate the unilateral problem for an Oldroyd
model of a viscoelastic fluid. Using the penalty method, Faedo-Galerkin’s
approximation, and basic result from the theory of monotone operators, we
establish the existence of weak solutions.

1. INTRODUCTION

It is well know that, the motion of incompressible fluids is described by the
system of Cauchy equations

ou ou
— i— + Vp =di
ot T Uigg, TP =divet S (1.1)
divu =0,
where u = (uq,...,uy) is the velocity, p is the pressure in the fluid, f is the density

of external forces and o is the deviator of the stress tensor, that is, ¢ has the
purpose of letting us consider reactions arising in the fluid during its motion. The
vector (ui%), j=1,2,...,n,is denoted by (u.V)u. The Hooke’s Law establishes
a relationship between the stress tensor o and the deformation tensor D;;(u) =
1 ( Ou; + Quy

8:1;j 8I1
the type of fluid. Such relationship is also called of rheological equation or equation
of state (see Serrin [10] or Clifford [I]). For example, for an incompressible Stokes
fluid the relationship has the form

) and their derivatives. Therefore is the Hooke’s Law that establishes

o =aD + $D? (1.2)

where « and [ are scalar functions. If in (1.2)) @ = 2v positive constants. and
0B = 0 we have the Newton’s Law o = 2vD, which substituting in (|1.1)) we obtain the
equations of motion of Newtonian fluid, which is called the Navier-Stokes equations:

v —vAu+ (u.V)u+Vp=f, divu=0,
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where v is called the kinematic coefficient of viscosity. The Navier-Stokes model
was studied from the mathematical point of view by Leray [I5] and later by La-
dyzhenskaya [9]. We mention other deep contributions by Lions [16], Temam [21],
Tartar [I9] and many others researchers.

The model studied in this work, introduced by Oldroyd [I1} 12], was proposed
for viscous incompressible fluids whose defining equations have the form

)

0
(1 + )\—)J = 2V(1 + kv 5

= )D, (1.3)

where A\, v, k are positive constants with v — § > 0. In this fluid the stress after

instantaneous cessation of the motion die out like e_’\flt, while the velocities of the
—1

flow after instantaneous removal of the stress die out like e ™% .

Assuming that ¢(0) = 0 and D(0) = 0, we write the relationship (1.3 in the

form of integral equation

=€

s D(x,6)de. (1.4)

t
o(x,t) = 2kA"1D(z,t) + 227 (v — k)\_l)/ e
0

Thus, the equation for the motion of Oldroyd fluid can be written by the system
of integro-differential equations

Ou + (u.V)u — pAu — / Bt —&Au(z,§)dE+Vp=f, z€Q,t>0 (1.5
ot 0

and the incompressible condition
divu=0, x2€,t>0,
with initial and boundary conditions
u(z,0) =ug, z€Q, and wu(z,t)=0, zeT,t>0.

Here, = kA™! > 0 and B(t) = ve~%, where v = A 7! (V — k)\’l) with § = 271,
For physical details and mathematical modelling see [2, [5, 1T} 22].

The mixed problem above was investigated by Oskolkov [2], where he proves
existence of weak solution for all n € N in certain Sobolev class.

In Brézis [6] we find investigation for a unilateral problem for the case of the
Navier-Stokes equations.

In the present work we consider a unilateral problem similar to Brézis [6], adding
a memory term, that is — fg g(t—o)Au(o)do. More precisely, in this paper we study
a unilateral problem or a variational inequality, c.f. Lions [16], for the operator

t
L= % + (u.V)u — pAu — / Bt — & Au(z,&)dé +Vp — f
0

under standard hypothesis on f and ug. Making use of the penalty method and
Galerkin’s approximations, we establish existence and uniqueness of weak solutions.

