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POSITIVE PERIODIC SOLUTIONS FOR LIENARD TYPE
p-LAPLACIAN EQUATIONS

JUNXIA MENG

ABSTRACT. Using topological degree theory, we obtain sufficient conditions
for the existence and uniqueness of positive periodic solutions for Liénard type
p-Laplacian differential equations.

1. INTRODUCTION

In recent years, the existence of periodic solutions for the Duffing equation,
Rayleigh equation and Liénard type equation has received a lot of attention. We
refer the reader to [3] 5] [6] [7) ], O] and the references cited therein. However, as far
as we know, fewer papers discuss the existence and uniqueness of positive periodic
solutions for Liénard type p-Laplacian differential equation.

In this paper we study the existence and uniqueness of positive T-periodic solu-
tions of the Liénard type p-Laplacian differential equation of the form:

(op(@' (1)) + f(x(t)2'(t) + g(x(t)) = e(t), (1.1)
where p > 1 and ¢, : R — R is given by ¢,(s) = [s|P72s for s # 0 and ¢,(0) = 0,
f and g are continuous functions defined on R. e is a continuous periodic function
defined on R with period T, and T" > 0. By using topological degree theory and
some analysis skill, we establish some sufficient conditions for the existence and
uniqueness of T-periodic solutions of . The results of this paper are new and
they complement previously known results.

2. PRELIMINARIES

For convenience, let us denote
Cr :={x € C'(R,R) : x is T-periodic},

which is a Banach space endowed with the norm ||z|| = max{|z|e, |%'|oo }, and

(2o = max [z(t)], |¢'|eo = max |'(£) ||—(/T<t>|’“dt)”k
rhe = g O e = g O o= (0] T
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For the periodic boundary-value problem

(op(a' (1)) = f(t, 2, 2"),  x(0) = 2(T), 2'(0) =a'(T) (2.1)

where fis a continuous function and T—periodic in the first variable, we have the
following result.

Lemma 2.1 ([I1]). Let Q be an open bounded set in Ct., if the following conditions
hold

(i) For each X € (0,1) the problem

(pp(@'(1)) = Af(t,2,2), 2(0) ==(T), 2'(0)=2(T)
has no solution on 0S);

(ii) The equation

1 [T~
F(a) := —/ f(t,a,0)dt =0
T Jo
has no solution on 02 NR;
(iii) The Brouwer degree of F satisfies
deg(F,QNR,0) #£0,

Then the periodic boundary value problem (2.1) has at least one T—periodic solution
on .

Set
V(z) = /0 x flu)du, y(t) = @p(a’(t)) + ¥ (2(t)). (22)
We can rewrite in the form
@' (t) = [y(t) — U (x(8)| " sign(y(t) — ¥ (z(t))), (2.3)
y'(t) = —g(x(t) +e(t),
where ¢ > 1 and § + 1 = 1.

Lemma 2.2. Suppose that the following condition holds.
(A1) g is a continuously differentiable function defined on R, and g..(z) < 0.
Then (1.1) has at most one T-periodic solution.
Proof. Suppose that z1(t) and z2(t) are two T-periodic solutions of (1.1)). Then,
from ([2.3), we obtain
() = |ya(t) — W(ai(1)| " sign(yi(t) — U(wi(t))), (2.4)
yi(t) = —g(zi(t)) +e(t), i=1,2.

Set
v(t) = z1(t) —22(t),  u(t) =y1(t) — ya(t), (2.5)
it follows from that
V' (t) = [ya () — W(1 (1)) sign(y: (t) — U(@1(1)))
= [ya(t) — W (22(1))|7 " sign(ya(t) — U(a2(t))), (2.6)
u'(t) = —[g(21(t)) — g(22(1))],
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Now, we prove that u(t) < 0 for all t € R. Contrarily, in view of u € C?[0,T] and
u(t+T) = u(t) for all t € R, we obtain

maxu(t) > 0.
teR

Then, there must exist t* € R (for convenience, we can choose t* € (0,7)) such
that

*

u(t*) = max u(t) = maxu(t) > 0,

telo, T teER

which, together with ¢’(x) < 0, implies that

u'(t7) = —[g(x1(t") — gla2(t)] =0, 1 (t7) = w2(t"),
u”(t ) (—(g(1(t) = g(2(1)))) le=- (2.7)
=g (a1 ()21 (£7) = gg (w2 (7)) (t7)] < 0.

