\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 150, pp. 1--9.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/150\hfil Triple solutions] {Triple solutions for multi-point boundary-value problem with $p$-Laplace operator} \author[H. Li, Y. Liu\hfil EJDE-2009/150\hfilneg] {Haitao Li, Yansheng Liu} % in alphabetical order \address{Haitao Li \newline Department of Mathematics, Shandong Normal University, Jinan, 250014, China} \email{haitaoli09@gmail.com} \address{Yansheng Liu \newline Department of Mathematics, Shandong Normal University, Jinan, 250014, China} \email{yanshliu@gmail.com} \thanks{Submitted April 22, 2009. Published November 25, 2009.} \thanks{Supported by grants 209072 from the Key Project of Chinese Ministry of Education, \hfill\break\indent and J08LI10 from the Science and by Technology Development Funds of Shandong \hfill\break\indent Education Committee} \subjclass[2000]{34B10, 34B15} \keywords{Triple solutions; $p$-Laplace operator; fixed point theorem; \hfill\break\indent multi-point boundary-value problem} \begin{abstract} Using a fixed point theorem due to Avery and Peterson, this article shows the existence of solutions for multi-point boundary-value problem with $p$-Laplace operator and parameters. Also, we present an example to illustrate the results obtained. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction } During the previous two decades, boundary-value problems for second-order differential equations with $p$-Laplace operator have been extensively studied and a lot of excellent results have been established by using fixed point index theory, upper and lower solution arguments, fixed point theorem like Leggett-Williams multiple fixed point theorem and so on (see \cite{g1,g2,h1,h2,h3,j1,l1,m1,w1,w2,w3,w4} and references therein). For example, Ma, Du and Ge \cite{m1} studied the following boundary-value problem (BVP, for short) with $p$-Laplace operator \begin{gather*} (\varphi_{p}(u'(t)))' + q(t)f(t, u(t))=0,\quad t\in (0, 1);\\ u'(0)=\sum_{i=1}^{n}\alpha_{i}u'(\xi_{i}), u(1)=\sum_{i=1}^{n}\beta_{i}u(\xi_{i}), \end{gather*} where $\varphi _{p}(s)=| s| ^{p-2}s$, $p>1$, $\varphi _{p}^{-1}=\varphi_{q}$, $ \frac{1}{p}+\frac{1}{q}=1$, and $0<\xi_{1}<\xi_{2}<\dots <\xi_{n}<1$. The nonlinearity $f$ is not depending on $u'$. Using the upper and lower solutions method, they obtained sufficient conditions for the existence of one positive solution. Lv, O'Regan and Zhang \cite{l1} considered the following boundary-value problem (BVP) with $p$-Laplace operator \begin{gather*} (\varphi_{p}(y'(t)))' + q(t)f(y(t))=0,\quad t\in [0, 1];\\ y(0)=y(1)=0. \end{gather*} By Leggett-Williams multiple fixed point theorem, they provided sufficient conditions for the existence of multiple (at least three) positive solutions. Recently Ji, Tian and Ge \cite{j1} studied the following boundary-value problem, in which the nonlinearity contains $u'$, \begin{equation} \begin{gathered} (\varphi_{p}(u'(t)))' + \lambda f(t, u(t), u'(t))=0,\quad t\in (0, 1);\\ u'(0)=\sum_{i=1}^{n}\alpha_{i}u'(\xi_{i}), \quad