This work is organized as follows: In Section 2, we introduce the notation and
main results. In Section 3, we proof to the results. Finally, in Section 4, we prove
an simple result of uniqueness.
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2. NOTATION AND MAIN RESULTS

Let Q be a bounded domain in R™ with the boundary 02 of class C2. For T > 0,
we denote by Qr the cylinder (0,7") x €, with lateral boundary X7 = (0,7") x 0N2.
By (.,.) we will represent the duality pairing between X and X', X’ being the
topological dual of the space X, and by C' we denote various positive constants.
We propose the variational inequality

¢
v — pAu+ (u.V)u — / g(t —o)Au(o)do +Vp > f inQr
0

divu=0 inQr (2.1)
u=0 onXp
u(z,0) =up(z) in Q,

where g : [0,00) — [0,00) is a function of W11(0, 00) satisfying

. 2/00 g(s)ds > 0; (2.2)
2 0
~Cig < g’ < 0y, (2.3)
where C1, Cy, C3 are positive constants;
g(0) >0, (2.4)

As an example, g(s) = e~ »* satisfies the thhree conditions above.

To formulate problem we need some notation about Sobolev spaces. We
use standard natation of L?(Q), LP(Q2), W™P(Q) and CP(Q) for functions that
are defined on € and range in R, and the notation L2(2)", LP(2)", W™P(Q)"
and CP(2)" for functions that range in R™. Besides, we work also with the spaces
LP(0,T; H™(Q)) or LP(0,T; H™(£2))™. To complete this recall on functional spaces,
see for instance, Lions [16].

Also we define the following spaces

V={peDQ)":divp =0},

V = V(Q) is the closure of V in the space H} ()" with inner product and norm
denoted, respectively by

8u1 522 2 8u’L
Z o @ gyl = Z Gt

H = H(Q) is the closure of V in the space L?(2)" with inner product and norm
defined, respectively, by

(u, ) :Z;/Qui(x)vi(x) do, |u? = Z;/Q|ui(a:)|2dx

and V3 is the closure of V in H?(Q)" with inner product and norm denoted, respec-
tively by

n

((uvz))Vz = Z(ui7vi)H2(Q)7 Hu”%/z = ((uvu))vw

i=1

Remark 2.1. V, H and V5, are Hilbert’s spaces, Vo — V — H < V'’ with
embedding dense and continuous.
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Let K be a closed and convex subset of VNV, with 0 € K. We introduce the
following bilinear and the trilinear forms:

a(u,v) Z/ggj g;}; z)dz = ((u,v)),

1,j=1

b(u, v, w) Z / ui(x gZJ w;(z) de,

We also assume that
t
a(v,v) + b(v, p,v) —l—/ gt —o)(v,v))do >0 Vpe K, YveV. (2.5)
0

Next we shall state the main results of this paper.

Theorem 2.2. If f € L*(0,T; H) and hypotheses ([2.5) holds, then there exists a
function u such that

u € L*0,T; V)N L>(0,T; H) (2.6)
u(t) € K a.e.

/0T<<,O/a © —u) + pa(u, @ —u) + b(u, u, o — u)
_ (/Ot g(t — o)Au(o)do, o — u) dt 2.8)

T
2/ (fyo—u)dt, Yo L*0,T;V), ¢ € L*(0,T; V'),
0
p(0) =0, o) e K ae.

u(0) = up.

Theorem 2.3. Assumption (2.5), n =2, and
feL*o,1;v), feL*0,T;V) (2.9)
up € K. (2.10)

Suppose also that
(f(0),v) — pa(ug,v) — b(ug, ug, v) = (u1,v) for allv €V someuy € V. (2.11)

Then there exists a unique function u such that

uwe L*0,T;VNV,), o €L*0,T;V)NL>®0,T;H) (2.12)
u(t) e K, Vtel0,T) (2.13)
(u'(t), v —u(t) + pa(u(t), v — u(t)) + b(u(t), u(t), v — u(t))
/ / (t — o) ((u(o),v — u(t)))dodt (2.14)
f@),v—u(t)) VveK, ae. int,
u(0) = uo. (2.15)

The proof of Theorems [2.2] and [2:3] will be given in Section [3] by the penalty
method. It consists in considering a perturbation of the operator L adding a singular
term called penalty, depending on a parameter € > (0. We solve the mixed problem
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in @ for the penalized operator and the estimates obtained for the local solution
of the penalized equation, allow to pass to limits, when € goes to zero, in order to
obtain a function u which is the solution of our problem.

