\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 140, pp. 1--12.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2009/140\hfil Periodic solutions] {Periodic solutions for a Li\'enard equation with two deviating arguments} \author[Y. Wang, J. Tian \hfil EJDE-2009/140\hfilneg] {Yong Wang, Junkang Tian} \address{Yong Wang \newline School of Sciences, Southwest Petroleum University, Chengdu, Sichuan 610500, China} \email{odinswang@yahoo.com.cn, wangyong@swpu.edu.cn} \address{Junkang Tian \newline School of Sciences, Southwest Petroleum University, Chengdu, Sichuan 610500, China} \email{tianjunkang1980@163.com} \thanks{Submitted July 7, 2009. Published October 30, 2009.} \thanks{Supported by the SWPU Science and Technology Fund of China and by the Open \hfill\break\indent Fund of State Key Laboratory of Oil and Gas Researvoir Geology and Exploitation \hfill\break\indent (Southwest Petroleum University)} \subjclass[2000]{34C25, 34D40} \keywords{Periodic solution; Li\'enard equation; deviating argument} \begin{abstract} In this work, we prove the existence and uniqueness of periodic solutions for a Li\'enard equation with two deviating arguments. Our main tools are the Mawhin's continuation theorem and the Schwarz inequality. We obtain our results under weaker conditions than those in \cite{z07jcam}, as shown by an example in the last section of this artticle. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \allowdisplaybreaks \section{Introduction} The Li\'enard equation can be derived from many fields, such as physics, mechanics and engineering technique fields. An important question is whether this equation can support periodic solutions. In the past several years, the existence of periodic solutions to Li\'enard equation has been widely discussed, notably by Li\'enard \cite{l28rge} and by Levinson and Smith \cite{l42jdm}. Recently, Zhou and Long \cite{z07jcam} studied the existence and uniqueness of periodic solutions of the following Li\'enard equation with two deviating arguments \begin{equation}\label{a1} x''(t)+f(x(t))x'(t)+g_{1}(t,x(t-\tau_{1}(t))) +g_{2}(t,x(t-\tau_{2}(t)))=e(t), \end{equation} where $f,\tau_{1},\tau_{2},e \in C(\mathbb{R},\mathbb{R})$, $g_{1},g_{2} \in C(\mathbb{R}^{2},\mathbb{R})$, $\tau_{1}(t),\tau_{2}(t),g_{1}(t,x),g_{2}(t,x),e(t)$ are periodic functions with period $T$, with respect to $t$, $T$-periodic for short. In recent years, there have been many publications on the existence of periodic solutions of the Li\'enard equation of the type \eqref{a1}; see for example \cite{c04na,l07jcam,l07cam,c01na,l06na,l03amc,l04jmaa,w02na,wy}. However, as far as we know, there are fewer results on the existence and uniqueness of periodic solutions to \eqref{a1}. Applying Mawhin's continuation theorem and some analysis techniques, Zhou and Long \cite{z07jcam} provided a sufficient condition for the existence and uniqueness of periodic solutions to \eqref{a1}, but their results can be improved. The main purpose of this paper is to provide a new sufficient condition for guaranteeing the existence and uniqueness of $T$-periodic solutions to \eqref{a1}, by using Mawhin's continuation theorem and Schwarz inequality. Our results hold under weaker