u(1)=\sum_{i=1}^{n}\beta_{i}u(\xi_{i}). \end{gathered} \label{e1.1} \end{equation} Applying Krasnosel'skii fixed point theorem, they obtained the existence of at least one positive solution. Wang and Ge \cite{w3} studied the multi-point boundary-value problem \begin{gather*} (\varphi_{p}(u'(t)))' + q(t)f(t, u(t), u'(t))=0,\quad t\in (0, 1);\\ u(0)=\sum_{i=1}^{n}\alpha_{i}u(\xi_{i}), \quad u(1)=\sum_{i=1}^{n}\beta_{i}u(\xi_{i}). \end{gather*} Using the fixed point theorem due to Avery and Peterson, they provided sufficient conditions for the existence of multiple positive solutions. Motivated by \cite{j1,w3}, we investigate \eqref{e1.1}. We study boundary value conditions that are different from those in \cite{l1,w3}. We obtain three solutions by the fixed point theorem due to Avery and Peterson, which is different from the methods in \cite{j1,l1,m1}. To the best of our knowledge, \eqref{e1.1} has not been studied via this fixed point theorem. This article is organized as follows. Section 2 gives some preliminaries. Section 3 is devoted to the existence of triple solutions for \eqref{e1.1}. Finally an example is shown to illustrate the results obtained. Now, we give some notation which will be used later. Let $X=C^{1}[0, 1]$ be a Banach space with the norm \[ \| u\|=\max\big\{\max_{t\in [0, 1]}|u(t)|, \max_{t\in [0, 1]}|u'(t)|\big\}. \] A function $u(t)$ is called a positive solution of \eqref{e1.1} if $u\in X$, satisfies \eqref{e1.1} and $u(t)>0$ for $t\in (0, 1)$. Let \begin{gather*} C^{\ast}[0, 1]=\{u\in X: u(t)\geq 0, u'(t)\leq 0, u'(t) \text{ is nonincreasing for } t\in[0, 1]\},\\ P=\{u\in X: u(t)\geq 0, u'(t)\leq 0, u'(t) \text{ is concave on }t\in[0, 1]\}. \end{gather*} It is easy to see $P$ is a cone of $X$. In this paper, we assume the following hypotheses: \begin{itemize} \item[(H1)] $\alpha_{i}, \beta_{i}\geq 0$, $0<\sum_{i=1}^{n}\alpha_{i}$, $\sum_{i=1}^{n}\beta_{i}<1$. \item[(H2)] $f\in C([0, 1]\times [0, +\infty)\times (-\infty, 0], [0, +\infty))$. \end{itemize} \section{Preliminaries} In this section, we provide some background definitions from the study of cone in Banach spaces; see for example \cite{g3}. Let $(E,\|\cdot\|)$ be a real Banach space. A nonempty, closed, convex set $P\subseteq E$ is said to be a cone provided the following two conditions are satisfied: \begin{itemize} \item[(a)] if $y\in P$ and $\lambda\geq 0$, then $\lambda y\in P$; \item[(b)] if $y\in P$ and $-y\in P$, then $y=0$. \end{itemize} If $P\subseteq E$ is a cone, we denote the order induced by $P$ on $E$ by $\leq$, that is, $x\leq y$ if and only if $y-x\in P$. A map $\alpha$ is said to be a nonnegative continuous concave functional on a cone $P$ of a real Banach space $E$, provided that $\alpha :P\to [0, +\infty)$ is continuous and $$ \alpha (tx+(1-t)y)\geq t\alpha (x)+(1-t)\alpha (y) $$ for all $x, y\in P$ and $0\leq t\leq 1$. Similarly, we say a map $\beta$ is a nonnegative continuous convex functional on a cone $P$ of a real Banach space $E$, provided that $\beta :P\to [0, +\infty)$ is continuous