First of all, let us consider the penalty operator 3 : V — V' associated to
the closed convex set K, c.f. Lions [I6, p. 370]. The operator § is monotonous,
hemicontinuous, takes bounded sets of V' into bounded sets of V', its kernel is
K and 3 : L?(0,T;V) — L2(0,T;V’) is equally monotone and hemicontinous.
The penalized problem associated with the variational inequalities and
consists in, given 0 < € < 1, find u, satisfying

(1600) + (e )+ bucsue0) = [ gt = ) (Bl), v} + (Blue).0) = (.0,

YoeV, wueL?0,T;V), u.ecL*0,T;V)

Ue(x,0) = ue, ().
(2.16)
We suppose n = 2. The solution of this problem is given by the followings theorems.

Theorem 2.4. If f € L?>(0,T; H) and hypotheses holds, then, for each 0 <
e <1 and u., € H, there exists a function u. with uc € L*(0,T;V)NL>(0,T; H),
u, € L*(0,T; V') solution of (2.16].

Theorem 2.5. If f € L*(0,T;V) and f' € L?(0,T;V’) and hypotheses
holds, then for each 0 < € < 1 and ue, € V, there exists a function u. with
ue € L0, T;V N Vo), ul € L*(0,T;V) N L>®(0,T; H) satisfying (2.16)).

3. PROOF OF THE RESULTS
Proof of Theorem We first prove Theorem for the penalized problem.

comp

We employ the Faedo-Galerkin method. We note that the embedding V—V —
H < V' are continuous and dense and that V is compactly and densely embedded
in H. Let {w,, A}, v € N, be solutions of the spectral problem

((w,v)) = Mw,v), YveW (3.1)

We consider (w,),en a Hilbertian basis for Faedo-Galerkin method. We represent
by Vi, = [w1, wa, ..., wy] the V subspace generated by the vectors wq, wa, ..., wpy,

and let us consider
m

ue'm (t> = Z ngn (t)w]
j=1
solution of approximate problem
(ulem’ wj) + :U'a(uem ) wj) + b(qu y Uep, wj)
t
1
= [ ot = 0)Au, (0),0)do + + {Bu, ;)
0

:<f<t)aw]>7 ]:172,771
Ue (2,0) = uc(z,0) strongly in V.

(3.2)

This system of ordinary differential equations has a solution on a interval [0, ¢,,],
0 < t,, < T. The first estimate permits us to extend this solution to the whole
interval [0, T].
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Remark 3.1. To obtain a better notation, we omit the parameter € in the approx-
imate solutions.

First estimate. Multiplying both sides of (3.2) by g; and adding from j = 1 to
J = m, we obtain

1d

33111 OF + sl O + [ (¢ = 0)(Tu0). T (D) = (1(0). 00 (1),

since b(Up,, Um, Um) = 0 (see Lions [16]) and
(Bt (), um(t)) > 0 because 3 is monotone and 0 € K. Its follows that
Ld
2dt
t
< ‘/Vum(a:,t)</ g(s — U)Vum($70))dadx‘ (3.3)
Q 0 R

+1f @) [um (?)] +/QIVum(fvvt)Ing*Vum(%t)lnedw’

[t (0)] + el (8)]*

where * denotes the convolution in ¢. It follows from (3.3) that
d
2 um O + 2pum (B)]

