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A CELL COMPLEX STRUCTURE FOR THE SPACE OF
HETEROCLINES FOR A SEMILINEAR PARABOLIC EQUATION

MICHAEL ROBINSON

Abstract. It is well known that for many semilinear parabolic equations there

is a global attractor which has a cell complex structure with finite dimensional
cells. Additionally, many semilinear parabolic equations have equilibria with

finite dimensional unstable manifolds. In this article, these results are unified

to show that for a specific parabolic equation on an unbounded domain, the
space of heteroclinic orbits has a cell complex structure with finite dimensional

cells. The result depends crucially on the choice of spatial dimension and the
degree of the nonlinearity in the parabolic equation, and thereby requires some

delicate treatment.

1. Introduction

In this article, the space of heteroclinic orbits of

∂u(t, x)
∂t

=
∂2u(t, x)

∂x2
− u2(t, x) + φ(x) (1.1)

is shown to have the structure of a cell complex with finite-dimensional cells, where
u ∈ C1(R, C0,α(R)), φ ∈ L1 ∩C0,α(R), and |φ| → 0 as |x| → ∞. This result makes
precise the intuition that there are relatively few eternal solutions (those that exist
for all time t), and fewer still that are heteroclines. Moreover, the cell complex struc-
ture provides a helpful framework for understanding the bifurcations that occur in
solutions to (1.1) when φ is varied. As will be clear from the analysis, bifurcations
occur when the number of cells or the attaching maps in the cell complex of hetero-
clines change as a result of changes in the spectrum of a certain operator involving
φ. One should note that the bifurcations are rather delicate. The decay condition
on φ ensures that even small changes in φ as measured by Lp-norms can result in
vastly different cell complex structures. Perhaps more importantly, this result is a
key step in the programme of constructing a Floer homology theory for (1.1). In
particular, it is relatively easy to show that (1.1) is a gradient differential equation
[16]. The right side of (1.1) is the L2-gradient of the following functional defined
for all f ∈ C1(R):

A(f) =
∫ ∞

−∞
−1

2
‖∇f(x)‖2 − 1

3
f3(x) + f(x)φ(x)dx. (1.2)
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This article provides a demonstration that the linearization of (1.1) about a hetero-
cline is a Fredholm operator, much as is done in Floer’s original work [8]. Although
a Floer theory for (1.1) is not completed yet, we hope that the cell complex de-
scribed in this article is an analogue of the usual Morse complex.

The result of this article is a generalization of the well-known result that the
unstable manifolds of (1.1) are finite dimensional. Indeed, a standard proof of the
finite dimensionality of unstable manifolds (for instance, Theorem 5.2.1 in [10]) can
easily be made to apply with the Banach spaces we shall choose. One can then
use the iterated time-1 map of the flow for (1.1) to extend this local manifold to
a maximal unstable manifold. On the other hand, there are also finite Hausdorff
dimensional attractors for the forward Cauchy problem on bounded domains [15].
We shall exhibit a more global approach to the finite dimensionality of the unstable
manifolds than is usual, which allows us to examine the finite dimensionality of the
space of heteroclinic orbits connecting a pair of equilibria. In essence, the result that
is obtained here shows that the intersection of the stable and unstable manifolds of
(1.1) is relatively benign, and in any event is a finite-dimensional submanifold of
both the stable and unstable manifolds. (We note in passing that no transversality
results for stable and unstable manifolds are obtained in this article.)

The techniques used here depend rather delicately on both the degree of the
nonlinearity (which is quadratic) and the spatial dimension (which is 1). Both of
these are important in the standard methodology as well, as the portion of the
spectrum of the linearization in the right half-plane needs to be bounded away
from zero. In the case of (1.1), the spectrum in the right-half plane is discrete and
consists of a finite number of points.

Of an immediate and important concern is that there may not be any solutions
to (1.1) which are defined in C1(R, C0,α(R)). More particularly, are there solutions
to (1.1) which are defined for all time? This question can be answered in the
affirmative [18], so this article makes the assumption that the space of heteroclines
is nonempty and draws heavily on their properties as explained in [16].

