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OSCILLATION AND NONOSCILLATION CRITERIA FOR
TWO-DIMENSIONAL TIME-SCALE SYSTEMS OF

FIRST-ORDER NONLINEAR DYNAMIC EQUATIONS

DOUGLAS R. ANDERSON

Abstract. Oscillation criteria for two-dimensional difference and differential
systems of first-order linear difference equations are generalized and extended

to nonlinear dynamic equations on arbitrary time scales. This unifies and

extends under one theory previous linear results from discrete and continuous
systems. An example is given illustrating that a key theorem is sharp on all

time scales.

1. prelude

Jiang and Tang [14] establish sufficient conditions for the oscillation of the linear
two-dimensional difference system

∆xn = pnyn, ∆yn−1 = −qnxn, n ∈ Z, (1.1)

where {pn}, {qn} are nonnegative real sequences and ∆ is the forward difference
operator given via ∆xn = xn+1 − xn; see also Li [16]. The system (1.1) may be
viewed as a discrete analogue of the differential system

x′(t) = p(t)y(t), y′(t) = −q(t)x(t), t ∈ R, (1.2)

investigated by Lomtatidze and Partsvania [17].
Oscillation questions in difference and differential equations are an interesting

and important area of study in modern mathematics. Furthermore, within the past
two decades, these two related but distinct areas have begun to be combined under
a powerful, more robust and general theory titled dynamic equations on time scales,
a theory introduced by Hilger [13]. We wish to generalize (1.1) and (1.2) to the
nonlinear time-scale system of the form

x∆(t) = p(t)f
(
y(t)

)
, y∆(t) = −q(t)g

(
x(t)

)
, t ∈ T, (1.3)

where T is an arbitrary time scale (any nonempty closed set of real numbers)
unbounded above, with the special cases of T = Z and T = R yielding systems
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related to (1.1) and (1.2), respectively, as important corollaries. In this general
time-scale setting, ∆ represents the delta (or Hilger) derivative [4, Definition 1.10],

z∆(t) := lim
s→t

z(σ(t))− z(s)
σ(t)− s

= lim
s→t

zσ(t)− z(s)
σ(t)− s

,

where σ(t) := inf{s ∈ T : s > t} is the forward jump operator, µ(t) := σ(t) − t
is the forward graininess function, and z ◦ σ is abbreviated as zσ. In particular, if
T = R, then σ(t) = t and x∆ = x′, while if T = hZ for any h > 0, then σ(t) = t+h
and

x∆(t) =
x(t + h)− x(t)

h
.

A function f : T → R is right-dense continuous provided it is continuous at each
right-dense point t ∈ T (a point where σ(t) = t) and has a left-sided limit at each
left-dense point t ∈ T. The set of right-dense continuous functions on T is denoted
by Crd(T). It can be shown that any right-dense continuous function f has an
antiderivative (a function Φ : T → R with the property Φ∆(t) = f(t) for all t ∈ T).
Then the Cauchy delta integral of f is defined by∫ t1

t0

f(t)∆t = Φ(t1)− Φ(t0),

where Φ is an antiderivative of f on T. For example, if T = Z, then∫ t1

t0

f(t)∆t =
t1−1∑
t=t0

f(t),

and if T = R, then ∫ t1

t0

f(t)∆t =
∫ t1

t0

f(t)dt.

Throughout we assume that t0 < t1 are points in T, and define the time-scale
interval [t0, t1]T = {t ∈ T : t0 ≤ t ≤ t1}. Other time-scale intervals are defined
similarly.

Time scales and time-scale notation are introduced well in the fundamental texts
by Bohner and Peterson [4, 5]. For related oscillation and nonoscillation results for
dynamic equations on time scales, please see some of the many recent papers in this
area, including Akin-Bohner, Bohner, and Saker [1], Bohner, Erbe, and Peterson
[3], Bohner and Saker [6, 7], Bohner and Tisdell [8], Erbe and Peterson [9], Erbe,
Peterson, and Saker [10, 11, 12], and Saker [18]. Recent papers on extensions
of second-order self-adjoint equations to dynamic systems on time scales include
Anderson and Hall [2], and Xu and Xu [19].