Then
u'(t*) = =g, (z1(
= —gu(x1(

) [y () — 25(t7)]
Ny (%) — W ()17 sign(ya (1) — U (21(1%)))
— [ya(t*) — W(x2(t")7 " sign(ya(t*) — U(z2(t")))] (2.8)
= —go (21 () [y (¢) — (21 (¢7))]7 sign(y: (¢7) — U(1 (7))
= lya(t*) — W(a1 (¢°)17 sign(ya(t*) — W(z1(t9)))].
In view of
—gp(@1(t) >0, u(t’) = yi(t") — y2(t") > O, (2.9)
and
[ya (%) — W (1 (t7))]7 F sign(y: (t) — U (@1 (7))
— [ya(t") = W(z1 (¢°))7 " sign(ya(t*) — U(z1(t7))) > 0.
It follows from that
u"(t°) = =g (@1 () [lya () — (1 (t7))]7 sign(y: () — V(21 (t7)))
— g2 (t) = W (a1 (t°))]7 Fsign(ya(t*) — U(21(t)))] > 0,

which contradicts the second equation of (2.7). This contradiction implies that

(2.10)

u(t) =y1(t) —y2(t) <0 forallt € R.
By using a similar argument, we can also show that
y2(t) —y1(t) <0 forallt € R.
Therefore, we obtain y»(t) = y1(¢) for all t € R. Then, from , we get
g(@1(t)) — g(@2(t)) =0 forallt € R,

again from ¢/ (z) < 0, which implies that zo(t) = z1(t) for all ¢t € R. Hence, (1.1))
has at most one T-periodic solution. The proof is complete. O
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3. MAIN RESULTS
Using Lemmas [2.1] and we obtain our main results:

Theorem 3.1. Let (A1) hold. Suppose that there exists a positive constant d such
that

(A2) g(z) —e(t) <0 forz>d andt e R, g(x) —e(t) >0 forx <0 and t € R.
Then (1.1) has a unique positive T-periodic solution.

Proof. Consider the homotopic equation of (1.1)) as follows:

(op(a' (1)) + Af(2(0)2' (1) + Ag(@(t)) = Ae(t), A€ (0,1) (3.1)

By Lemma and (Al), it is easy to see that has at most one positive T-
periodic solution. Thus, to prove Theorem it suffices to show that has at
least one T-periodic solution. To do this, we shall apply Lemma 2.1} Firstly, we
will claim that the set of all possible T-periodic solutions of is bounded.

Let x(t) € Ck be an arbitrary solution of with period T. By integrating
two sides of over [0, 7], and noticing that ’(0) = 2'(T), we have

/0 (g(z(t)) —e(t))dt = 0. (3.2)

As z(0) = z(T), there exists to € [0,7] such that z'(tg) = 0, while ¢,(0) = 0 we
o (@ ()] = |/ (pp(a’(s))) ds|
o - . (3.3)
< [ @l Ol [ laeiae [ o),

where t € [to,to + T].

From (B.2)), there exists a £ € [0,7] such that g(z(¢)) — e(§) = 0. In view of
(A2), we obtain |z(£)| < d. Then, we have

()] = (&) + /5 2(s)ds| < d+ /5 o/(s)|ds, te €, E+7T),

and

g ; _
0] = el =T)| = [o@ — [ Sasl <d+ [ Woldstele E+T)

Combining the above two inequalities, we obtain

T|oo = max |x(t)| = max |z(t
o]0 = max |2(t)] . £7+T]| )
< {d+1(/t| (s)\d +/5 2/ (5)|ds)}
< max S 12 (s)lds Tis)as
telE, E+T) 2°Je =T o4

1 (T
§d—|—7/ |7’ (s)|ds.
2 Jo
Denote

E, = {t e [OvT]v |{E(t)| > d}a Ey = {t S [OvT]a |£L'(t)| < d}
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Since xz(t) is T-periodic, multiplying x(¢) and (3.1) and then integrating it from 0
to T, in view of (A2), we get

