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EXISTENCE OF LOCAL AND GLOBAL SOLUTIONS TO SOME
IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

RAHIMA ATMANIA, SAID MAZOUZI

Abstract. First, by using Schauder’s fixed-point theorem we establish the
existence uniqueness of locals for some fractional differential equation with

a finite number of impulses. On the other hand, by using Brouwer’s fixed-

point theorem, we establish existence of the global solutions under suitable
assumptions.

1. Introduction

The concept of fractional calculus can be considered as a generalization of or-
dinary differentiation and integration to arbitrary (non-integer) order. However,
great efforts must be done before the ordinary derivatives could be truly inter-
preted as a special case of the fractional derivatives. For more details, we refer to
the books by Oldham and Spanier [8] and by Miller and Ross [6].

Actually, fractional derivatives have been extensively applied in many fields, for
example in Probability, Viscoelasticity, Electronics, Economics, Mechanics as well
as Biology.

Some results on quantitative and qualitative theory of some fractional differential
equations are obtained, we may cite the references [3, 5, 6, 8, 9]. On the other
hand, the theory of impulsive differential equations is also an important area of
research which has been investigated in the last few years by great number of
mathematicians. We recall that the impulsive differential equations may better
model phenomena and dynamical processes subject to a great changes in short
times issued, for instance, in Physics, Biotechnology, Automatics and Robotics. To
learn more about the most recent used techniques for this kind of problems we refer
to the book of Benchohra et al [2].

So, we propose to study fractional differential equation subject to a finite number
of impulses. As we know there just few authors have investigated this subject
[7]. We have obtained some results regarding local existence and uniqueness for
some fractional integrodifferential problem with a finite number of impulses. For
the existence and uniqueness of local solutions we use the Schauder’s fixed-point
theorem, while we use Brouwer’s fixed-point theorem for the global solutions.

2000 Mathematics Subject Classification. 26A33, 34A12, 34A37.
Key words and phrases. Fractional derivative; impulsive conditions; fixed point;

local solution; global solution.
c©2009 Texas State University - San Marcos.

Submitted July 3, 2009. Published October 21, 2009.
Supported by the LMA, University of Badji Mokhtar Annaba, Algeria.

1



2 R. ATMANIA, S. MAZOUZI EJDE-2009/136

2. Preliminaries

Among the definitions of fractional derivatives we recall the Riemann-Liouville
definiton as follows.

Dαu(t) =
1

Γ(n− α)
dn

dtn

∫ t

t0

(t− s)−α+n−1u(s) ds

where Γ(·) is the well known gamma function and α ∈ (n− 1, n), with n being an
integer. One may observe that the derivative of a constant is not at all equal to zero
which can cause serious problems in both views, theoretical and practical. For this
reason we prefer to use Caputo’s definition which gives better results than those of
Riemann-Liouville. So we define Caputo’s derivative of order α ∈ (n − 1, n) of a
function u(t) by

Dαu(t) =
1

Γ(n− α)

∫ t

t0

(t− s)−α+n−1 dn

dsn
u(s) ds.

Also, we use the fractional integral operator of order α > 0 given by

D−αu(t) =
1

Γ(α)

∫ t

t0

(t− s)α−1u(s) ds.

We shall consider the fractional differential equation

Dαu(t) = f(t, u(t)); t ∈ [t0, t0 + τ ], t 6= tk, k = 1, . . . ,m; (2.1)

with the initial condition

Dα−1u(t0) = u0; (t− t0)1−αu(t)
∣∣
t=t0

=
u0

Γ(α)
; (2.2)

subject to the impulsive conditions

Dα−1(u(t+k )− u(t−k )) = Ik(t); t = tk, k = 1, . . . ,m;

(t− tk)1−αu(t)
∣∣
t=tk

=
Ik(tk)
Γ(α)

, k = 1, . . . ,m.
(2.3)

We set the following assumptions
(A1) t > t0 ≥ 0, α is a real number such that 0 < α ≤ 1, u0 is a real constant

vector of Rn (the usual real n-dimensional Euclidean space equipped with
its Euclidean norm ‖.‖);

(A2) f(t, u) : I × Rn → Rn; Ik(t) : I → Rn, k = 1, . . . ,m, with I = [t0, t0 + τ ];
(A3) tk ∈ I, k = 1, . . . ,m and t0 < t1 < · · · < tk < · · · < tm.