2. preliminary results on oscillation

Let T be a time scale that is unbounded above, and let t0 ∈ T. In (1.3), assume
p : T → R is right-dense continuous with p > 0 on [t0,∞)T, and q : T → R is a
right-dense continuous function satisfying q ≥ 0 on [t0,∞)T with q nonzero and not
eventually zero; note that p and q are delta integrable. Moreover, we assume that
f, g : R → R are nondecreasing continuous functions that satisfy zf(z), zg(z) > 0
for z 6= 0, and that there exist positive real numbers F and G such that f(y)/y ≥ F
and g(x)/x ≥ G.

A solution (x, y) of (1.3) is oscillatory if both component functions x and y
are oscillatory, that is to say neither eventually positive nor eventually negative;
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otherwise, the solution is nonoscillatory. The nonlinear dynamic system (1.3) is
oscillatory if all its solutions are oscillatory.

Lemma 2.1. The component functions x and y of a nonoscillatory solution (x, y)
of (1.3) are themselves nonoscillatory.

Proof. Assume to the contrary that x oscillates but y is eventually positive. Then
x∆ = pf(y) > 0 eventually, so that x(t) > 0 or x(t) < 0 for all large t ∈ T,
a contradiction. The case where y is eventually negative is similar. Likewise,
assuming that y oscillates while x is eventually positive or eventually negative
leads to comparable contradictions. �

Lemma 2.2. If ∫ ∞

t0

p(r)∆r = ∞ and
∫ ∞

t0

q(s)∆s = ∞, (2.1)

then each solution of nonlinear system (1.3) is oscillatory.

Proof. Let (x, y) be a nonoscillatory solution of (1.3). First assume that x > 0; then
y∆ = −qg(x) ≤ 0, and in view of Lemma 2.1, y must be of constant sign eventually.
If y(t1) < 0 for some t1 ∈ [t0,∞)T, then y < 0 on [t1,∞)T and x∆ = pf(y) < 0 on
[t1,∞)T; after delta integrating from t1 to t, we have

x(t) = x(t1) +
∫ t

t1

p(r)f
(
y(r)

)
∆r. (2.2)

Since y is negative and nonincreasing, and yf(y) > 0 with f nondecreasing, we
know f(y) < 0, and by the first assumption in (2.1) the right-hand side of (2.2)
tends to −∞, a contradiction of x > 0. Consequently, y > 0 with y∆ ≤ 0 on
[t0,∞)T, and x∆ > 0 on [t0,∞)T by the first equation of (1.3). Thus there exists
a constant c > 0 and t1 ∈ [t0,∞)T such that x(t) ≥ c for t ∈ [t1,∞)T. Delta
integrating the second equation of (1.3), we obtain

g(c)
∫ ∞

t1

q(s)∆s ≤ y(t1) < ∞,

and this contradicts the second assumption in (2.1). Similar contradictions are
reached for x < 0. �

Lemma 2.3. If ∫ ∞

t0

p(r)∆r < ∞ and
∫ ∞

t0

q(s)∆s < ∞, (2.3)

then nonlinear system (1.3) is nonoscillatory.

Proof. Suppose that (2.3) holds. Then there exists t1 ∈ [t0,∞)T such that∫ ∞

t1

p(r)f
(
1 + g(2)

∫ ∞

r

q(s)∆s
)
∆r < 1. (2.4)

Let B = Crd(T) be the Banach space of right-dense continuous functions on T, with
norm ‖x‖ = supt≥t1,t∈T |x(t)| and the usual pointwise ordering ≤. Define a subset
S of B as follows:

S = {x ∈ B : 1 ≤ x(t) ≤ 2, t ∈ [t1,∞)T}.
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For any subset Q of S, we have that infQ ∈ S and supQ ∈ S. Let L : S → B be
the functional given via

(Lx)(t) = 1 +
∫ t

t1

p(r)f
(
1 +

∫ ∞

r

q(s)g
(
x(s)

)
∆s

)
∆r, t ∈ [t1,∞)T.