2. Applications

Equation (1.1) is a very simple model of combustion. If φ is a positive constant,
then the equation supports traveling waves. Such traveling waves can model the
propagation of a flame through a fuel source [21]. In addition to a model of com-
bustion, (1.1) can also be a simple model of the population of a single species, with
a spatially-varying carrying capacity, φ. Indeed, one easily finds that under certain
conditions the behavior of solutions to (1.1) is reminiscent of the growth and (ad-
mittedly tenuous) control of invasive species [2]. It is the control of invasive species
that is of most interest, and it is also what the structure of the attaching maps of
the cell complex reveals. In the example given in Section 6, there is one more stable
equilibrium, and several other less stable ones. The more stable equilibrium can be
thought of as the situation where an invasive species dominates. The task, then, is
to try to perturb the system so that it no longer is attracted to that equilibrium.
An optimal control approach is to perturb the system so that it barely crosses the
boundary of the stable manifold of the the undesired equilibrium, and thereby the
invasive species is eventually brought under control with minimal disturbance to
the rest of the environment.
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3. Prior work

Equations of the form (1.1) have been of interest to researchers for quite some
time. Existence and uniqueness of solutions on short time intervals (on strips
(0, t0) × R) can been shown using semigroup methods and are entirely standard
[24]. However, there are obstructions to the existence of eternal solutions, those
which exist for all time. Aside from the typical loss of regularity due to solving
the backwards heat equation, there is also a blow-up phenomenon which can spoil
existence in the forward-time solution to (1.1). Blow-up phenonmena in the forward
time Cauchy problem (where one does not consider t < 0) have been studied by a
number of authors [9, 6, 22, 13, 3, 26, 27]. More recently, Zhang et al. [25, 20, 23]
studied global existence for the forward Cauchy problem for

∂u

∂t
= ∆u + up − V (x)u

for positive u, V . Du and Ma studied a related problem in [5] under more restricted
conditions on the coefficients but they obtained stronger existence results. In fact,
they found that all of the solutions which were defined for all t > 0 tended to
equilibrium solutions.

The boundary value problem that results from taking x ∈ Ω ⊂ Rn for some
bounded Ω (instead of x ∈ Rn) has also been discussed extensively in the literature
[10, 11, 4].

Much of the literature (including this article) describing eternal solutions to (1.1)
is restricted to discussing heteroclines. For unbounded domains and certain choices
of φ, one can find traveling waves. Since the propagation of waves in nonlinear
models is of great interest in applications, there is much written on the subject.
The general idea is that one makes a change of variables (t, x) 7→ ξ = x − ct
which reduces (1.1) to an ordinary differential equation. This ordinary differential
equation describes the profile of a traveling wave. Powerful topologically-motivated
techniques, such as the Leray-Schauder degree, can be used to prove existence of
wave solutions to (1.1). Asymptotic methods can be used to determine the wave
speed c, which is often of interest in applications. See [21] for a very thorough
introduction to the subject of traveling waves in (1.1).

4. The linearization and its kernel

We begin by considering an equilibrium solution f to (1.1). As discussed in [19],
this solution has asymptotic behavior which places it in C2 ∩ L1 ∩ L∞(R), which
is a consequence of the decay condition on φ. Moreover, we have that |A(f)| < ∞
in (1.2). We are particularly interested in solutions which lie in the α-limit set of
f , those solutions which are defined for all t < 0 and tend to f . Center attention
on this equilibrium by applying the change of variables u(t, x) 7→ u(t, x)− f(x) to
obtain

∂

∂t
u(t, x) =

∂2

∂x2
u(t, x)− 2f(x)u(t, x)− u2(t, x)

u(0, x) = h(x) ∈ C2(R)

lim
t→−∞

u(t, x) = f(x)

t < 0, x ∈ R.

(4.1)



4 M. ROBINSON EJDE-2009/16

Thus we have a final value problem for our nonlinear equation. All solutions to
(4.1) (which exist at all) will tend to zero as t → −∞ uniformly, which is a result of
Lemma 6 of [16]. Although this result is somewhat nontrivial, it is a consequence
of parabolic regularity and the fact that the function space C0,α(R) is a Banach
algebra. Of course, (4.1) is ill-posed. We show that there is only a finite dimensional
manifold of choices of h for which a solution exists.

4.1. Backward time decay. The decay of solutions to zero is a crucial part of
the analysis, as it provides the ability to perform Laplace transforms. In the for-
ward time direction, one obtains upper bounds for solutions by way of maximum
principles, and lower bounds for the upper bounds by way of Harnack estimates. In
the backward time direction, these tools reverse roles. Harnack estimates provide
upper bounds, while the maximum principle provides lower bounds for the upper
bound. In this section, we briefly apply a standard Harnack estimate to obtain an
exponentially decaying upper bound.