We introduce the following spaces:
PC(I, Rn) = {u : I → Rn : u(t) is continuous at t 6= t0, t 6= tk, and left continuous
at t = tk, and (t+0 ) and u(t+k ) exist for k = 1, . . . ,m};
PCα(I, Rn) = {u ∈ PC(I, Rn) : limt→t+0

(t− t0)αu(t) and limt→t+k
(t− tk)αu(t) exist

and are finite for k = 1, . . . ,m, α > 0}. This is a Banach space with respect to the
norm

‖u‖α = sup
t∈I′

(t− t0)α+1
m∏

i=1

(t− ti)α+1‖u(t)‖,

where I ′ = (t0, t0 + τ ]\{tk}k=1,2,....
We begin with the following Lemma.
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Lemma 2.1. If f and Ik, k = 1, . . . m are continuous functions, then u(t) is a
solution to problem (2.1)-(2.3) in PC1−α([t0, t0 + τ ], Rn) if and only if u(t) satisfies
the integrodifferential equation

u(t) =
u0

Γ(α)
(t− t0)α−1 +

1
Γ(α)

∫ t

t0

(t− s)α−1f(s, u(s)) ds

+
1

Γ(α)

∑
t0<tk≤t

(t− tk)α−1Ik(tk).
(2.4)

Proof. Let u(t) be a solution of problem (2.1)-(2.3). Using the fractional integral
of order α > 0 and the properties of derivative of order α > 0, and then applying
D−1 to (2.1) we obtain

D−1(Dαu(t)) =
∫ t

t0

f(s, u(s)) ds =
∫ t

t0

d

dt
D−(1−α)u(s) ds

= Dα−1u(t)− u0 −
∑

t0<tk≤t

Ik(tk).

So

Dα−1u(t) = u0 +
∫ t

t0

f(s, u(s)) ds +
∑

t0<tk≤t

Ik(tk). (2.5)

Next, applying the operator D1−α to Dα−1u(t) we obtain

u(t) = D
( 1

Γ(α)

∫ t

t0

(t− s)α−1u0 ds +
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, u(s)) ds

+
1

Γ(α)

∫ t

t0

(t− s)α−1
∑

t0<tk≤s

Ik(tk) ds
)
,

which gives the integral equation (2.4). On the other hand, from (2.2) and (2.3), it
follows that

lim
t→t+0

(t− t0)1−αu(t) =
u0

Γ(α)
,

lim
t→t+k

(t− tk)αu(t) =
Ik(tk)
Γ(α)

, k = 1, 2, . . . ,
(2.6)

which proves that u(t) ∈ PC1−α([t0, t0 + τ ]).
Let u(t) be a solution to the integral equation (2.4) in PCα([t0, t0 +τ ]). Perform-

ing Dα to the integral equation (2.4) we get for t 6= t0 and t 6= tk, k = 1, . . . ,m;

Dαu(t) = DDαD−αu0 + DDαD−α
∑

t0<tk≤t

Ik(tk) + DαD−αf(t, u(t)) = f(t, u(t)),

and for t = t0, and t = tk, k = 1, . . . ,m, we apply Dα−1 to the integral equation
(2.4) to obtain (2.5) which in turn gives

Dα−1u(t0) = u0

Dα−1(u(t+k )− u(t−k )) = Ik(tk), k = 1, . . . ,m.

Now, since u(t) ∈ PC1−α([t0, t0 + τ ]), it satisfies the limits (2.6) from which we get
conditions (2.2) and (2.3). �
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3. Existence and uniqueness of a local solution

We need the following Schauder’s fixed-point theorem.

Theorem 3.1. If U is a closed , bounded, convex subset of a Banach space X and
the mapping A : U → U is completely continuous, then A has a fixed point in U .

Let us denote the right hand side of (2.4) by Au(t) which we write as Au(t) =
u1(t) + Bu(t), where

u1(t) =
u0

Γ(α)
(t− t0)α−1 +

1
Γ(α)

∑
t0<tk≤t

(t− tk)α−1Ik(tk),

Bu(t) =
1

Γ(α)

∫ t

t0

(t− s)α−1f(s, u(s)) ds.