By the assumptions on x ∈ S and p and q and the fact that f and g are nonde-
creasing, (Lx)(t) ≥ 1 for all t ∈ [t1,∞)T, and

(Lx)(t) ≤ 1 +
∫ t

t1

p(r)f
(
1 +

∫ ∞

r

q(s)g(2)∆s
)
∆r ≤ 2

by (2.4). Moreover,

(Lx)∆(t) = p(t)f
(
1 +

∫ ∞

t

q(s)g
(
x(s)

)
∆s

)
> 0, (2.5)

ensuring that L : S → S is increasing. By Knaster’s fixed-point theorem [15], we
can conclude that there exists an x ∈ S such that x = Lx. If we let

y(t) = 1 +
∫ ∞

t

q(s)g
(
x(s)

)
∆s, t ∈ [t1,∞)T

using the fixed point x ∈ S, then we have

x∆(t) = (Lx)∆(t) = p(t)f
(
y(t)

)
and y∆(t) = −q(t)g

(
x(t)

)
for t ∈ [t1,∞)T by using (2.5). Thus (x, y) is a nonoscillatory solution of (1.3). �

In view of Lemmas 2.2 and 2.3, respectively, we could assume that either∫ ∞

t0

p(r)∆r = ∞ and
∫ ∞

t0

q(s)∆s < ∞, or (2.6)∫ ∞

t0

p(r)∆r < ∞ and
∫ ∞

t0

q(s)∆s = ∞; (2.7)

in fact, we will focus on (2.6). Moreover, in preparation for what follows, we
introduce the following notation. Let

P (t) :=
∫ t

t0

p(r)∆r. (2.8)

Lemma 2.4. Assume that (2.6) holds, P is given by (2.8), and λ ∈ [0, 1) is a real
number. If

lim
t→∞

µ(t)p(t)
P (t)

= 0,
(
equivalently, lim

t→∞

Pσ(t)
P (t)

= 1
)

(2.9)

then given ε > 0 there exists a t1 ≡ t1(ε) ∈ (t0,∞)T such that for any t ∈ [t1,∞)T,∫ ∞

t

[(
Pλ

)∆(r)
]2

p(r)Pλ(r)
∆r ≤ λ2

1− λ
(1 + ε)2−λ

Pλ−1(t), and (2.10)∫ ∞

t

p(r)
P 2−λ(r)

∆r ≤ (1 + ε)2−λ

1− λ
Pλ−1(t). (2.11)

Proof. For r ∈ (t0,∞)T, by the chain rule [4, Theorem 1.90] we have

(
Pλ

)∆(r) =


Pλ(σ(r))− Pλ(r)

µ(r)
: µ(r) > 0,

λp(r)Pλ−1(r) : µ(r) = 0.
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By [4, Theorem 1.16 (iv)], µP∆ = Pσ−P , so that µp = Pσ−P on T. If r ∈ (t0,∞)T
is a right-scattered point, then µ(r) > 0 and, suppressing the r,[(

Pλ
)∆]2

pPλ
=

p

µ2p2Pλ

((
Pσ

)λ − Pλ
)2

=
p

Pλ

((
Pσ

)λ − Pλ

Pσ − P

)2

MVT=
p

Pλ

(
λξλ−1

)2
, ξ ∈

(
P (r), P σ(r)

)
R

≤ pλ2

Pλ
P 2λ−2, λ− 1 < 0

= λ2pPλ−2.

If r ∈ (t0,∞)T is a right-dense point, then µ(r) = 0 and[(
Pλ

)∆]2
pPλ

=

[
λpPλ−1

]2
pPλ

= λ2pPλ−2.

It follows that in either case,[(
Pλ

)∆(r)
]2

p(r)Pλ(r)
≤ λ2p(r)Pλ−2(r), r ∈ (t0,∞)T. (2.12)

Similarly, if r ∈ (t0,∞)T is a right-scattered point, then once again µ(r) > 0 and,
suppressing the r,

−
(
Pλ−1

)∆ =
−p

µp

((
Pσ

)λ−1 − Pλ−1
)

= −p
((

Pσ
)λ−1 − Pλ−1

Pσ − P

)
MVT= p(1− λ)ηλ−2, η ∈

(
P (r), P σ(r)

)
R

≥ p(1− λ)
(
Pσ

)λ−2
.