Harnack estimates for a very general class of parabolic equations are discussed
in [14] and [1]. In those articles, the authors examine positive solutions to

div A(x, t, u,∇u)− ∂u

∂t
= B(x, t, u,∇u),

where x ∈ Rn, and A : R2n+2 → Rn and B : R2n+2 → R satisfy

|A(x, t, u, p)| ≤ a|p|+ c|u|+ e

|B(x, t, u, p)| ≤ b|p|+ d|u|+ f

p ·A(x, t, u, p) ≥ 1
a
|p|2 − d|u|2 − g,

for some a > 0 and b, ...g are measurable functions. For a solution u defined on
a rectangle R, the authors define a pair of congruent, disjoint closed rectangles
R+, R− ⊂ R with R− being a backward time translation of R+. The main result
is the Harnack inequality

max
R−

u ≤ γ
(

min
R+

u + L
)
, (4.2)

where γ > 0 depends only on geometry and a (but not b, ...g) and L is a linear
combination of e, f, g whose coefficients depend on geometry.

In the case of (4.1), we have that (4.2) will apply with L = 0, since the e, f, g can
all be chosen to be zero. Notice that the conditions on A,B are satisfied because
any solution to (4.1) is automatically a finite energy solution in the sense of [16]
(the functional A in (1.2) remains finite along time-slices of the solution), and
therefore is bounded and has bounded first derivatives. This can also be viewed as
a consequence of parabolic regularity. The only difficulty is that (4.2) applies for
positive solutions, while (4.1) may have solutions with negative portions. However,
one can pose the problem for the (weak) solution of

∂|u|
∂t

= sgn(u)
(
∆u− u2 − 2fu

)
= ∆|u| − u|u| − 2f |u|
≥ ∆|u| − |u|2 − 2|f ||u|

for which we only get positive solutions. By iterating (4.2) over a sequence of
rectangles Rk = {(t, x) ∈ R2| − k + 1 ≤ t ≤ −k and a ≤ x ≤ b} for k = 1, 2, ...



EJDE-2009/16 HETEROCLINES OF A PARABOLIC EQUATION 5

and fixed a, b, we have that solutions to (4.1) decay exponentially (uniformly on
compact spatial subsets) as t → −∞. However, Lemma 6 of [16] asserts that this
decay is stronger: in fact, it is uniform as t → −∞.

4.2. Topological considerations.

Definition 4.1. Let Ya(X) be the subspace of C1(X, C0,α(R)) which consists of
functions which decay exponentially to zero like eat, where 0 < α ≤ 1. We define
the weighted norm

‖u‖Ya = ‖e−at‖u(t)‖C0,α(R)‖C1

and the space

Ya(X) = {u = u(t, x) ∈ C1(X, C0,α(R))|‖u‖Ya
< ∞}.

In a similar way, we can define the weighted Banach space Za(X) as a subspace of
C0(X, C0,α(R)). It is quite important that Ya and Za are Banach algebras under
pointwise multiplication.

Eternal solutions to (4.1) are zeros of the densely defined nonlinear operator
N : Ya((−∞, 0]) → Za((−∞, 0]) given by

N(u) =
∂u

∂t
− ∂2u

∂x2
+ u2 + 2fu. (4.3)

About the zero function, the linearization of N is the densely defined linear map
L : Ya((−∞, 0]) → Za((−∞, 0]) given by

L =
∂

∂t
− ∂2

∂x2
+ 2f =

∂

∂t
−H, (4.4)

where we define H = ∂2

∂x2 − 2f . Also note that L is the Frechét derivative of N ,
which follows from the fact that Ya and Za are Banach algebras.

Remark 4.2. We are using C0,α(R) instead of C0(R) to ensure that N and L be
densely defined. We could use space of continuous functions which decay to zero,
or the space of uniformly continuous functions equally well.

Convention 4.3. We shall conventionally take a > 0 to be smaller than the small-
est eigenvalue of H.

We show two things: that the kernel of L is finite dimensional, and that L
is surjective. These two facts enable us to use the implicit function theorem to
conclude that the space of solutions comprising the α-limit set of an equilibrium is
a finite dimensional submanifold of Ya((−∞, 0]).