conditions than those in \cite{z07jcam}, and that are verifiable as shown by an example in the last section. \section{Preliminaries} For convenience, we define \begin{gather*} |x|_{\infty}=\max_{t\in [0,T]}|x(t)| , \quad |x'|_{\infty}=\max_{t\in [0,T]}|x'(t)|,\\ |x|_{k}=\Big(\int_{0}^{T}|x(t)|^{k}dt \Big)^{1/k}, \quad \bar{e}=\frac{1}{T}\int_{0}^{T}e(t)dt \end{gather*} Let \[ C_{T}^{1}:=\{x\in C^{1}(\mathbb{R} ,\mathbb{R} ): x \textrm{ is $T$-periodic}\},\quad C_{T}:=\{x\in C(\mathbb{R} ,\mathbb{R} ): x \textrm{ is $T$-periodic}\}, \] which are Banach spaces with the norms $$ \|x\|_{C_{T}^{1}}=\max\{|x|_{\infty},|x'|_{\infty}\},\quad \|x\|_{C_{T}}=|x|_{\infty}. $$ The following conditions will be used in this paper: \begin{itemize} \item[(H0)] There exist $C_1\geq 0$, $C_2\geq 0$, $b_1\geq 0$ and $b_2\geq 0$ such that $|f(x_1)-f(x_2)|\leq C_1|x_1-x_2|$, $|f(x)|\leq C_2$ and $|g_i(t,u)-g_i(t,v)|\leq b_i|u-v|$, for all $x_1,x_2,x,t,u,v\in\mathbb{R}$, $i=1,2$. \end{itemize} The following Mawhin's continuation theorem is useful in obtaining the existence of $T$-periodic solutions of \eqref{a1}. \begin{lemma}[{\cite[p. 40]{gre}}] \label{lem1} Let $X$ and $Y$ be two Banach spaces. Suppose that $L: D(L) \subset X \to Y$ is a Fredholm operator with index zero and $N: X \to Y$ is L-compact on $\overline{\Omega}$, where $\Omega$ is an open bounded subset of $X$. Moreover, assume that all the following conditions are satisfied: \begin{itemize} \item[(i)] $Lx\neq \lambda Nx$, for all $x\in\partial{\Omega}\cap D(L), \lambda\in(0,1)$; \item[(ii)] $Nx \notin \mathop{\rm Im}L$, for all $x\in\partial{\Omega}\cap \ker L$; \item[(iii)] the Brouwer degree $\deg \{JQN, \Omega\cap \ker L, 0\}\neq 0$, where $J: \mathop{\rm Im}Q \to \ker L$ is an isomorphism. \end{itemize} Then equation $Lx=Nx$ has at least one solution on $\overline{\Omega}\cap D(L)$. \end{lemma} \begin{lemma} \label{lem2} If $x\in C^{2}(\mathbb{R},\mathbb{R})$ with $x(t+T)=x(t)$, then $$ |x'|_{2}^{2}\leq \big(\frac{T}{2\pi}\big)^{2}|x''|_{2}^{2}. $$ \end{lemma} The proof of the above lemma is a direct consequence of the Wirtinger inequality; see for example \cite{hgh}. Consider the homotopic equation of \eqref{a1}, for $\lambda\in(0,1)$, \begin{equation}\label{b1} x''(t)+\lambda f(x(t))x'(t)+\lambda g_{1}(t,x(t-\tau_{1}(t)))+\lambda g_{2}(t,x(t-\tau_{2}(t)))=\lambda e(t). \end{equation} We have the following lemma. \begin{lemma} \label{lem3} Suppose that the following conditions are satisfied: \begin{itemize} \item[(H1)] one of the following conditions holds: \begin{enumerate} \item $(g_{i}(t,u)-g_{i}(t,v))(u-v)>0$ for all $t,u,v\in\mathbb{R}$, $u\neq v$, $i=1,2$, \item $(g_{i}(t,u)-g_{i}(t,v))(u-v)<0$ for all $t,u,v\in\mathbb{R}$, $u\neq v$, $i=1,2$; \end{enumerate} \item[(H2)] there exists $d\geq 0$ such that one of the following conditions holds: \begin{enumerate} \item $x(g_{1}(t,x)+g_{2}(t,x)-\bar{e})>0$, for all $t\in\mathbb{R}$, $|x|> d$, \item $x(g_{1}(t,x)+g_{2}(t,x)-\bar{e})<0$, for all $t\in\mathbb{R}$, $|x|> d$; \end{enumerate} \end{itemize} If $x(t)$ is a $T$-periodic solution of \eqref{b1}, then \begin{equation}\label{b2} |x|_{\infty}\leq d+\frac{\sqrt{T}}{2}|x'|_{2}. \end{equation} \end{lemma} \begin{proof} Let $x(t)$ be an arbitrary $T$-periodic solution of \eqref{b1}. Then, integrating \eqref{b1} from 0 to $T$, we have \begin{equation}\label{b3} \int_{0}^{T}[g_{1}(t,x(t-\tau_{1}(t))) +g_{2}(t,x(t-\tau_{2}(t)))-e(t)]dt=0, \end{equation} which implies that there exists $t_{1}\in\mathbb{R}$ such that \begin{equation}\label{b6} g_{1}(t_{1},x(t_{1}-\tau_{1}(t_{1})))+g_{2}(t_{1}, x(t_{1}-\tau_{2}(t_{1})))-\bar{e}=0. \end{equation} Now we show the following statement. \noindent{\bf Claim.