If r is a right-dense point, then Pσ = P , µ(r) = 0, and p(1−λ)Pλ−2 = −
(
Pλ−1

)∆.
Summarizing, in either case we have

−
(
Pλ−1

)∆ ≥ p(1− λ)
(
Pσ

)λ−2
, r ∈ (t0,∞)T. (2.13)

Combining (2.12) and (2.13), we see that[(
Pλ

)∆(r)
]2

p(r)Pλ(r)
≤ λ2

1− λ

( P (r)
Pσ(r)

)λ−2[
−

(
Pλ−1

)∆(r)
]
.

By (2.9), given ε > 0 there exists a t1 ∈ [t0,∞)T such that Pσ/P ≤ (1 + ε) on
[t1,∞)T. Consequently, for any t ∈ [t1,∞)T,∫ ∞

t

[(
Pλ

)∆(r)
]2

p(r)Pλ(r)
∆r ≤ λ2

1− λ
(1 + ε)2−λ

∫ ∞

t

[
−

(
Pλ−1

)∆(r)
]
∆r

(2.6),(2.8)
=

λ2

1− λ
(1 + ε)2−λPλ−1(t),
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which is (2.10). Moreover, again for any r ∈ [t1,∞)T,

p(r)
P 2−λ(r)

=
p(r)

P 2−λ(σ(r))
P 2−λ(σ(r))

P 2−λ(r)
≤ (1 + ε)2−λ p(r)

P 2−λ(σ(r))
(2.13)

≤ (1 + ε)2−λ

λ− 1
(
Pλ−1

)∆(r).

(2.14)

Delta integrating (2.14) from t to infinity, we obtain

∫ ∞

t

p(r)
P 2−λ(r)

∆r ≤ (1 + ε)2−λ

λ− 1

∫ ∞

t

(
Pλ−1

)∆(r)∆r
(2.6),(2.8)

=
(1 + ε)2−λ

1− λ
Pλ−1(t),

which is (2.11). �

Note that if T = R, then (2.9) is automatically satisfied, as µ(t) ≡ 0.

Lemma 2.5. Assume that (2.6) holds, that P is given by (2.8), and that (2.9)
holds. If for some real number λ < 1 we have∫ ∞

t1

q(r)Pλ(r)∆r = ∞ for t1 ≥ σ(t0), (2.15)

then nonlinear system (1.3) is oscillatory.

Proof. By Lemma 2.3, we can focus on λ ∈ (0, 1). Assume that (x, y) is a nonoscil-
latory solution of nonlinear system (1.3), and assume that x > 0 on [t0,∞)T; the
case where x < 0 on [t0,∞)T is similar and consequently omitted. As in the proof
of Lemma 2.2, y > 0 with y∆ ≤ 0 and x∆ > 0 on [t0,∞)T. Let w := y/x. Then
w > 0, and suppressing the argument, we have by the delta quotient rule and (1.3)
that on [t0,∞)T,

w∆ =
xσy∆ − yσx∆

xxσ
= −q

g(x)
x

− pwwσ f(y)
y

≤ −qG− pwwσF < 0. (2.16)

In fact this gives us

w∆ ≤ −qG− p(wσ)2F, (2.17)

and from the previous line we obtain on [t0,∞)T that

( 1
w

)∆ =
−w∆

wwσ
≥ qG + pwwσF

wwσ
≥ pF ;

delta integrating from t0 to t we see that

1 > 1− w(t)
w(t0)

≥ Fw(t)
∫ t

t0

p(r)∆r = Fw(t)P (t) ≥ 0, t ∈ [t0,∞)T. (2.18)
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Again by the mean value theorem,
(
Pλ

)∆ ≤ λpPλ−1 for λ ∈ (0, 1). Multiplying
(2.17) by Pλ and delta integrating from t1 ≥ σ(t0) to t we obtain

G

∫ t

t1

q(r)Pλ(r)∆r ≤ −
∫ t

t1

Pλ(r)w∆(r)∆r − F

∫ t

t1

p(r)Pλ(r)(wσ)2(r)∆r

parts
= −Pλ(t)w(t) + Pλ(t1)w(t1) +

∫ t

t1

(
Pλ

)∆(r)wσ(r)∆r

− F

∫ t

t1

p(r)Pλ(r)(wσ)2(r)∆r

≤ −Pλ(t)w(t) + Pλ(t1)w(t1) +
∫ t

t1

λp(r)Pλ−1(r)wσ(r)∆r

− F

∫ t

t1

p(r)Pλ(r)(wσ)2(r)∆r

= −Pλ(t)w(t) + Pλ(t1)w(t1)

+
∫ t

t1

p(r)Pλ−2(r)
[
P (r)wσ(r)

(
λ− FP (r)wσ(r)

)]
∆r.