4.3. Dimension of the kernel.

Lemma 4.4. If f is an equilibrium solution, then the operator L : Ya((−∞, 0]) →
Za((−∞, 0]) in (4.4) has a finite dimensional kernel.

Proof. Notice that the operator L is separable, so we try the usual separation
h(t, x) = T (t)X(x). Substituting into (4.4) gives

0 = Lh =
( ∂

∂t
− ∂2

∂x2
+ 2f

)
h

= T ′X + T
(
− ∂2

∂x2
+ 2f

)
X
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T ′

T
=

(
∂2

∂x2 − 2f
)
X

X
= λ

for some λ ∈ C. The separated equation for T yields T = Cxeλt. Since we are
looking for the kernel of L in Ya ⊂ L∞(R2), we must conclude that λ must have
nonnegative real part. On the other hand, the spectrum of H = ( ∂2

∂x2−2f) is strictly
real, so λ ≥ 0. Indeed, there are finitely many positive possibilities for λ each
with finite-dimensional eigenspace. This is a standard fact about the Schrödinger
operator H since f is an equilibrium. Thus L has a finite dimensional kernel. �

4.4. Surjectivity of the linearization. In order to show the surjectivity of L,
we will construct a map Γ : Za((−∞, 0]) → Ya((−∞, 0]) for which L ◦ Γ = idZa

.
That is, we construct a right-inverse to L, noting of course that L is typically not
injective. We shall derive a formula for Γ using the Laplace transform v 7→ v

v(s, x) =
∫ 0

−∞
estv(t, x)dt,

where <(s) > −a and v ∈ Za((−∞, 0]).
Since Lemma 4.4 essentially solves (4.1), we will be solving the inhomogeneous

problem with zero final condition

∂v(t, x)
∂t

− ∂2v(t, x)
∂x2

+ 2f(x)v(t, x) = −w(t, x) ∈ Za((−∞, 0])

v(0, x) = 0
(4.5)

for t < 0. The Laplace transform of this problem is

sv(s, x) +
∂2v(s, x)

∂x2
− 2f(x)v(s, x) = w(s, x)

(H + s)v(s, x) = w(s, x).

Choose a vertical contour C with 0 > <(s) > −a, so that the Laplace transforms
are well-defined, and that the contour remains entirely in the resolvent set of −H.
Then we can invert to obtain

v(s, x) = (H + s)−1w(s, x).

Using the inversion formula for the Laplace transform yields

v(t, x) =
1

2πi

∫
C

e−st(H + s)−1w(s, x)ds

=
1

2πi

∫
C

e−st(H + s)−1

∫ 0

t

esτw(τ, x)dτ ds

=
∫ 0

t

( 1
2πi

∫
C

es(τ−t)(H + s)−1ds
)
w(τ, x)dτ.

We can obtain operator convergence of the operator-valued integral in parenthe-
ses if we deflect the contour C. Choose instead the portion C ′ of the hyperbola
(See Figure 1)

(<(s))2 − (=(s))2 =
1
4
(λ− a)2 (4.6)

(where λ is the smallest magnitude eigenvalue of −H) which lies in the left half-
plane as our new contour. Then, since −H : C0,α → C0,α is sectorial about
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Figure 1. Definition of the contour C ′

(λ− a)/2, in [10, Theorem 1.3.4 ] implies that the integral( 1
2πi

∫
C′

es(τ−t)(H + s)−1ds
)

defines an operator-valued semigroup e−H(τ−t), so the formula for Γ is given by

Γ(w)(t, x) =
∫ 0

t

e−H(τ−t)w(τ, x)dτ. (4.7)

It remains to show that the image of Γ is in fact Ya, as it is easy to see that its
image is in L∞. That the image is as advertised is not immediately obvious because
the contour deflection C → C ′ changes the domain of the Laplace transform. In
particular, the derivation given above is no longer valid with the new contour.