and $$ \beta (tx+(1-t)y)\leq t\beta (x)+(1-t)\beta (y) $$ for all $x,y\in P$ and $0\leq t\leq 1$. Let $\gamma$ and $\theta$ be nonnegative continuous convex functionals on $P$, $\alpha$ be a nonnegative continuous concave functional on $P$, and $\psi$ be a nonnegative continuous functional on $P$. Then for positive real numbers $a, b, c$ and $d$, we define the following convex sets: \begin{gather*} P(\gamma, d)=\{x\in P| \gamma (x)b\}\neq \emptyset$ and $\alpha (Tx)>b$ for $x\in P(\gamma, \theta, \alpha, b, c, d)$ \item[(S2)] $\alpha (Tx)>b$ for $x\in P(\gamma, \alpha, b, d)$ with $\theta (Tx)>c$ \item[(S3)] $0\notin R(\gamma, \psi, a, d)$ and $\psi (Tx)0$, the operator $T: P\to P$ is completely continuous. \end{lemma} Now we give an important property of $Ax$ defined by \eqref{e2.1}. \begin{lemma} \label{lem2.4} Assume {\rm (H1)} holds. Then for each $x\in C^{\ast}[0, 1]$, $\tau\in (0, \xi_{1})$, \begin{equation} \frac{\varphi_{p}(\sum_{i=1}^{n}\alpha_{i})}{1-\varphi_{p} (\sum_{i=1}^{n}\alpha_{i})}\int_{\tau}^{\xi_{1}}\lambda f(r, x(r), x'(r))dr\leq -Ax\leq k\int_{0}^{1}\lambda f(r, x(r), x'(r))dr. \label{e2.3} \end{equation} \end{lemma} \begin{proof} By \eqref{e2.1}, we have \begin{align*} \varphi_{q}(Ax) &= \sum_{i=1}^{n}\alpha_{i}\varphi_{q}(Ax-\int_{0}^{\xi_{i}} \lambda f(s, x(s), x'(s))ds)\\ &\geq \sum_{i=1}^{n}\alpha_{i}\varphi_{q}(Ax-\int_{0}^{1} \lambda f(s, x(s), x'(s))ds), \end{align*} and \begin{align*} \varphi_{q}(Ax) &=\sum_{i=1}^{n}\alpha_{i}\varphi_{q}(Ax-\int_{0}^{\xi_{i}} \lambda f(s, x(s), x'(s))ds)\\ &\leq \sum_{i=1}^{n}\alpha_{i}\varphi_{q}(Ax-\int_{\tau}^{\xi_{1}} \lambda f(s, x(s), x'(s))ds). \end{align*} From the increasing property of $\varphi_{q}$ and the two inequalities above, it is easy to get the conclusion. \end{proof} Set \begin{gather*} m:=\frac{2^{\frac{1}{q-1}}+1}{\xi_{1}}, \quad l:=\frac{\frac{(m+1)\xi_{1}}{2^{\frac{1}{q-1}}}+\xi_{1}^{-m}}{2},\\ N:=\frac{\sum_{i=1}^{n}\beta_{i}(1-\xi_{i}) +(1-\sum_{i=1}^{n}\beta_{i})(1-\xi_{1})}{1-\sum_{i=1}^{n}\beta_{i}}. \end{gather*} Choose an $\tau\in (0, \xi_{1})$ such that $l^{-1/m}<\tau<\xi_{1}$, and define the functionals: \begin{equation} \gamma (x)=\psi (x):=\| x\|, \quad \theta (x):=\max_{t\in [0, \tau]}| x'(t)|, \quad \alpha (x):=\min_{t\in[\tau, \xi_{1}]}x(t),\quad \forall x\in P. \label{e2.4} \end{equation} Then it is easy to get the following lemma. \begin{lemma} \label{lem2.5} The four functionals defined by \eqref{e2.4} satisfy Lemma \ref{lem2.1}. In addition, for each $x\in P$, $\theta (x)=-x'(\tau)$, $\alpha (x)=x(\xi_{1})$, $\gamma (x)=\psi(x)=x(0)$. \end{lemma} \section{Main Results} First we state the following hypotheses to be used in this article. \begin{itemize} \item[(H3)] There exists a positive constant $H$ such that $$ f(t, u, v)\varphi_{p}(b),\quad \text{for } (t, u, v) \in [\tau, \xi_{1}]\times [b, d]\times [-d, 0]. \end{gather*} \end{itemize} Now we are ready to state our main results. \begin{theorem} \label{thm3.1} Assume {\rm (H1)-(H4)}. Let $$ M=\frac{1-\sum_{i=1}^{n}\beta_{i}\xi_{i}} {(1-\sum_{i=1}^{n}\beta_{i})\varphi_{q}(1-\varphi_{p} (\sum_{i=1}^{n}\alpha_{i}))}. $$ Then for each $\lambda$ satisfying \begin{equation} \frac{1}{\xi_{1}M^{\frac{1}{q-1}}}\leq \lambda \leq \frac{1}{\frac{1}{m+1}2^{\frac{1}{q-1}}lM^{\frac{1}{q-1}}}, \label{e3.1} \end{equation} and $a\in (0, b)$, Equation \eqref{e1.1} has at least three solutions $x_{1}(t), x_{2}(t), x_{3}(t)$ satisfying \begin{itemize} \item[(i)] $\| x_{i}\|\leq d,\ i=1, 2, 3$; \item[(ii)] $b<\min\{| x_{1}(t)|| t\in [0, \tau]\}$; \item[(iii)] $\| x_{2}\|>a,\ \min\{x_{2}(t)| t\in [0,\tau]\}0$ such that $\max\{\frac{1}{1-\xi_{1}},\frac{1}{N}\}b$. This guarantees that $\{u\in P(\gamma, \theta, \alpha, b, wb, d)| \alpha (u)>b\}\neq \emptyset$. For any $u\in P(\gamma, \theta, \alpha, b, wb, d)$, it is easy to see $$ b\leq u(t)\leq d,\quad -d\leq u'(t)\leq 0,\quad \forall t\in [\tau, \xi_{1}]. $$ Thus by (H4), $f(t, u(t),u'(t))>\varphi_{p}(b)$. By Lemma \ref{lem2.2} and Lemma \ref{lem2.3}, it is not difficult to see \begin{align*} \alpha(Tu)&=(Tu)(\xi_{1})\\ &= -\frac{\sum_{i=1}^{n}\beta_{i}\int_{\xi_{i}}^{1} \varphi_{q}(Au-\int_{0}^{s}\lambda f(r, u(r), u'(r))dr)ds}{1-\sum_{i=1}^{n}\beta_{i}}\\ &\quad - \int_{\xi_{1}}^{1}\varphi_{q}(Au-\int_{0}^{s}\lambda f(r, u(r), u'(r))dr)ds\\ &\geq \frac{\sum_{i=1}^{n}\beta_{i}\int_{\xi_{i}}^{1} \varphi_{q}(k\int_{0}^{\xi_{1}}\lambda f(r, u(r),u'(r))dr +\int_{0}^{s}\lambda f(r, u(r), u'(r))dr)ds}{1-\sum_{i=1}^{n}\beta_{i}}\\ &\quad + \int_{\xi_{1}}^{1}\varphi_{q}(k\int_{0}^{\xi_{1}}\lambda f(r,u(r),u'(r))dr+\int_{0}^{s}\lambda f(r, u(r), u'(r))dr)ds\\ &\geq \lambda^{q-1}\frac{1-\sum_{i=1}^{n} \beta_{i}\xi_{i}}{(1-\sum_{i=1}^{n}\beta_{i})\varphi_{q} (1-\varphi_{p}(\sum_{i=1}^{n}\alpha_{i}))}\varphi_{q} (\int_{\tau}^{\xi_{1}} f(r, u(r),u'(r))dr)\\ &> \lambda^{q-1}\xi_{1}^{q-1}Mb \geq b. \end{align*} This shows that condition (S1) of Lemma \eqref{e2.1} is satisfied. \textbf{Step 3.} Examine (S2) of Lemma \ref{lem2.1}. For any $u\in P(\gamma, \alpha, b, d)\ \text{with}\ \theta (Tu)>wb$, we know \begin{equation} \theta (Tu)=-(Tu)'(\tau) =\varphi_{q}\Big(\int_{0}^{\tau}\lambda f(r, u(r), u'(r))dr-Au\Big)>wb. \label{e3.3} \end{equation} Therefore by \eqref{e2.3} and \eqref{e3.3}, \begin{align*} \alpha (Tu) &=(Tu)(\xi_{1})\\ &= -\frac{\sum_{i=1}^{n}\beta_{i} \int_{\xi_{i}}^{1}\varphi_{q}(Au-\int_{0}^{s}\lambda f(r, u(r), u'(r))dr)ds}{1-\sum_{i=1}^{n}\beta_{i}}\\ &\quad - \int_{\xi_{1}}^{1}\varphi_{q}(Au-\int_{0}^{s}\lambda f(r, u(r), u'(r))dr)ds\\ &\geq \frac{\sum_{i=1}^{n}\beta_{i}\int_{\xi_{i}}^{1}\varphi_{q} \Big(k\int_{0}^{\tau}\lambda f(r, u(r),u'(r))dr-Au\Big)ds} {1-\sum_{i=1}^{n}\beta_{i}}\\ &\quad + \int_{\xi_{1}}^{1}\varphi_{q}(k\int_{0}^{\tau}\lambda f(r, u(r),u'(r))dr-Au)ds\\ &= \frac{\sum_{i=1}^{n}\beta_{i}(1-\xi_{i}) +(1-\sum_{i=1}^{n}\beta_{i})(1-\xi_{1})}{1-\sum_{i=1}^{n}\beta_{i}} \varphi_{q}(\int_{0}^{\tau}\lambda f(r, u(r), u'(r))dr-Au)\\ &> Nwb > b. \end{align*} Thus, condition (S2) of Lemma \eqref{e2.1} is satisfied. \textbf{Step 4.} Finally we show (S3) of Lemma \ref{lem2.1} holds. Since $\psi (0)=0