(2.19)
Since by (2.18) we have

0 ≤ FP (t)wσ(t) ≤ FP (t)w(t) < 1, t ∈ [t0,∞)T, (2.20)

there exists a positive real number k such that∣∣P (r)wσ(r)
(
λ− FP (r)wσ(r)

)∣∣ < k.

As a result we have limt→∞−Pλ(t)w(t) = 0 by (2.18) for 0 < λ < 1, and∣∣ ∫ t

t1

p(r)Pλ−2(r)
[
P (r)wσ(r)

(
λ− FP (r)wσ(r)

)]
∆r

∣∣ < k

∫ ∞

t1

p(r)Pλ−2(r)∆r

(2.11)

≤ k
(1 + ε)2−λ

1− λ
Pλ−1(t1)

for all t ∈ [t1,∞)T. Therefore,∫ ∞

t1

q(r)Pλ(r)∆r < ∞,

a contradiction of (2.15). �

Due to (2.6) and the establishment of Lemma 2.5, we will henceforth restrict our
analysis to the case∫ ∞

t0

p(r)∆r = ∞, and
∫ ∞

t1

q(r)Pλ(r)∆r < ∞ for λ < 1, t1 ≥ σ(t0).

(2.21)
We also adopt the following notation. Set

g(t, λ) := G

{
P 1−λ(t)

∫∞
t

q(r)Pλ(r)∆r : λ < 1,

P 1−λ(t)
∫ t

t0
q(r)Pλ(r)∆r : λ > 1.

In either case, take

g∗(λ) := lim inf
t→∞

g(t, λ) and g∗(λ) := lim sup
t→∞

g(t, λ).



8 D. R. ANDERSON EJDE-2009/24

Lemma 2.6. Assume that (2.21) holds, that P is given by (2.8), and that (2.9)
holds. If (x, y) is a nonoscillatory solution of nonlinear system (1.3), then

lim inf
t→∞

w(t)P (t) ≥ 1
2F

(
1−

√
1− 4Fg∗(0)

)
, (2.22)

lim sup
t→∞

w(t)P (t) ≤ 1
2F

(
1 +

√
1− 4Fg∗(2)

)
, (2.23)

where again w := y/x.

Proof. By (2.18), we can introduce the constants

r := lim inf
t→∞

w(t)P (t), R := lim sup
t→∞

w(t)P (t), (2.24)

and by (2.21), we must have
lim

t→∞
w(t) = 0. (2.25)

From (2.16) we have w∆ ≤ −qG − pwwσF ; delta integrate this from t to ∞, use
(2.25), and multiply by P to see that

w(t)P (t) ≥ GP (t)
∫ ∞

t

q(τ)∆τ + FP (t)
∫ ∞

t

p(τ)w(τ)wσ(τ)∆τ (2.26)

holds for t ∈ [t1,∞)T. From (2.24) this yields

r ≥ g∗(0). (2.27)

This time multiply (2.17) by P 2 and delta integrate from t1 to t to get

G

∫ t

t1

q(τ)P 2(τ)∆τ ≤ −
∫ t

t1

P 2(τ)w∆(τ)∆τ − F

∫ t

t1

p(τ)P 2(τ)
(
wσ

)2(τ)∆τ

= −P 2(t)w(t) + P 2(t1)w(t1) +
∫ t

t1

(P 2)∆(τ)wσ(τ)∆τ

− F

∫ t

t1

p(τ)P 2(τ)
(
wσ

)2(τ)∆τ

= −P 2(t)w(t) + P 2(t1)w(t1) +
∫ t

t1

µ(τ)p2(τ)wσ(τ)∆τ

+
∫ t

t1

p(τ)P (τ)wσ(τ)[2− FP (τ)wσ(τ)]∆τ

for t ∈ [t1,∞)T, which leads to

w(t)P (t)

≤ −GP−1(t)
∫ t

t1

q(τ)P 2(τ)∆τ + P−1(t)
∫ t

t1

µ(τ)p2(τ)wσ(τ)∆τ

+ P−1(t)P 2(t1)w(t1) + P−1(t)
∫ t

t1

p(τ)P (τ)wσ(τ)[2− FP (τ)wσ(τ)]∆τ.