Therefore, we must estimate ‖v‖Za
(recall that λ is the smallest magnitude

eigenvalue of −H)

‖e−atv(t, x)‖C0 =
∥∥ 1

2πi

∫
C′

(s + H)−1

∫ 0

t

e−(s+a)(t−τ)eaτw(τ, x)dτ ds
∥∥

C0

≤ 1
2π

∫
C′

K1

|s− λ|
e−<(s+a)t

∫ 0

t

e<(s+a)τ‖w‖Za
dτ ds

≤ K1‖w‖Za

2π

∫
C′

1
|s− λ|

e−<(s+a)t 1
<(s + a)

(
1− e<(s+a)t

)
ds

≤ K1‖w‖Za

π

∫
C′

ds

|s− λ||<(s + a)|
≤ K2‖w‖Za

,

where 0 < K1,K2 < ∞ are independent of t and w. We have made use of the usual
estimate of the norm of (H + s)−1 : C0,α → C0,α when s is in the resolvent set of
−H. In particular, note that the choice of C ′ being to the left of −a is crucial to the
convergence of the integrals. Thus the image of Γ lies in Za. The backward-time
decay of ∂v

∂t is immediate from the Harnack inequality (4.2), so in fact the image of
Γ lies in Ya.
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Theorem 4.5. The linear map L : Ya((−∞, 0]) → Za((−∞, 0]) is surjective and
has a finite dimensional kernel. Therefore the set N−1(0) is a finite dimensional
manifold, which is the unstable manifold of the equilibrium f . The dimension of
N−1(0) is precisely the dimension of the positive eigenspace of H.

Proof. The only thing which remains to be shown is that the domain Ya splits into
a pair of closed complementary subspaces: the kernel of L and its complement.
That its complement is closed follows immediately from a standard application of
the Hahn-Banach theorem. (Extend idker L to all of Ya.) �

Combining the fact that an equilibrium solution can have an empty unstable
manifold (a numerical computation of the dimension of the eigenspaces of L can be
found in [19]) and is yet unstable, we have proven the following result.

Theorem 4.6. All equilbrium solutions to (1.1) are degenerate critical points in
the sense of Morse.

5. Linearization about heteroclinic orbits

We can extend the technique of the previous section to the linearization about
a heteroclinic orbit. The resulting generalization of Theorem 4.5 is that the con-
necting manifolds of (1.1) are all finite dimensional.

Suppose that u is a heteroclinic orbit of (1.1). Let f−, f+ be the equilibrium
solutions of (1.1) to which u converges as t → −∞ and t → +∞ respectively.

Suppose that λ0 : R → (0,∞) is the smallest positive eigenvalue of H(t). It is
easy to see that λ0 is piecewise C1, for instance, see Proposition I.7.2 in [12]. The
fact that the the spectrum of H lies entirely to the left of max{2‖f+‖∞, 2‖f−‖∞}
ensures that λ0 is a bounded function. We will define a pair of bounded, piecewise
C1 functions λ1 and λ2 which will aid us in defining a two more pairs of function
spaces. Let λ1 : R → (0,∞) be a bounded, piecewise C1 function with bounded
derivative which has the following properties:

• λ1(t) is never an eigenvalue of H(t),
• limt→∞

λ1(t)
λ0(t)

< 1,

• limt→−∞
λ1(t)
λ0(t)

< 1, and
• since u → f± uniformly, for a sufficiently large R > 0, λ1 can be chosen so

that there are no jumps on its restriction to R− [−R,R].
Defining λ2 is a somewhat more delicate problem. We would like to exclude

the solutions which lie in the unstable manifold of f+, since they cannot lie in the
space of heteroclines from f− → f+. We do this by separating the eigenvalues
corresponding to the intersection of the unstable manifolds of f− and f+ from
those which lie in the stable manifold of f+. However, there is an obstruction to
this technique. In particular, the eigenvalues of H(t) = ∂2

∂x2 − 2u(t) vary with time,
and can bifurcate. To avoid this issue, we need some kind of regularity for the
eigenvalues to prevent them from bifurcating. We follow Floer [7] in the following
way:

Conjecture 5.1. There is a generic subset (a Baire subset) of choices for φ in (1.1)
so that if u is a heteroclinic orbit, all of the eigenvalues of H(t) are simple.

Numerical evidence, as exhibited in [19] and Section 6 suggests that the above
Conjecture is true. When we assume that all of the eigenvalues of H(t) are simple,
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t

eigenvalues of H(t)

1
2

spectrum 
of H(t)

Figure 2. Definition of λ1 and λ2

and therefore do not undergo any bifurcations other than passing through zero, we
shall say u is a heterocline contained in Ureg.

Let λ2 be in C1(R) such that
• λ2 = λ1 on [R,∞), and
• λ2(t) is not an eigenvalue of H(t) for any t.