< 2/9IV’um(z,t)\ng*Vum(%t)\uadx+2|f(t)\Cllum(t)H

2 3
=2 [ [T (2. Olelg * T (o, Ol o+ 2/ - CLAON B lun®)]
Q Iz 2
= 3K 2, 2 o2
=2 | [Vum(@,t)[rlg * Vum(z, t)lrdz + - [lum @) + o C7|F (@)%
Q H
Remark 3.2. We note that from Cauchy-Schwarz inequality and Fubini’s theorem
we have
lg * VumllL2@) < 1191l (000) [ Vtmll £2()-

Thus, integrating 0 to ¢ the inequality above, using the Remark [3.2] and using
Gronwall’s inequality we obtain

n 2

i o + (5 = 2ollzr000) lmlFery < 5

Integrating these last inequality in ¢ € [0, 7] and using (2.2)), we have

C+ C2|f|%2(O,T;H)'

U, is bounded in L*°(0,T; H) (3.4)
Uy, is bounded in L?(0,T;V).

From (3.5, we obtain
B(tm) is bounded in L*(0,T;V") (3.6)

Second estimate. By Remark we observe that,

t
if &€ L*0,T;H) then / g(t —o)é(o)do € L*(0,T; H). (3.7)
0
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Similarly we obtain

t
/ gt —o)é(o)do eV if&(t)eV (3.8)
0
t
/ gt —o)e(o)do € V! i EL) €V (3.9)
0
We consider t,;, = U, W =w in [0,T] and @, = 0, w = 0 out of [0,T7], g(&§) = g(&)
if & > 0 and zero if ¢ < 0. Therefore, Vu,, € L?*(R;H), w € L*(R;V) and
g € L*(R). This implies
T ot
| [ ot = o) (o). wie)) doas
o Jo
= / / gt — O’)/ Vi (x,0)Vw(z,t)de do dt
RJR Q
= / / G * Vg (2, t)Vw(z,t) de dt
R JQ
= / / Vi, (z, 0)5 * Vw(z, o) dz do,
R JQ
where §(x) = §(—z). We observe that (3.5) implies that
/ ((m ))dt —>/ Ndt, ¥ w e L*0,T;V). (3.10)
0

From (3.7)), we have that g * w(t) € V, Yw € L?(0,T;V), therefore (3.10) yield

/R (vam(a),g*vw(@) dt — /R (va(a),g*m(a)) dt.

‘We note that

/R(va(a)vﬁ*vw(a)) dt :/R(g* Vii(o), V(o)) dt

_ /Q /R /R §(t — 0)Vii(x, 0)doVi(z, t)do dt do

= [ [ ot~ o) ((ato).wie)) dot.
0 0

Then

//tf (tm(0r), 0 dodm//ta ().

for all w € L?(0,T;V).
Let P,, be the orthogonal projection H — V,,; that is,

m

Pnp = (p,wjw;, ¢€H.
j=1

By the choice of (w,),en we have

1Pallcevyy <1 and [Py lleevr vy < 1.

w(t))) dodt, (3.11)
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We note that P,u,, = u,,. Multiplying both sides of the approximate equation
(3-2) by the vector w; and adding from j = 1toj = m, we obtain using the
notations and ideas of Lions [16, pages 75-76] and (3.7)), that

(ul,) is bounded in L2(0,T;V"). (3.12)

m

The boundedness in (3.5)), (3.12]) and the Aubin-Lions compactness Theorem imply
that there exists a subsequence from (u,,), still denoted by (u,, ), such that

Uy — u  strongly in L?(0,T; H) and a. e. in Q. (3.13)

Returning to the notation wu., , using (3.4)), (3.5) and (3.13) (see Lions [16, pages
76-77]), (3.6) and (3.11]) we obtain

(ul,v) + a(te,v) + b(te, ue,v) — /0 g(t — o) (Au(o),v)do + %(C,v) =(f,v),

YoeV, wu.€L*0,T;V), u. € L*0,T;V)

ue(2,0) = e, ().
(3.14)
It is necessary to prove that ( = 5(u.). We make this using the monotony of the
operator ( (see Lions [I6, Chap. 2]). Therefore, we have proved the Theorem