(2.28)

Using (2.20), 0 < (1 − FPwσ)2, leading to FPwσ[2 − FPwσ] < 1. Thus for large
t ∈ T,

P−1(t)
∫ t

t1

p(τ)P (τ)wσ(τ) [2− P (τ)wσ(τ)]∆τ ≤ 1/F.
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Applying L’Hôpital’s rule [4, Theorem 1.120], (2.20) again, and (2.9) we have

0 ≤ lim
t→∞

∫ t

t1
µ(τ)p2(τ)wσ(τ)∆τ

P (t)
= lim

t→∞
µ(t)p(t)wσ(t) ≤ lim

t→∞

µ(t)p(t)
P (t)

= 0.

Altogether then, inequality (2.28) implies that

R ≤ 1/F − g∗(2). (2.29)

If g∗(0) = 0 = g∗(2), then estimates (2.22) and (2.23) follow directly from (2.27)
and (2.29), respectively. Thus we pick a real number ε ∈

(
0,min{g∗(0), g∗(2)}

)
and

t2 ∈ [t1,∞)T such that for t ∈ [t2,∞)T,

r − ε < w(t)P (t) < R + ε, w(t)P (t) ≥ GP (t)
∫ ∞

t

q(τ)∆τ > g∗(0)− ε,

GP−1(t)
∫ t

t0

q(τ)P 2(τ)∆τ > g∗(2)− ε.

From (2.26) and L’Hôpital’s rule we have for t ∈ [t2,∞)T that

w(t)P (t) ≥ g∗(0)− ε + F (r − ε)2.

Multiply (2.16) by P 2 and delta integrate from t1 to t to see that this leads to

w(t)P (t) ≤ −GP−1(t)
∫ t

t1

q(τ)P 2(τ)∆τ + P−1(t)
∫ t

t1

µ(τ)p2(τ)wσ(τ)∆τ

+ P−1(t)P 2(t1)w(t1) + P−1(t)
∫ t

t1

p(τ)P (τ)wσ(τ)[2− Fw(τ)P (τ)]∆τ.

(2.30)
From (2.30) we have for t ∈ [t2,∞)T that

w(t)P (t) ≤
P 2(t1)w(t1) +

∫ t

t1
µ(τ)p2(τ)wσ(τ)∆τ

P (t)
−g∗(2)+ε+(R+ε)(2−F (R+ε)),

since FwσP ≤ FwP < 1. These two inequalities lead to

r ≥ g∗(0) + Fr2, R ≤ R(2− FR)− g∗(2). (2.31)

Consequently,

r ≥ 1
2F

(
1−

√
1− 4Fg∗(0)

)
, R ≤ 1

2F

(
1 +

√
1− 4Fg∗(2)

)
,

and the lemma is proven. �

3. main oscillation results

We use the lemmas obtained previously to prove our main results.

Theorem 3.1. Assume that (2.21) holds, that P is given by (2.8), and that (2.9)
holds. If

g∗(0) = lim inf
t→∞

P (t)
∫ ∞

t

q(τ)∆τ >
1

4F
, or (3.1)

g∗(2) = lim inf
t→∞

1
P (t)

∫ t

t0

q(τ)P 2(τ)∆τ >
1

4F
, (3.2)

then every solution of nonlinear system (1.3) is oscillatory.
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Proof. Suppose to the contrary that (x, y) is a nonoscillatory solution of (1.3) with
x(t) > 0 for t ∈ [t0,∞)T. Let

r := lim inf
t→∞

w(t)P (t), R := lim sup
t→∞

w(t)P (t),

where w = y/x. By Lemma 2.6 and its proof (in particular (2.31)) and simple
calculus, we have

g∗(0) ≤ r − Fr2 ≤ 1
4F

and g∗(2) ≤ R− FR2 ≤ 1
4F

,

a contradiction of both (3.1) and (3.2). The case with x(t) < 0 for t ∈ [t0,∞)T is
similar. �

Theorem 3.2. Assume that (2.21) holds, that P is given by (2.8), and that (2.9)
holds. Let g∗(2) ≤ 1/(4F ), and assume there exists a real number λ ∈ [0, 1) such
that

g∗(λ) >
λ2

4F (1− λ)
+

1
2F

(
1 +

√
1− 4Fg∗(2)

)
. (3.3)

Then every solution of nonlinear system (1.3) is oscillatory.