We can do this when u ∈ Ureg. See Figure 2.

Definition 5.2. Define the Banach algebra Yλi
(X) (for i = 1, 2) to be the set of u

in C1(X, C0,α(R)) such that the norm∥∥e−
R t
0 λi(τ)dτ‖u(t)‖C0,α

∥∥
C1 < ∞,

where X is an interval containing zero. Likewise, we can define the spaces Zλi(X) ⊂
C0(X, C0,α(R)) in a similar way. That these are Banach spaces follows from the
boundedness of the λi. It is also elementary to see that these are Banach algebras.

We then consider Ni, Li as Yλi
(R) → Zλi

(R), where Li is the linearization of
Ni about u for i = 1, 2. (Again, since Yλi and Zλi are Banach algebras, Li is the
Frechét derivative of Ni.) For a i ∈ {1, 2}, consider the restriction L−i of Li to a
map Yλi((−∞, 0]) → Zλi((−∞, 0]). We rewrite

L−i =
( ∂

∂t
− ∂2

∂x2
+ 2f−

)
+ (2f− − 2u). (5.1)

Likewise, we can define L+
i : Yλi

([0,∞)) → Zλi
([0,∞)).

We define the positive eigenspaces V + for the equilibria as well

V +(f±) = span
{
v ∈ C0,α(R) : there is a λ > 0 with

( ∂2

∂x2
− 2f±

)
v = λv

}
. (5.2)

Note in particular that dim V +(f±) < ∞.

Lemma 5.3. If u ∈ Ureg is a heterocline that converges to f± as t → ±∞, then
the operator Li has a finite dimensional kernel for i ∈ {1, 2}, and in particular

lim
t→−∞

dim V +(u(t))− lim
t→+∞

dim V +(u(t)) ≤ dim kerLi ≤ dim kerL−i < ∞.
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(The condition u ∈ Ureg is only necessary for the i = 2 case.)

Proof. Notice that the first term of (5.1) has finite dimensional kernel by Lemma
4.4 and closed image by Theorem 4.5. The second term of (5.1) is a compact
operator since u → f− uniformly. Thus L−i has a finite dimensional kernel. Let
span{vm}M

m=1 = kerL−i and consider the set of Cauchy problems

∂h

∂t
=

∂2h

∂x2
− 2uh for t > 0

h(0, x) = vm(0, x).
(5.3)

Standard parabolic theory gives uniqueness of solutions to (5.3), and that a solution
h lies in the kernel of L+

i , the restriction of Li to [0,∞)×R. Therefore dim kerLi ≤
dim kerL−i < ∞.

For the other inequality, modify u outside of [−R,R]× R to get a ū so that the
linearization Li of N about ū satisfies

• ker Li is isomorphic to kerLi as vector spaces,
• ū|(−∞,−R)×R = f−, and
• ū|(R,∞)×R = f+.

We can do this for a sufficiently large R, since u tends uniformly to equilibria. Then
the flow of

∂h

∂t
=

∂2h

∂x2
+ 2ūh

defines an injective linear map from the timeslice at −R to the timeslice at R. (That
is, it gives an injective map from C0,α(R) to itself – injectivity being an expression
of the uniqueness of solutions.) Each element v of the kernel of Li evidently must
have v(−R) ∈ V +(f−) and v(R) /∈ V +(f+). Therefore, the injectivity ensures that
the intersection of the image under the flow of V +(f−) with the complement of
V −(f+) has at least dimension dim V +(f−)− dim V +(f+). �

Remark 5.4. Multiplication by u, C1(R2, C0,α(R)) → C0(R2) is not a compact
operator, in particular note that dim kerL+

i = ∞.

Theorem 5.5. Let u be a heterocline of (1.1) which connects equilibria f±. There
exists a union ∪Mu of finite dimensional submanifolds Mu of C1(R, C0,α(R)) which

• contains u and
• consists of heteroclines connecting f− to f+.

If u ∈ Ureg, then Mu has dimension limt→−∞ dim V +(u(t))−limt→∞ dim V +(u(t)),
and this is maximal among such submanifolds Mu.