Proof of Theorem From (3.4), (3.5), (3.13)) and Banach-Steinhauss theorem,

it follows that there exists a subnet (u.)p<c<1, Such that it converges to u as € — 0,
in the weak sense . This function satisfies (2.6). On the other hand, we have from

that
t
Bue = €[f —u. — Auc — Bu, — / g(t — o) Au(o)do]. (3.15)
0

Where (Aue,v) = a(u,v) and (Bue, v) = b(ue, ue, v).
Since fotg(t —0)Au(o)do € V' and [f — u. — Au, — Bu,| is bounded, we have

Buc — 0 in D0, T;V"). (3.16)
Since Bu, is bounded in L?(0,T; V'), we have
Bue — 0 weak in L*(0,T;V"). (3.17)

On the other hand we deduce from that

0< /OT<Bu6,uE) dt<eC. (3.18)
Thus fOT(ﬁue, ueydt — 0. We have that

[ o~z 0, Ve 22010,
because (3 is a moilotonous operator. Thus,
T T T
/0 (Bue, ue) dt — /0 (Buec, p) dt — /0 (Bp,ue — ) dt > 0. (3.19)

We have from and that

/0T<ﬂ<p, u(t) — ) dt <0. (3.20)
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Taking ¢ = u — \v, with v € L?(0,T;V) and A > 0, we deduce using the hemicon-
tinuity of § that

B(u(t)) =0, (3.21)

and this implies that u(t) € K a. e.
Next, we prove that u is a solution of inequality (2.8)). Let us consider X, defined
by

T T
X, / @, <p—u6>dt—|—/ (ue,cp—ue)dt—i—/ b(te, Ue, p — ue) dt
0 0

/ / (t — o) ((uelo >w—w»wdn—43ﬂ@—uaw

with ¢ € L2(0,T;V), ¢’ € L?>(0,T;V"),p(0) = 0, ¢(t) € K a.e. It follows from

(B-22) that
T T T T
X, = <w@ﬁ—/<%mMH/1@%@ﬁ—/a%waﬁ

/bue,ue, dt—/ buﬁ,ue,ugdt—&—// (t — o) (ue(o), @))do dt

,/O /0g(t—a)((ue(cr),ue))dadtf/o <f,g0>dt+/0 (frue)dt
(3.23)

On the other hand, taking v = ¢ — u, in ([2.16) and integrating in Qr, we obtain
that

—/T<ue7<p>dt+/T<u ue) dt — /T (ue,cp>dt+/Ta(ueaue>dt

/buﬁ,ue, )dt + b(ue,ue,u6 dt—// (t —o)((ue(o), p))do dt
0 0

(3.22)

// (t — o) ((ue(o )ue))dadt—f/ (Bue — B, o — ue) dt

/<ﬂ>ﬁ—é<ﬁmwﬂﬂ,

because S = 0. Adding member to member ) and -, we obtain

Xe=/0 <s@’,<p>dt—/0 <<p’,ue>dt—/0T<u;sO>dt

T 1 T
+/ <u£,u€>dt+g/ <ﬂ§076ue7¢7ue>dt203
0 0

T T T T
/<¢@m—/<¢mmw/ﬁ%@m+/<%WMt
0 0 0 0
T
:/ <¢'7u'5,<pfu5>20.
0

(3.24)

(3.25)

because
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On the other hand, b(ue, ue, u) = 0. From (3.22))-(3.23) it follows that

X, / o, p— dt+/ a(ue, @) dt
/ / (t — o) ((ue, ))dadt—/T<f,<p—u€>dt (3.26)

2/0 a(ue,ue)dt—i—/OTb(uE,%uE dt+/ / (t — o) ((te, ue))do dt.