Proof. Suppose to the contrary that (x, y) is a nonoscillatory solution of (1.3) with
x(t) > 0 for t ∈ [t0,∞)T. By (2.17) we have

Gq(t) ≤ −w∆(t)− Fp(t)(wσ)2(t), t ∈ [t0,∞)T,

where w = y/x; multiply this by Pλ and delta integrate from t to infinity to get

G

∫ ∞

t

q(τ)Pλ(τ)∆τ ≤ −
∫ ∞

t

w∆(τ)Pλ(τ)∆τ − F

∫ ∞

t

p(τ)(wσ)2(τ)Pλ(τ)∆τ

= Pλ(t)w(t) +
∫ ∞

t

(
Pλ

)∆(τ)wσ(τ)∆τ

− F

∫ ∞

t

p(τ)Pλ(τ)(wσ)2(τ)∆τ

= Pλ(t)w(t) +
1

4F

∫ ∞

t

(
(Pλ)∆

)2 (τ)
p(τ)Pλ(τ)

∆τ

−
∫ ∞

t

(√
Fp(τ)Pλ/2(τ)wσ(τ)−

(
Pλ

)∆(τ)

2
√

Fp(τ)Pλ/2(τ)

)2

∆τ

≤ Pλ(t)w(t) +
1

4F

∫ ∞

t

(
(Pλ)∆

)2(τ)
p(τ)Pλ(τ)

∆τ.

It follows that

P 1−λ(t)G
∫ ∞

t

q(τ)Pλ(τ)∆τ < P (t)w(t) +
P 1−λ(t)

4F

∫ ∞

t

(
(Pλ)∆

)2 (τ)
p(τ)Pλ(τ)

∆τ. (3.4)

By (2.10), (2.23), and (3.4),

g∗(λ) ≤ 1
2F

(
1 +

√
1− 4Fg∗(2)

)
+

λ2

4F (1− λ)
,

a contradiction of (3.3). Similarly if x(t) < 0 for t ∈ [t0,∞)T. �
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Corollary 3.3. Assume that (2.21) holds, that P is given by (2.8), and that (2.9)
holds. If g∗(2) ≤ 1/(4F ) and g∗(0) > 1

2F

(
1 +

√
1− 4Fg∗(2)

)
, then every solution

of nonlinear system (1.3) is oscillatory.

Theorem 3.4. Assume that (2.21) holds, that P is given by (2.8), and that (2.9)
holds. Let g∗(0), g∗(2) ≤ 1/(4F ), and assume there exists a real number λ ∈ [0, 1)
such that

g∗(0) >
λ(2− λ)

4F
, and (3.5)

g∗(λ) >
g∗(0)
1− λ

+
1

2F

(√
1− 4Fg∗(0) +

√
1− 4Fg∗(2)

)
. (3.6)

Then every solution of nonlinear system (1.3) is oscillatory.

Proof. Suppose to the contrary that (x, y) is a nonoscillatory solution of (1.3) with
x(t) > 0 for t ∈ [t0,∞)T; the case with x(t) < 0 for t ∈ [t0,∞)T is omitted. Let
r = lim inft→∞ w(t)P (t) and R = lim supt→∞ w(t)P (t), where w = y/x. By (2.22)
and (2.23),

r ≥ m :=
1

2F

(
1−

√
1− 4Fg∗(0)

)
, R ≤ M :=

1
2F

(
1 +

√
1− 4Fg∗(2)

)
. (3.7)

Using (3.5) and (3.7) we find that m > λ/(2F ), whence given ε ∈
(
0,m− λ

2F

)
,

there exists a t1 ∈ [t0,∞)T such that

m− ε < w(t)P (t) < M + ε, t ∈ [t1,∞)T. (3.8)

Similar to what we did in (2.19), multiply (2.17) by Pλ and delta integrate from t
to infinity to get