T T
/ @/ (t) Pt = — / (p(a (1)) (t)
0 0

=\ /E 1 [9(z(t)) — e(t)]z(t)dt + A /E 2 lg(z(t)) — e(t)]z(t)dt o)

< /0 max{|g(z(t)) —e(t)] : t € R, [z(?)| < d}|z(t)|dt
< DT|z|so,

where D = max{|g(x) —e(t)| : |z| < d, t € R}.
For z(t) € C(R,R) with z(t + T) = «(t), and 0 < r < s, by using Hélder
inequality, we obtain

(7 /OT eorar) " < (3 /OT(lx<t>|")“’/’“dt>’"/s</oT =)

(3 ] wwra)”

2|, < T |z]s, for0<r<s. (3.6)

Then, in view of (3.4), (3.5) and (3.6)), we can get

this implies that

T

T
( / &/ (O]dey? < TP (1)[2 = TP / &/ ()Pt
0 0
< TP7'DT 2|00 (3.7)

T
< T”D(d—i—%/ 12 (5)|ds).
0

Since p > 1, the above inequality allows as to choose a positive constant M; such

that
T

T
1
/ |2'(s)|ds < My, |7]oo < d+ 5/ |2 (s)|ds < M;.
0 0
In view of (3.3]), we have
/ip—1 — / t
|25 tgf%{lsop(x )}
t
= max 2'(s))) ds
oo {1 el ds -
T

T T
< / () (1) dt + / lga(t))] dt + / ()| dt
< [max{|f(z)] : || < My }My + Thmax{]g(x)] : [z] < My} + [eloc).

Thus, we can get some positive constant My > M; + 1 such that for all ¢ € R,
|2/ (t)] < My. Set Q = {z € Ck : ||z|| < My + 1}, then we know that (3.1)
has no solution on 92 as A € (0,1) and when z(t) € 2 NR, z(t) = Mz + 1 or
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z(t) = =My — 1, from (As) , we can see that
1 [T 1 (T
7/ {—g(M2+1)+e(t)}dt:——/ {g(Ms+ 1) — e(t)} dt > 0,
T 0 T 0

7 | taan =1 ey =~ [ Ho-2n -1 - e} <o,

so condition (ii) is also satisfied. Set

T
He,0) = e — (1= p) / {9(z) — e(t)} dt,

and when z € 002N R, p € [0,1] we have

T
oH(w.p) = gt = (1= g [ (o) = et > 0.

Thus H(x, 1) is a homotopic transformation and
1 /7
dea{F, Q2 N'E, 0} = des{ / {9(z) — e(8)} dt, QN R, 0} = deg{z, 2 R, 0} £ 0.
0

so condition (iii) is satisfied. In view of the previous Lemma there exists at
least one solution with period T

Suppose that z(t) is the T-periodic solution of . Let ¢ be the global minimum
point of z(t) on [0,7]. Then a’(¢f) = 0 and we claim that

(p(2'())) = (]2 ()P ~22"(8))" > 0. (3.9)
Assume, by way of contradiction, that (3.9) does not hold. Then

(ep(a'()) = (|' (O ~22'()) <0,
and there exists € > 0 such that (¢,(2/(t))) = (|2/(¢)[P722'(t))’ < Ofor t € (f—e,t+
g). Therefore, ¢, (z'(t)) = |2/(t)|P~22' () is strictly decreasing for t € (f —e,t + €),
which implies that z’(t) is strictly decreasing for ¢ € (f — ¢, + €). This contradicts
the definition of ¢. Thus, (3.9) is true. From (1.1)) and (3.9)), we have

9(2(®) - () < 0. (3.10)

In view of (A2), (3.10) implies x(¢) > 0. Thus,

z(t) > min z(t) =x(t) >0, forallteR,
tefo, 7]

which implies that (1.1)) has at least one positive solution with period T. This
completes the proof. O

4. AN EXAMPLE
As an application, let us consider the following equation
(' (1)) + e* O () — (2°(t) + (t) — 12) = cos?, (4.1)

where p = /5. We can easily check the conditions (A1) and (A2) hold. By Theorem
equation has a unique positive 27-periodic solution.

Since the periodic solution of p-Laplacian equation is positive, one can
easily see that the results of this paper are essentially new.
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