Consider

T T T t
Y. = / a(te, ue)dt +/ b(te, o, ue) dt +/ / 9(t — ) ((te, ue))do dt.. (3.27)
0 0 o Jo
It follows from (2.5) with v = u — u, that

t
a(t — e, — Ue) + b(U — Ue, @, u — Ue) + / g(t — o)((u — ue,u — ue))do > 0.
0
On the other hand, we can write

T T
YE:/ a(uefu,uefu)dt+/ b(ue — u, o, ue —u) dt
0 0

T T T
a(u,ue —u) dt + / a(te,u) dt + / b(u, p,ue —u)dt
0 0

+/OT T
+/0 b(ue,gp,u)dtJr/O /Otg(ta)((ueu,ueu))dadt
/

/0 gt — o) ((u, ue — u))do dt + /0 /0 9(t — ) (e, u))do dt.
This implies

T T T
Y. > / aue,u) dt + / a(u,ue —u) dt + / b(u, @, ue — u) dt
0 0 0

T T
+ / b(ue, p,u) dt + / / g(t — o) (u,ue — u))do dt (3.28)
0 o Jo
T ot
—|—/ / g(t — ) ((te, w))do dt.
o Jo
Taking lim sup in (3.28)) we obtain
T T T
limsup Y. Z/ a(u, u) dt—|—/ b(u, p,u) dt—|—/ / g(t—o)((u,u))do dt. (3.29)
0 o Jo

0

It follows from and - that

T

limsup{/oT(cp’,go—ue)dt—l—/ a(ue, p) dt
A /0 (t — o) ((ue, u ))dadt—A (o~ )t} (3.30)
2/0 a(u,u)dt—i—/0 (u, o, u dt+/ / (t — o)((u,u))do dt.
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It follows from ([3.30) that

/0T<(p/a90_U>dt+/0Ta(U,<P—U)dt-i-/oTb(u,u,(p—u)dt
N
Z/OT<f,<,0—u)dt

for all p € L?(0,T;V), ¢’ € L*>(0,T;V"), »(0) = 0, p(t) € K a.e.

Proof of Theorem We first prove Theorem [2.5]for the penalized problem. As
in the proof of Theorem we employ the Faedo-Galerkin Method. Let (w,)y,en
be a Hilbertian basis of V. By V,, = [w1,ws,...w,,] we represent the subspace
generated by the m first vectors of (w,). Consider

m
ufm = E g]mw]
=1

solution of approximate penalized problem
!

m’ t
B /O gt — 0)(Attem (o), v)do + %wuém,wj)

:<f(t)7wj>7 ]:1,2,m
uG”m (a:7 O) — Ue (x’ O) Strongly in V

(u wj) + .ua(uemv wj) + b(uenm Uepy > wj)

(3.31)

First estimate. As in the proof of Theorem [2.4] omitting the parameter e and
taking v = u,, in the approximate equation (3.31]) we obtain

() is bounded in L>°(0,T; H), (3.32)
() is bounded in L2(0,T; V), (3.33)

Second estimate. In both sides of (3.31)) we take the derivatives with respect ¢

and consider v = u,,(t). We obtain

(tt () 1 (£)) + praa(uagy (£), 13, (1))
+ b(tp, (£), i (£), 117, (£)) + b(ttn (1), 117, (1), 117, (1))

+ (B () (0) + [ /(¢ = o) (0,14, (3:34)

+ 9O) (1), (1) + = (Bun) (0) (1))
= (1), (1),

because

jt(/ot g(t — o) Aup (o) da) = g(0)Aupy, (t) + /Ot g'(t — o)At (o) do.

We note that )
U,,(0) — u; strongly in H,
(0) = ) (3.35)
Uum(0) = ug  strongly in V.
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Indeed, (3.35]); is obtained using (3.31)) with ¢ = 0 and (2.11]). Note that G(ug) = 0.
Then

L O + O + a6, 0 (0, 1 (1)
+/O gt — o) ((um(t),u ))da—i—g(o);thum( )”2 (3.36)

= (F'(1), ua (1)),

because b(un, (t),ul, (t),ur,(t)) = 0 and ((Bum,) (t),u,,(t)) > 0 (see Lions [16], page
399)).