Proof. Observe that L1 is surjective, since it is easy to show that the formula

Γ1(w)(t) =
∫ 0

t

e−
R T−t
0 H(τ)dτw(T, x)dT

is a well defined right inverse of L1. This involves showing that

e−
R t
0 H(τ)dτ =

1
2πi

∫
C(t)

est(H(t) + s)−1ds

converges, where we note that the contour changes with time. As it happens, the
computation in [10] goes through with the only change that at t = 0, we deflect the
contour to the right, rather than the left (as in Figure 1). Since Lemma 5.3 shows
that L1 has finite dimensional kernel, then it follows that Mu = N−1

1 (0) is a union
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of finite dimensional manifolds, with a finite maximal dimension. It is obvious that
Mu consists entirely of heteroclinic orbits and contains u.

It remains to show that the dimension of Mu is as advertised and maximal.
Observe that L2 is a compact perturbation of an operator L′2 : Yλ2(R) → Zλ2(R)
which is time-translation invariant. This follows from the precise choice of λ2 being
continous and not intersecting the eigenvalues of H. L2 and L′2 are both surjective
by exactly the same reasoning as for L1. L′2 is injective by using separation of
variables as in Lemma 4.4 (noting that all nontrivial solutions blow up in the Yλ2

norm). Therefore the Fredholm index of L′2, hence L2 is zero. However, this implies
that L2 is injective.

Since L2 is bijective, any solution to L2u = 0 which decays faster than e
R

λ2(t)dt

as t → −∞ ends up growing faster than e
R

λ2(t)dt as t → +∞, and in particular
does not tend to zero. As a result, such a solution cannot be in ker L1. This implies
that dim kerL1 ≤ limt→−∞ dim V +(u(t)) − limt→∞ dim V +(u(t)), which with the
estimate in Lemma 5.3 completes the proof. �

Remark 5.6. Even if u /∈ Ureg (when there exist nonsimple eigenvalues of H(t)),
the function λ1 can still be constructed. As a result, we always get that the con-
necting manifold Mu is finite-dimensional.

Corollary 5.7. The space of heteroclinic orbits has the structure of a cell com-
plex with finite dimensional cells. This cell complex structure is evidently finite
dimensional if there exist only finitely many equilibria for (1.1).

6. An extended example

Consider the following special case of (1.1)

∂u

∂t
=

∂2u

∂x2
− u2 + (x2 − c)e−x2/2, (6.1)

where the choice of φ in (1.1) has been fixed. The bifurcation diagram for the
equilibria of (6.1) can be found in Figure 3. The bifurcation diagram is parametrized
by three variables: c, f(0), f ′(0). (Since the equilibrium equation is a second-order
ODE, it suffices to specify each solution by its value and first derivative at 0.)
Based on the Theorem 4.5, the number of positive eigenvalues shown in Figure 3
corresponds exactly to the dimension of the unstable manifold of each equilibrium.

6.1. Frontier of the stable manifold. According to Figure 3, when c = −1.2,
there is only one equilibrium, f0. It has empty unstable manifold, though of course
it is asymptotically unstable (as is shown in [17]). On the other hand, f0 has an
infinite dimensional stable manifold, which is not all of C0,α(R), as a consequence of
the asymptotic instability. As a result, its stable manifold has a frontier in C0,α(R)
(which may not be a boundary in the sense of a manifold with boundary). We are
interested in the qualitative behavior of solutions near and along this frontier. We
know by Lemma 6 of [16] that if they tend to f0 uniformly on compact subsets,
then they do so uniformly. It is enlightening to use a numerical procedure to this
end. We start solutions at the following family of initial conditions

uA(x) = f0(x) + Ae−x2/10. (6.2)

Using the Fujita technique (exactly as shown in [17]), we can show that for suffi-
ciently negative A, the solution started at uA will not be eternal. As a result, the
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Figure 3. Bifurcation diagram, coded by spectrum of d2

dx2 − 2f :
green = nonpositive spectrum, blue = one positive eigenvalue, red
= two positive eigenvalues

family of initial conditions uA intersects the frontier of the stable manifold of f0.
An approximation to the value of A which corresponds to the frontier can be easily
found using a binary search. Some typical such solutions are shown in Figure 4,
and the approximate value of A corresponding to the frontier is A ≈ −2.15

The qualitative behavior shown in Figure 4 indicates that there is some kind of
traveling disturbance in the frontier solutions, which seems like a traveling wave.
However, such a solution also appears to tend uniformly on compact subsets to f0,
so in fact it converges uniformly. (The uniform convergence is not obvious from the
figure, due to the numerical solution being truncated at a finite time.) The leading
edge of this disturbance collapses to −∞ in finite time for solutions just outside
the stable manifold of f0.