} If $x(t)$ is a $T$-periodic solution of \eqref{b1}, then there exists $t_{2}\in\mathbb{R}$ such that \begin{equation}\label{b7} |x(t_{2})|\leq d. \end{equation} Assume, by way of contradiction, that \eqref{b7} does not hold. Then \begin{equation}\label{b8} |x(t)|> d\quad \textrm{for all}\,\,t\in\mathbb{R}, \end{equation} which, together with (H1), (H2) and \eqref{b6}, imply that one of the following four relations holds: \begin{gather} x(t_1-\tau_1(t_1))>x(t_1-\tau_2(t_1))>d, \label{e2.7}\\ x(t_1-\tau_2(t_1))>x(t_1-\tau_1(t_1))>d, \label{e2.8} \\ x(t_1-\tau_1(t_1)) g_{1}(t_{1},x(t_{1}-\tau_{1}(t_{1}))) +g_{2}(t_{1}, x(t_{1}-\tau_{1}(t_{1})))-\bar{e}\\ &> g_{1}(t_{1},x(t_{1}-\tau_{1}(t_{1}))) +g_{2}(t_{1},x(t_{1}-\tau_{2}(t_{1})))-\bar{e}, \end{align*} which contradicts \eqref{b6}. Thus \eqref{b7} is true. {\sl Case} (iv): If (H1)(2) and (H2)(2) hold, according to \eqref{e2.7}, we have \begin{align*} 0&> g_{1}(t_{1},x(t_{1}-\tau_{2}(t_{1}))) +g_{2}(t_{1},x(t_{1}-\tau_{2}(t_{1})))-\bar{e}\\ &> g_{1}(t_{1},x(t_{1}-\tau_{1}(t_{1}))) +g_{2}(t_{1},x(t_{1}-\tau_{2}(t_{1})))-\bar{e}, \end{align*} which contradicts \eqref{b6}. Thus \eqref{b7} is true. Suppose that \eqref{e2.8}(or \eqref{e2.9}, or \eqref{e2.10}) holds; using methods similar to those used in Case (i)--(iv), we can show that \eqref{b7} is true. This completes the proof of the above claim. \smallskip Let $t_2=kT+\widetilde{t}_2$, where $\widetilde{t}_2\in[0,T]$ and $k$ is an integer. Then noticing $x(t)=x(t+T)$ and \eqref{b7}, for any $t\in[\widetilde{t}_2,\widetilde{t}_2+T]$, we obtain $$ |x(t)|=\Big|x(\widetilde{t}_2)+\int_{\widetilde{t}_2}^{t}x'(s)ds\Big| \leq d+\int_{\widetilde{t}_2}^{t}|x'(s)|ds $$ and $$ |x(t)|=\Big|x(\widetilde{t}_2+T)+\int_{\widetilde{t}_2+T}^{t}x'(s)ds\Big| \leq d+\Big|-\int^{\widetilde{t}_2+T}_{t}x'(s)ds\Big|\leq d+\int^{\widetilde{t}_2+T}_{t}|x'(s)|ds. $$ Combining the two inequalities above, we obtain $$ |x(t)|\leq d+\frac{1}{2}\int_{0}^{T}|x'(s)|ds. $$ Using Schwarz inequality yields \begin{equation}\label{b13} |x|_{\infty}=\max_{t\in[\widetilde{t}_2,\widetilde{t}_2+T]}|x(t)|\leq d+\frac{1}{2}\int_{0}^{T}|x'(s)|ds\leq d+\frac{1}{2}|1|_{2}|x'|_{2}=d+\frac{1}{2}\sqrt{T}|x'|_{2}. \end{equation} This completes the proof. \end{proof} \begin{lemma} \label{lem4} Suppose {\rm (H0)--(H2)} hold. Also suppose the following condition holds \begin{itemize} \item[(H3)] $C_2\frac{T}{2\pi}+(b_1+b_2)\frac{T^{2}}{4\pi}<1$. \end{itemize} If $x(t)$ is a $T$-periodic solution of \eqref{a1}, then $|x'|_{\infty}\leq D$, where \[ D= \frac{[(b_1+b_2)d+\max\{|g_1(t,0)|+|g_2(t,0)|: 0\leq t\leq T\}+|e|_{\infty}]T}{2 \big(1-C_2\frac{T}{2\pi}-b_1\frac{T^{2}}{4\pi} -b_2\frac{T^{2}}{4\pi}\big)}. \] \end{lemma} \begin{proof} Let $x(t)$ be a $T$-periodic solution of \eqref{a1}. From (H1) and (H2), we can easily show that \eqref{b2} also holds. Multiplying $x''(t)$ and \eqref{a1} and then integrating it from 0 to $T$, by Lemma 2, (H0), \eqref{b2} and Schwarz inequality, we have \begin{align*} &|x''|_{2}^{2}\\ &= -\int_{0}^{T}f(x(t))x'(t)x''(t)dt -\int_{0}^{T}g_1(t,x(t-\tau_1(t)))x''(t)dt \\ &\quad -\int_{0}^{T}g_2(t,x(t-\tau_2(t)))x''(t)dt +\int_{0}^{T}e(t)x''(t)dt \\ &\leq \int_{0}^{T}|f(x(t))\|x'(t)\|x''(t)|dt +\int_{0}^{T}|g_1(t,x(t-\tau_1(t)))\|x''(t)|dt \\ &\quad +\int_{0}^{T}|g_2(t,x(t-\tau_2(t)))\|x''(t)|dt +\int_{0}^{T}|e(t)\|x''(t)|dt \\ &\leq C_2\int_{0}^{T}|x'(t)\|x''(t)|dt +\int_{0}^{T}[|g_1(t,x(t-\tau_1(t)))-g_1(t,0)|+|g_1(t,0)|]|x''(t)|dt \\ &\quad +\int_{0}^{T}[|g_2(t,x(t-\tau_2(t)))-g_2(t,0)|+|g_2(t,0)|]|x''(t)|dt +\int_{0}^{T}|e(t)\|x''(t)|dt \\ &\leq C_2|x'|_2|x''|_{2}+b_1\int_{0}^{T}|x(t-\tau_1(t))\|x''(t)|dt +\int_{0}^{T}|g_1(t,0)\|x''(t)|dt \\ &\quad +b_2\int_{0}^{T}|x(t-\tau_2(t))\|x''(t)|dt +\int_{0}^{T}|g_2(t,0)\|x''(t)|dt+\int_{0}^{T}|e(t)\|x''(t)|dt \\ &\leq C_2\frac{T}{2\pi}|x''|_{2}^{2}+(b_1+b_2)\sqrt{T}|x|_{\infty}|x''|_{2} \\ &\quad +[\max\{|g_1(t,0)|+|g_2(t,0)|: 0\leq t\leq T\}+|e|_{\infty}]\sqrt{T}|x''|_2 \\ &\leq \big[C_2\frac{T}{2\pi}+(b_1+b_2)\frac{T^2}{4\pi}\big]|x''|_{2}^{2} \\ &\quad +\big[(b_1+b_2)d+\max\{|g_1(t,0)|+|g_2(t,0)|: 0\leq t\leq T\}+|e|_{\infty}\big]\sqrt{T}|x''|_2, \end{align*} which, together with (H3), implies \begin{equation}\label{b14} |x''|_2\leq\frac{[(b_1+b_2)d+\max\{|g_1(t,0)|+|g_2(t,0)|: 0\leq t\leq T\}+|e|_{\infty}]\sqrt{T}}{1-C_2\frac{T}{2\pi}-b_1\frac{T^{2}}{4\pi}-b_2\frac{T^{2}}{4\pi}}. \end{equation} Since $x(0)=x(T)$, there exists $t_0\in[0,T]$ such that $x'(t_0)=0$, for any $t\in[t_0,t_0+T]$, we obtain \begin{gather*} |x'(t)|=\Big|x'(t_0)+\int_{t_0}^{t}x''(s)ds\Big|\leq \int_{t_0}^{t}|x''(s)|ds, \\ |x'(t)|=\Big|x'(t_0+T)+\int_{t_0+T}^{t}x''(s)ds\Big| \leq \Big|-\int^{t_0+T}_{t}x''(s)ds\Big|\leq \int^{t_0+T}_{t}|x''(s)|ds. \end{gather*} Combining these two inequalities, we obtain $$ |x'(t)|\leq \frac{1}{2}\int_{0}^{T}|x''(s)|ds. $$ Using Schwarz inequality yields \begin{equation}\label{b15} |x'|_{\infty}=\max_{t\in[t_0,t_0+T]}|x'(t)|\leq \frac{1}{2}\int_{0}^{T}|x''(s)|ds\leq \frac{1}{2}|1|_{2}|x''|_{2}=\frac{1}{2}\sqrt{T}|x''|_{2}. \end{equation} By (\ref{b14}) and (\ref{b15}), we obtain $$ |x'|_{\infty}\leq \frac{[(b_1+b_2)d+\max\{|g_1(t,0)|+|g_2(t,0)|: 0\leq t\leq T\}+|e|_{\infty}]T}{2\left(1-C_2\frac{T}{2\pi}-b_1\frac{T^{2}}{4\pi}-b_2 \frac{T^{2}}{4\pi}\right)}+:D. $$ This completes the proof. \end{proof} \begin{lemma} \label{lem5} Suppose {\rm (H0)--(H3)} hold. Also assume the condition \begin{itemize} \item[(H4)] $C_1D\frac{T^{2}}{4\pi}+C_2\frac{T}{2\pi}+(b_1+b_2) \frac{T^{2}}{4\pi}<1$. \end{itemize} Then \eqref{a1} has at most one $T$-periodic solution. \end{lemma} \begin{proof} Suppose that $x_{1}(t)$ and $x_{2}(t)$ are two $T$-periodic solutions of \eqref{a1}. Set $Z(t)=x_{1}(t)-x_{2}(t)$. Then, we have \begin{equation}\label{b16} \begin{aligned} &Z''(t)+[f(x_1(t))x_1'(t)-f(x_2(t))x_2'(t)] +[g_{1}(t,x_{1}(t-\tau_{1}(t)))-g_{1}(t,x_{2}(t-\tau_{1}(t)))] \\ &+[g_{2}(t,x_{1}(t-\tau_{2}(t)))-g_{2}(t,x_{2}(t-\tau_{2}(t)))]=0. \end{aligned} \end{equation} Since $x_{1}(t)$ and $x_{2}(t)$ are two $T$-periodic solutions of \eqref{a1}, integrating (\ref{b16}) from 0 to $T$, we obtain \begin{align*} &\int_{0}^{T}\big[g_{1}(t,x_{1}(t-\tau_{1}(t))) -g_{1}(t,x_{2}(t-\tau_{1}(t)))\\ &+g_{2}(t,x_{1}(t-\tau_{2}(t))) -g_{2}(t,x_{2}(t-\tau_{2}(t)))\big]dt =0. \end{align*} Thus, in view of Mean Value Theorem for integrals, it follows that there exists $\tilde{t}\in\mathbb{R}$ such that \begin{equation}\label{b17} g_{1}(\tilde{t},x_{1}(\tilde{t}-\tau_{1}(\tilde{t}))) -g_{1}(\tilde{t},x_{2}(\tilde{t}-\tau_{1}(\tilde{t}))) +g_{2}(\tilde{t},x_{1}(\tilde{t}-\tau_{2}(\tilde{t}))) -g_{2}(\tilde{t},x_{2}(\tilde{t}-\tau_{2}(\tilde{t})))=0. \end{equation} By (H1), (\ref{b17}) implies $$ Z(\tilde{t}-\tau_{1}(\tilde{t}))Z(\tilde{t}-\tau_{2}(\tilde{t})) =(x_{1}(\tilde{t}-\tau_{1}(\tilde{t})) -x_{2}(\tilde{t}-\tau_{1}(\tilde{t}))) (x_{1}(\tilde{t}-\tau_{2}(\tilde{t})) -x_{2}(\tilde{t}-\tau_{2}(\tilde{t})))\leq0. $$ Since $Z(t)=x_1(t)-x_2(t)$ is a continuous function in $\mathbb{R}$, it follows that there exists $\hat{t}\in\mathbb{R}$ such that \begin{equation}\label{b18} Z(\hat{t})=0. \end{equation} Set $\hat{t}=nT+\bar{t}$, where $\bar{t}\in[0,T]$ and $n$ is an integer. Noticing $Z(t+T)=Z(t)$, we get \begin{equation}\label{b19} Z(\bar{t})=Z(nT+\bar{t})=Z(\hat{t})=0. \end{equation} Hence, for any $t\in[\bar{t},\bar{t}+T]$, we obtain $$ |Z(t)|=\Big|Z(\bar{t})+\int_{\bar{t}}^{t}Z'(s)ds\Big| \leq\int_{\bar{t}}^{t}|Z'(s)|ds $$ and $$ |Z(t)|=\Big|Z(\bar{t}+T)+\int_{\bar{t}+T}^{t}Z'(s)ds\big| =\big|-\int^{\bar{t}+T}_{t}Z'(s)ds\big| \leq\int^{\bar{t}+T}_{t}|Z'(s)|ds. $$ Combining these two inequalities, we obtain $$ |Z(t)|\leq\frac{1}{2}\int_{0}^{T}|Z'(s)|ds. $$ Using Schwarz inequality yields \begin{equation}\label{b20} |Z|_{\infty}=\max_{t\in[\bar{t},\bar{t}+T]}|Z(t)| \leq\frac{1}{2}\int_{0}^{T}|Z'(s)|ds\leq\frac{1}{2}|1|_{2}|Z'|_{2} =\frac{1}{2}\sqrt{T}|Z'|_{2}. \end{equation} Multiplying $Z''(t)$ and (\ref{b16}) and then integrating it from $0$ to $T$, by Lemma 2, Lemma 4, (H0), (\ref{b20}) and Schwarz inequality, we have %\label{b21} \begin{align*} |Z''|_{2}^{2} &= -\int_{0}^{T}[f(x_1(t))x_1'(t)-f(x_2(t))x_2'(t)]Z''(t)dt \\ &\quad -\int_{0}^{T}[g_{1}(t,x_{1}(t-\tau_{1}(t)))-g_{1}(t,x_{2}(t-\tau_{1}(t)))]Z''(t)dt \\ &\quad -\int_{0}^{T}[g_{2}(t,x_{1}(t-\tau_{2}(t)))-g_{2}(t,x_{2}(t-\tau_{2}(t)))]Z''(t)dt \\ &\leq \int_{0}^{T}|f(x_1(t))\|x'_{1}(t)-x'_{2}(t)\|Z''(t)|dt \\ &\quad +\int_{0}^{T}|f(x_{1}(t))-f(x_{2}(t))\|x'_{2}(t)\|Z''(t)|dt \\ &\quad +b_1\int_{0}^{T}|x_{1}(t-\tau_{1}(t))-x_{2}(t-\tau_{1}(t))\|Z''(t)|dt \\ &\quad +b_2\int_{0}^{T}|x_{1}(t-\tau_{2}(t))-x_{2}(t-\tau_{2}(t))\|Z''(t)|dt \\ &\leq \int_{0}^{T}C_2|Z'(t)\|Z''(t)|dt+\int_{0}^{T}C_1D|Z(t)\|Z''(t)|dt \\ &\quad +b_1\int_{0}^{T}|Z(t-\tau_1(t))\|Z''(t)|dt+b_2\int_{0}^{T}|Z(t-\tau_2(t))\|Z''(t)|dt \\ &\leq C_2|Z'|_2|Z''|_2+C_1D\sqrt{T}|Z|_{\infty}|Z''|_2+(b_1+b_2)\sqrt{T}|Z|_{\infty}|Z''|_2 \\ &\leq \big[C_1D\frac{T^{2}}{4\pi}+C_2\frac{T}{2\pi}+(b_1+b_2) \frac{T^{2}}{4\pi}\big]|Z''|_{2}^{2}. \end{align*} Since $Z(t), Z'(t)$, $Z''(t)$ are continuous $T$-periodic functions, by (H4), (\ref{b20}) and the above inequality, we obtain $$ Z(t)=Z'(t)=Z''(t)=0 \quad \textrm{for all } t\in\mathbb{R}. $$ Thus, $x_{1}(t)\equiv x_{2}(t)$, for all $t\in\mathbb{R}$. Hence, (\ref{a1}) has at most one $T$-periodic solution. This completes the proof. \end{proof} \begin{lemma} \label{lem6} Suppose {\rm (H0)--(H3)} hold. Then the set of $T$-periodic solutions of \eqref{b1} are bounded in $C_{T}^{1}$. \end{lemma} \begin{proof} Let $S\subset C_T^1$ be the set of $T$-periodic solutions of \eqref{b1}. If $S=\emptyset$, the proof is complete. Suppose $S\neq \emptyset$, and let $x\in S$. Multiplying $x''(t)$ and \eqref{b1} and then integrating it from 0 to $T$, by Lemma 2, (H0), \eqref{b2} and Schwarz inequality, we have \begin{align*} &|x''|_{2}^{2}\\ &= -\lambda\int_{0}^{T}f(x(t))x'(t)x''(t)dt -\lambda\int_{0}^{T}g_1(t,x(t-\tau_1(t)))x''(t)dt \\ &\quad -\lambda\int_{0}^{T}g_2(t,x(t-\tau_2(t)))x''(t)dt +\lambda\int_{0}^{T}e(t)x''(t)dt \\ &\leq \int_{0}^{T}|f(x(t))\|x'(t)\|x''(t)|dt +\int_{0}^{T}|g_1(t,x(t-\tau_1(t)))\|x''(t)|dt \\ &\quad +\int_{0}^{T}|g_2(t,x(t-\tau_2(t)))\|x''(t)|dt +\int_{0}^{T}|e(t)\|x''(t)|dt \\ &\leq C_2\int_{0}^{T}|x'(t)\|x''(t)|dt +\int_{0}^{T}[|g_1(t,x(t-\tau_1(t)))-g_1(t,0)|+|g_1(t,0)|]|x''(t)|dt \\ &\quad +\int_{0}^{T}[|g_2(t,x(t-\tau_2(t)))-g_2(t,0)| +|g_2(t,0)|]|x''(t)|dt+\int_{0}^{T}|e(t)\|x''(t)|dt \\ &\leq C_2|x'|_2|x''|_{2}+b_1\int_{0}^{T}|x(t-\tau_1(t))\|x''(t)|dt +\int_{0}^{T}|g_1(t,0)\|x''(t)|dt \\ &\quad +b_2\int_{0}^{T}|x(t-\tau_2(t))\|x''(t)|dt +\int_{0}^{T}|g_2(t,0)\|x''(t)|dt+\int_{0}^{T}|e(t)\|x''(t)|dt \\ &\leq C_2\frac{T}{2\pi}|x''|_{2}^{2}+(b_1+b_2) \sqrt{T}|x|_{\infty}|x''|_{2} \\ &\quad +[\max\{|g_1(t,0)|+|g_2(t,0)|: 0\leq t\leq T\}+|e|_{\infty}]\sqrt{T}|x''|_2 \\ &\leq \big[C_2\frac{T}{2\pi}+(b_1+b_2)\frac{T^2}{4\pi}\big]|x''|_{2}^{2} \\ &\quad +\big[(b_1+b_2)d+\max\{|g_1(t,0)|+|g_2(t,0)|: 0\leq t\leq T\}+|e|_{\infty}\big]\sqrt{T}|x''|_2, \end{align*} which, together with (H3), implies that there exists $M_0>0$ such that \begin{equation}\label{b22} |x''|_2d$ such that, for any $T$-periodic solution $x(t)$ of \eqref{b1} \begin{equation}\label{c1} \|x\| 0 \end{gather} which implies the condition (ii) of Lemma 1 is satisfied. Define \begin{align*} H(x,\mu)&= -\mu x+(1-\mu)QNx\\ &=-\mu x-(1-\mu)\frac{1}{T}\int_{0}^{T}\big[f(x(t))x'(t) +g_1(t,x(t-\tau_1(t)))\\ &\quad +g_2(t,x(t-\tau_2(t)))-e(t)\big]dt\\ &= -\mu x-(1-\mu)\frac{1}{T}\int_{0}^{T}\big[f(x(t))x'(t) +g_1(t,x(t-\tau_1(t)))\\ &\quad +g_2(t,x(t-\tau_2(t)))-\bar{e}\big]dt \end{align*} in view of (\ref{c8}) and (\ref{c9}), we get $xH(x,\mu)<0$, for all $x\in\partial{\Omega}\cap \ker L$ and $\mu\in[0,1]$. Hence, $H(x,\mu)$ is a homotopic transformation, together with (\ref{c6}) and by using homotopic invariance theorem, we have $$ \deg \left\{JQN, \Omega\cap \ker L, 0\right\}=\deg \{QN, \Omega\cap \ker L, 0\}=\deg \{-x, \Omega\cap \ker L, 0\}\neq 0, $$ so condition (iii) of Lemma 1 is satisfied. {\sl Case}(ii): If (H2)(2) holds. Since \begin{align*} QNx &= -\frac{1}{T}\int_{0}^{T}[f(x(t))x'(t)+g_1(t,x(t-\tau_1(t))) +g_2(t,x(t-\tau_2(t)))-e(t)]dt\\ &= -\frac{1}{T}\int_{0}^{T}[f(x(t))x'(t)+g_1(t,x(t-\tau_1(t))) +g_2(t,x(t-\tau_2(t)))-\bar{e}]dt; \end{align*} for any $x\in\partial{\Omega}\cap \ker L$, $x=M$ or $x=-M$, $x'=0$, we obtain \begin{gather}\label{c10} QN(M)=-\frac{1}{T}\int_{0}^{T}[g_1(t,M)+g_2(t,M)-\bar{e}]dt>0,\\ \label{c11} QN(-M)=-\frac{1}{T}\int_{0}^{T}[g_1(t,-M)+g_2(t,-M)-\bar{e}]dt< 0 \end{gather} which implies the condition (ii) of Lemma 1 is satisfied. Define \begin{align*} H(x,\mu)&= \mu x+(1-\mu)QNx\\ &= \mu x-(1-\mu)\frac{1}{T}\int_{0}^{T}\big[f(x(t))x'(t) +g_1(t,x(t-\tau_1(t)))\\ &\quad +g_2(t,x(t-\tau_2(t)))-e(t)\big]dt\\ &= \mu x-(1-\mu)\frac{1}{T}\int_{0}^{T}\big[f(x(t))x'(t) +g_1(t,x(t-\tau_1(t)))\\ &\quad +g_2(t,x(t-\tau_2(t)))-\bar{e}\big]dt, \end{align*} in view of (\ref{c10}) and (\ref{c11}), we get $xH(x,\mu)>0$, for all $x\in\partial{\Omega}\cap \ker L$ and $\mu\in[0,1]$. Hence, $H(x,\mu)$ is a homotopic transformation, together with (\ref{c6}) and by using homotopic invariance theorem, we have $$ \deg \{JQN, \Omega\cap \ker L, 0\}=\deg \{QN, \Omega\cap \ker L, 0\}=\deg \{x, \Omega\cap \ker L, 0\}\neq 0, $$ so condition (iii) of Lemma 1 is satisfied. Therefore, it follows from Lemma 1 that \eqref{a1} has at least one $T$-periodic solution. This completes the proof. \end{proof} In \cite{z07jcam}, Zhou and Long studied \eqref{a1} and obtained the got the following results. \begin{theorem} \label{thm1} Assume {\rm (H0), (H1)}, and that the following conditions hold: \begin{itemize} \item[(A2)] there exists $d\geq 0$ such that one of the following conditions holds: \begin{enumerate} \item $x(g_{1}(t,x)+g_{2}(t,x)-e(t))>0$, for all $t\in\mathbb{R}$, $|x|> d$, \item $x(g_{1}(t,x)+g_{2}(t,x)-e(t))<0$, for all $t\in\mathbb{R}$, $|x|> d$; \end{enumerate} \item[(A4)] $C_1D_1\frac{T^{2}}{2\pi}+C_2\frac{T}{2\pi}+(b_1+b_2) \frac{T^{2}}{2\pi}<1$, where \[ D_1=\frac{[(b_1+b_2)d+\max\{|g_1(t,0)|+|g_2(t,0)|: 0\leq t\leq T\}+|e|_{\infty}]T}{1-C_2\frac{T}{2\pi}-b_1 \frac{T^{2}}{2\pi}-b_2\frac{T^{2}}{2\pi}}. \] \end{itemize} Then \eqref{a1} has a unique $T$-periodic solution. \end{theorem} If $e(t)\neq $ constant, it is easy to verify that the condition (H2) is weaker than the condition (A2) since $\min_{t\in\mathbb{R}}e(t)< \bar{e}< \max_{t\in\mathbb{R}}e(t)$. On the other hand, noticing $\frac{1}{4\pi}<\frac{1}{2\pi}$ and $D<\frac{1}{2}D_1$, we can see that the condition {\rm (H$_4$)} is also weaker than the condition {\rm (A$_4$)}. Therefore, our results improve those in \cite{z07jcam}. \section{Example and remark} In this section, we apply the main results obtained in previous sections to an example. Consider the existence and uniqueness of a $2\pi$-periodic solution to the Li\'enard equation \begin{equation}\label{d1} x''(t)+\frac{1}{10}\cos t x'(t)+g_1(t,x(t-\cos t))+g_2(t,x(t-\sin t))=e(t), \end{equation} where $T=2\pi$, $\tau_1(t)=\cos t$, $\tau_2(t)=\sin t$, $g_1(t,x)=\frac{1}{80\pi(1+\cos^{2} t)}\arctan x$, $g_2(t,x)=\frac{1}{60\pi}(1+\sin^{2} t)\arctan x$ and $e(t)=\frac{1}{\pi}\sin t$. It is obvious that the conditions (A0) and (A1) in \cite[Theorem 1]{z07jcam} hold. However, we can easily check that (A2) does not hold, which implies that (A4) does not hold. Hence, \cite[Theorem 1]{z07jcam} can not be applied. Meanwhile, Theorem 1 in this paper remains applicable, as we show now. By (\ref{d1}), we can get $b_1=\frac{1}{80\pi}, b_2=\frac{1}{30\pi}$ and $C_1=C_2=\frac{1}{10}$. Noticing $\bar{e}=\frac{1}{T}\int_{0}^{T}e(t)dt=\frac{1}{2\pi}\int_{0}^{2\pi}\frac{1}{\pi}\sin tdt=0$, we can get $d=\frac{1}{10}$ (Actually, $d$ can be an arbitrarily small positive constant.) and check that (H0)--(H2) hold. On the other hand, noticing that \begin{align*} D&= \frac{[(b_1+b_2)d+\max\{|g_1(t,0)|+|g_2(t,0)|: 0\leq t\leq T\}+|e|_{\infty}]T}{2\big(1-C_2\frac{T}{2\pi}-b_1 \frac{T^{2}}{4\pi}-b_2\frac{T^{2}}{4\pi}\big)}\\ &=\frac{[\frac{1}{10}(\frac{1}{80\pi}+\frac{1}{30\pi}) +\frac{1}{\pi}]2\pi}{2(1-\frac{1}{10}-\frac{1}{80}-\frac{1}{30})} \approx 1.176, \end{align*} it is easy to verify that (H4) holds since $C_1D\frac{T^{2}}{4\pi}+C_2\frac{T}{2\pi}+(b_1+b_2) \frac{T^{2}}{4\pi}=\frac{1}{10}\times 1.176\times \pi+\frac{1}{10}+\frac{1}{80}+\frac{1}{30}\approx 0.515<1 $. Thus, Theorem 1 in this study shows that \eqref{a1} has a unique $2\pi$-periodic solution. Hence our results improve those in \cite{z07jcam}. \begin{thebibliography}{00} \bibitem{c01na} N. P. C\'ac; \emph{Periodic solutions of a Li\'enard equation with forcing term}, Nonlinear Anal. 43 (2001) 403--415. \bibitem{c04na} W. S. Cheung, J. Ren; \emph{Periodic solutions for $p$-Laplacian Li\'enard equation with a deviating argument}, Nonlinear Anal. 59 (2004) 107--120. \bibitem{gre} R. E. Gaines, J. L. Mawhin; \emph{Coincidence Degree, and Nonlinear Differential Equations, Lecture Notes in Mathematics}, vol. 568, Springer-Verlag, Berlin, New York, 1977. \bibitem{hgh} G. H. Hardy, J. E. Littlewood, G. Polya; \emph{Inequalities, Reprint of the 1952 edition}, Cambridge Univ. Press, London, 1988. \bibitem{l42jdm} N. Levinson, O. K. Smith; \emph{A general equation for relaxation oscillations}, Duke. Math. J. 9 (1942) 382--403. \bibitem{l28rge} A. Li\'enard; \emph{\'Etude des oscillations entretenues}. Rev. Gen. \'Elect. 28 (1928) 901--946. \bibitem{l07jcam} B. Liu; \emph{Periodic solutions for Li\'enard type p-Laplacian equation with a deviating argument}, J. Comput. Appl. Math. 214 (2008) 13--18. \bibitem{l07cam} X.-G. Liu, M.-L. Tang, R. R. Martin; \emph{Periodic solutions for a kind of Li\'enard equation}, J. Comput. Appl. Math. 219 (2008) 263--275. \bibitem{l06na} S. Lu; \emph{Existence of periodic solutions to a $p$-Laplacian Li\'enard differential equation with a deviating argument}, Nonlinear Anal. 68 (2008) 1453--1461. \bibitem{l03amc} S. Lu, W. Ge; \emph{Periodic solutions for a kind of second order differential equation with multiple deviating arguments}, Appl. Math. Comput. 146 (2003) 195--209. \bibitem{l04jmaa} S. Lu, W. Ge; \emph{Periodic solutions for a kind of Li\'enard equation with a deviating argument}, J. Math. Anal. Appl. 289 (2004) 231--243. \bibitem{w02na} Z. Wang; \emph{Periodic solutions of the second-order forced Li\'enard equation via time maps}, Nonlinear Anal. 48 (2002) 445--460. \bibitem{wy} Y. Wang, X.-Z. Dai, X-X. Xia; \emph{On the existence of a unique periodic solution to a Li\'enard type $p$-Laplacian non-autonomous equation}. Nonlinear Anal. 71 (2009), no. 1-2, 275--280. \bibitem{z07jcam} Q. Zhou, F. Long; \emph{Existence and uniqueness of periodic solutions for a kind of Li\'enard equation with two deviating arguments}, J. Comput. Appl. Math. 206 (2007) 1127-1136. \end{thebibliography} \end{document}