Remark 3.3. The derivative with respect to ¢t of (8(v(t)),w) is only formal. The
correct method is to consider the difference equation in t+h and ¢, divided by h and
take the limits when A — 0. Here is fundamental the operator 8 to be monotonous.
This justify the formal procedure of taking the derivative with respect to ¢, on both
sides of and take v = u/,(t). See Brezis [6], Browder [§] or Lions [I7] for
details.

As n = 2, we have (see Lions [I6, page 70])
ullZa0y < Cllulllul,  Vu € Hg (). (3.37)
Moreover, H}(Q) — L?(Q); therefore,

ov;
uvu|<2/\uz M52 @) a3 )] < lullzscape ol

1,7=1
\fn' ||c\f|u O llum(®)]

< ZII U ()1 + 7”“771( P (8)]-

This and (3.37) imply

[t (£), i (£), 13, (2)) |

IN

(3.38)

/\

Therefore,

1d 5 , 9 1d 9
Sl O+l (O + 9(0)5 5 lum (8]

<| [ 4= Nt o]+ 000000 (30)

2. oy
" \Ellf Oy Bl

Therefore, from (3.39), (3.37) and Remark [3.2| we obtain

Ly PR+

l1d 2 / 2
S im0 + gl ()]

9(0)2 p
< Bt )11 + EIIM(t)\Iluin(?f)l2 (3.40)

Ch I
+ 119"l 2 0,00) 1t O | Jum (B[] + 7\\f’(t)ll2 + leu/m(t)HQ,
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Integrating (3.40)) from 0 to ¢ and using the hypothesis (2.3)), (2.4) we obtain

t
I
P + (5 = 2lglomm) [ Iin(o)Pds
0

T t T
< gl 000y / lum (DI dt +C / e (8)|2 1t () 2ds + C / 17/(8)|? de.
(3.41)
From ([3.4) and hypothesis on f we obtain

t t
u
O + (§ = 2ol [ Tun(@)1Pds < 04 C [ (o) Pua(s)Pas.
(3.42)
Being (u,,) is bounded in L?(0,T; V) we have, using Gronwall’s inequality in (3.41))
and hypothesis H1, that

(ul,) is bounded in L?(0,T;V) (3.43)
(ul,) is bounded in L*(0,T; H). (3.44)

Third estimate. Let (w,) be the orthonormal system of V' NV, formed by the
eigenfunctions of the Laplace operator.

As in the proof of Theorem [2.4] omitting the parameter € and taking w; = —Auy,
in the approximate equation ([3.31)) we obtain

5 () + At (1)
< [b(um (8), um (t), = Aum ())|r
+ ‘/QAum(Q:,t)</0 g(t — U)Aum(z,cr)dcr)'Rdx (3.45)
1 2, H 2
2T OF + §1Aun )
because (B, —Aup,) > 0 (see Haraux [4, page 58]). We note that
2 Oy,
b (€)1 0, =B (O] < S i, (0] 5% 0] | B, 1)
Q=1 E (3.46)
0

< im0 502 [l Ol At ()]

because Hj (Q2) — L3(Q), HJ(Q) — L8(Q), with 1 + 4 + £ = 1.
Substituting (3.46]) in (3.45) and using the Remark we obtain

d 7
lum @ + (5 = 2lgllz0.00)) [Am ()]

< CIFOI2 + (Cllum @@y = C) lum @
Integrating the above inequality from 0 to ¢, observing that u,, € L*(0,T;V) C
L?(0,T; (L3(92))? and using the Gronwall’s Lemma, it follows that
U, i bounded in L=°(0,T;V) (3.47)
U is bounded in L?(0,T;V3). (3.48)

To complete the proof of Theorem [2.5] we use the same argument used in the proof
of Theorem 2.4
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We shall now prove Theorem [2.3] From the previous convergence, and Banach-
Steinhauss theorem, it follows that there exists a subnet (ue)o<e<1, such that it
converges to u as € — 0, in the sense of previous convergence.