6.2. Flow near equilibria with two-dimensional unstable manifolds. Also
of interest is the structure of the flow in the unstable manifold of the “fork arms”
which occur at c = 0.0740, as they approach the pitchfork bifurcation at c = 0.0501.
Figure 5 shows a schematic of the flow based on numerical evidence. Of particular
interest is the behavior near the boundary marked A. Solutions to the right of the
boundary are not eternal solutions – they fail to exist for all t. Solutions to the left
of A are heteroclinic orbits connecting the equilibrium with an unstable manifold
of dimension 2 to the equilibrium with an unstable manifold of dimension zero. A
typical such solution is shown in Figure 6.

To examine solutions near the boundary A, we center our attention on the case
c = 0, which has two equilibria, one of which (call it f1) has a 2-dimensional
unstable manifold. (This corresponds to the right pane of Figure 5.) If we linearize
about f1, the operator H = ∂2

∂x2 − 2f1 : C0,α(R) → C0,α(R) has a pair of simple



EJDE-2009/16 HETEROCLINES OF A PARABOLIC EQUATION 13

−20 −15 −10 −5 0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

x

Solution curves that go to the stable equilibrium, for c = −1.2

−20 −15 −10 −5 0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

x

Solution curves that wander, for c = −1.2

−20 −15 −10 −5 0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
Solution curves that go to −∞, for c = −1.2

Figure 4. Behavior of solutions near the frontier of the stable
manifold of f0 (horizontal axis is x)

eigenvalues, as is easily seen in the right pane of Figure 6 at t = 0. One of these
eigenvalues is smaller, to which is associated the eigenfunction e1 in Figure 7. The
eigenfunction e2 is associated to the larger eigenvalue. In Figure 5, e1 corresponds
to the horizontal direction, and e2 corresponds to the vertical direction. ¿From the
proof of Lemma 4.4, it is clear that {e1, e2} spans the tangent space of the unstable
manifold at f1. Therefore, we specify initial conditions uA,θ(x) for a numerical
solver using

uA,θ(x) = f1(x) + A (e1(x) cos θ + e2(x) sin θ) . (6.3)

(Taking A small allows us to approximate solutions which tend to f1 in back-
wards time.) Since the perturbations along e1, e2 are quite small, and indeed the
eigenvalue associated to e1 is much smaller than that associated to e2, examining
the numerical results of evolving uA,θ is quite difficult. The behavior along the
boundary occurs at a much smaller scale than f1, yet is crucial in determining the
long-time behavior of the solution. To remedy this, the boundary behavior is bet-
ter emphasized by plotting uA,θ(t, x)− f1(x) instead. Figure 8 shows the results of
evolving initial conditions (6.3) for A = 0.1 and various values of θ.

Solutions in Figure 8 show a similar kind of behavior as in the case of the
frontier of f0. There is a traveling front, which moves very slowly in the negative
x-direction. However, the behavior is quite a bit more delicate. The determining
factor in locating the frontier of f0 is the perturbation in a direction roughly like
e2, which has a large eigenvalue. On the other hand, for f1, Figure 5 indicates that
such a direction is not parallel to the boundary of the connecting manifold. (The
boundary direction is some linear combination of e1 and e2, with a numerical value
for the angle θ being roughly 1.114975 radians.) The eigenvalue associated to e1 is
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Figure 5. Flow in the unstable manifold of a “fork arm.” c =
0.0600 (left); c = 0.0501 (right)

roughly ten times smaller, and therefore perturbations in that direction are much
more sensitive. Additionally, the action of the flow is therefore primarily in the
direction of e1, which tends to mask effects in other directions. For this reason,
it was visually necessary to postprocess the numerical solutions by subtracting f1

from them. Otherwise the presence of the traveling front was unclear.

Conclusions. We have shown that the tangent space at an equilibrium splits into
a finite dimensional unstable subspace, and infinite dimensional center and stable
subspaces. However, it is quite clear by [17] that the center subspace is nonempty
and large. Indeed, considering the work of [20], the center and stable subspaces are
not closed complements of each other. Additionally, we have given conditions for
the space of heteroclinic orbits to have a finite dimensional cell complex structure.
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