G

∫ ∞

t

q(τ)Pλ(τ)∆τ

≤ w(t)Pλ(t) +
∫ ∞

t

p(τ)Pλ−2(τ)
[
λwσ(τ)P (τ)− F

(
P (τ)wσ(τ)

)2]∆τ ;

this leads to

P 1−λ(t)G
∫ ∞

t

q(τ)Pλ(τ)∆τ ≤ w(t)P (t) + P 1−λ(t)
∫ ∞

t

p(τ)Pλ−2(τ)

×
[
λwσ(τ)P (τ)− F

(
P (τ)wσ(τ)

)2]∆τ.

(3.9)

Since the function γ(z) := λz − Fz2 is decreasing over the real interval [ λ
2F ,∞), it

follows from (3.8), (3.9), and Lemma 2.4 that

P 1−λ(t)G
∫ ∞

t

q(τ)Pλ(τ)∆τ

< M + ε + (m− ε)(λ− F (m− ε))P 1−λ(t)
∫ ∞

t

p(τ)Pλ−2(τ)∆τ

< M + ε +
(m− ε)(λ− F (m− ε))(1 + ε)2−λ

1− λ
.

This in tandem with (3.7) yields

g∗(λ) ≤ M +
m(λ− Fm)

1− λ
=

g∗(0)
1− λ

+
1

2F

(√
1− 4Fg∗(0) +

√
1− 4Fg∗(2)

)
,

a contradiction of (3.6). �
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Corollary 3.5. Assume that (2.21) holds, that P is given by (2.8), and that (2.9)
holds. Let 0 < g∗(0) ≤ 1/(4F ) and g∗(2) ≤ 1/(4F ). If

g∗(0) > g∗(0) +
1

2F

(√
1− 4Fg∗(0) +

√
1− 4Fg∗(2)

)
,

then every solution of nonlinear system (1.3) is oscillatory.

4. example

We illustrate Theorem 3.1 with the following example.

Example 4.1. Let T be an arbitrary time scale unbounded above, and let p and
F be positive constants. Then the linear system

x∆(t) = pFy(t), y∆(t) =
−1

tσ(t)
x(t), t ∈ [t0,∞)T (4.1)

for t0 > 0, is nonoscillatory for 0 < p ≤ 1/(4F ) and oscillatory for p > 1/(4F ). In
other words, the inequality in (3.1) is sharp on all time scales.

Proof. Note that p(t) ≡ p, f(y) = Fy, q(t) = 1
tσ(t) , and g(x) = x. Thus we have

P (t) = p(t− t0), f(y)/y = F , and G ≡ 1, so that

g∗(0) = lim inf
t→∞

GP (t)
∫ ∞

t

q(r)∆r = lim inf
t→∞

p(t− t0)
t

= p.

By Theorem 3.1 and (3.1), any solution (x, y) of (4.1) oscillates if p > 1/(4F ).
Converting (4.1) to a second-order dynamic equation for x, we arrive at a Cauchy-
Euler equation [5, Section 2.3] of the form

tσ(t)x∆∆(t) + pFx(t) = 0,

with general solution

x(t) = Ae 1+
√

1−4F p
2t

(t, t0) + Be 1−
√

1−4F p
2t

(t, t0), (4.2)

where we have used a linear combination involving the time-scale exponential func-
tion [4, Section 2.2]. From elementary analysis and Euler’s formula we know that
x is nonoscillatory for p ≤ 1/(4F ) and oscillatory for p > 1/(4F ), showing in
particular that the 1/(4F ) in (3.1) is sharp for all time scales T. �

Remark 4.2. In Example 4.1 we can identify the exponential functions that occur
in (4.2) for specific time scales [5, Example 2.19]. Letting λ = 1+

√
1−4Fp
2 , we get

that

T = R : e 1+
√

1−4F p
2t

(t, t0) =
( t

t0

)λ

,

T = qZ : e 1+
√

1−4F p
2t

(t, t0) =
( t

t0

)logq [1+(q−1)λ]

,

T = Z : e 1+
√

1−4F p
2t

(t, t0) =
Γ(t + λ)Γ(t0)
Γ(t)Γ(t0 + λ)

,

where Γ is the gamma function.
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