This function satisfies and (| - Using the same arguments used in
Theorem 2.2 - we obtain that ﬁu = 0. Therefore, u satisfy of Theorem

We need to show only that w is a solution of inequality (2.14]) a.e. in ¢. In fact,
we have that u, satisfies

(W, T) + (e, D) + blute, g, B) + / ot~ 0)((ue,¥))do + ~ (Bue, ) = (1,5),

ue(0) = up.
(3.49)
for all v € V. Then from (3.49)), with ¥ = v — u., v € K, we have
¢
(ul,v —ue) + pa(ue, v) + b(ue, ue, v) + / g(t — o) ((te,v))do — (f,v — ue)
0 (3.50)

> pa(te, ue) + /tg(t —0)((ue,ue))do, Yv €K,
because (Bu. — ﬁv,oue —v) > 0. Let us denote
XY = (ul,v —ue) + pa(ue, v) + b(ue, ue,v) + /t g(t — o) ((ue,v))do — (f,v — ue).
We obtain 0
X? > pa(ue, ue) + /Otg(t —0)((ue, ue))do, YveV. (3.51)

Let ¢ € C°([0,T]) with +(t) > 0. Then vy € C°([0,T]; V) for all v € V.
Ueitie; — uzuj weakly in L?(0,T, L*(Q))
It follows from (3.51]) that

T T T
/w(u;,vfue)dt+u/ ¢a(u5,v)dt+/ UYb(Ue, Ue, v) dt

+¢// (t — o) ((ue,v dadt—/¢f, (3.52)

> / balue,ue) dt + / 4(t — o) (e, ) do.

Taking limsup in both side of inequality (3.52)) we obtain

/OTi/J(u',v—U)dt+u/0Twa(u7v)dt—/OTz/;b(u,u,v)dt
+/OT /Otg(t—U)((u,v))dadt—/OTw(fw_u)dt (3.53)

T T pt
> [ e+ [ [ o= o)wn)iza,
because

T T T
lim supu/ Ya(ue, ue) dt > lim infu/ Ya(ue,ue) dt > u/ Ya(u,u)dt
0 0 0
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and
T T ot
lim sup/ / g(t — o) ((ue, ue))do dt = lim sup/ / g(t — o) (—Aue, ue)do dt
o Jo o Jo

:/OT /Otg(t—a)(—Au,u)dadt
:/OT/Otg(t—a)((u,u))dadt

(v, v —u) + pa(u,v —u) + blu, u,v — u) + /0 g(t —o)(u,v — u))do

From ([3.53)) we obtain finally

(3.54)
> (f,v—u) YveK, ae. int.

4. UNIQUENESS

We now prove that when n = 2 we have uniqueness in Theorem Indeed,
suppose that uq,us are two solutions of and set w = us —wuj and t € (0,7).
Taking v = uy (resp. wg) in the inequality relative to vy (resp. wv1) and
adding up the results we obtain

_/Ot(wlvw)dt—,u,/ota(w,w)dt-F/Otb(U1,U1;w)dt
- [ sty [ [ o= o 20

Therefore,

1 [td ! !
5/ %|w(t)|2dt+u/ ||w(t)||2dt§/ |b(w, uz, w)] dt, (4.1)
0 0 0

because fot fotg(t —0)((w,w)) > 0 and b(ug, uz, w) — b(uy, u1, w) = b(w, uz, w). On
the other hand, if n = 2, we have (see Lions [16] page 70])

b(w(t), uz(t), w(t))| < Cllw(@)|lw(t)|[luz(®)]]- (4.2)
It follows from and that

wf+5 [ < c [ Pl

This implies, using Gronwall’s inequality that w = 0, because uy € L?(0,T;V),
therefore uy (t) = ua(t), for all ¢ € [0, T].
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