Theorem 3.2. If f ∈ C([t0, t0 + τ ]×Rn, Rn) and there exist positive constants N ,
bk, k = 1, . . . ,m; such that ‖f(t, u)‖ ≤ N , ‖Ik(tk)‖ ≤ bk, k = 1, . . . ,m, then there
exists at least one solution u(t) of the problem (2.1)-(2.3) in PC1−α([t0, t0 +µ]) for
some positive constant

µ = min
(
τ,

(αβ

N
Γ(α)

)1/(m(2−α)+2)
)
.

Proof. It is easy to see that the set

Uβ
1−α = {u ∈ PC1−α([t0, t0 + µ], Rn) : ‖u(t)− u1(t)‖1−α ≤ β}

is not empty because u1(t) ∈ Uβ
1−α; on the other hand, it is a closed, bounded,

convex subset of the Banach space PC1−α([t0, t0 + µ], Rn).
Next, we define the operator A on Uβ

1−α by

Au(t) =
u0

Γ(α)
(t− t0)α−1 +

1
Γ(α)

∫
t0

t(t− s)α−1f(s, u(s)) ds

+
1

Γ(α)

∑
t0<tk≤t

(t− tk)α−1Ik(tk).
(3.1)

To prove that A maps Uβ
1−α into itself we see that, for every u ∈ Uβ

1−α, we have

(t− t0)2−α
m∏

i=1

(t− ti)2−α‖Au(t)− u1(t)‖ ≤
µ(m+1)(2−α)

Γ(α)
N

∫ t

t0

(t− s)α−1 ds

≤ µm(2−α)+2

αΓ(α)
N ≤ β.

Hence

‖Au(t)− u1(t)‖1−α ≤ β, (3.2)

which implies AUβ
1−α ⊂ Uβ

1−α.
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To see that AUβ
1−α is uniformly bounded in PC1−α([t0, t0 + µ]) we note that

(t− t0)2−α
m∏

i=1

(t− ti)2−α‖u1(t)‖

≤ ‖u0‖
Γ(α)

(t− t0)
m∏

i=1

(t− ti)2−α

+
(t− t0)2−α

Γ(α)

∑
t0<tk≤t

m∏
i=1

(t− ti)2−α(t− tk)α−1‖Ik(tk)‖;

≤ ‖u0‖
Γ(α)

µm(2−α)+1 +
µ2−αµ(m−1)(2−α)+1

Γ(α)

m∑
k=1

bk.

Hence,

‖u1(t)‖1−α ≤
µm(2−α)+1

Γ(α)
(b + ‖u0‖), (3.3)

where b =
∑

t0<tk≤t bk. From (3.2) and (3.3), we deduce that

‖u(t)‖1−α ≤
µm(2−α)+1

Γ(α)
(‖u0‖+ b) +

µm(2−α)+2

αΓ(α)
N,

for every u ∈ Uβ
1−α.

We shall prove in the next step that AUβ
1−α is equicontinuous in PC1−α([t0, t0 +

µ]). We observe on the one hand that the derivative of u1(t) is uniformly bounded
in PC1−α([t0, t0 + µ]) because

(t− t0)2−α
m∏

i=1

(t− ti)2−α‖u′1(t)‖

≤ 1− α

Γ(α)
‖u0‖

m∏
i=1

(t− ti)2−α

+
1− α

Γ(α)
(t− t0)2−α

∑
t0<tk≤t

m∏
i=1

(t− ti)2−α(t− tk)α−2‖Ik(tk)‖

giving

‖u′1(t)‖1−α ≤
1− α

Γ(α)
µm(2−α)(‖u0‖+ bµ−(2−α)).

On the other hand, we have for t0 < s1 < s2 < t0 + µ,

(t− t0)2−α
m∏

i=1

(t− ti)2−α‖Bu(s2)−Bu(s1)‖

≤ µ(m+1)(2−α)

Γ(α)
N |

s2∫
t0

(s2 − s)α−1 −
s1∫
t0

(s1 − s)α−1 ds|

≤ µ(m+1)(2−α)

Γ(α)
N

∣∣∣ s1∫
t0

((s2 − s)α−1 − (s1 − s)α−1) ds +

s2∫
s1

(s2 − s)α−1 ds
∣∣∣,
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so that

‖Bu(s2)−Bu(s1)‖1−α ≤
µ(m+1)(2−α)

Γ(α)
N [2(s2−s1)α+|(s2−t0)α−(s1−t0)α|]; (3.4)

that is, Bu(t) is equicontinuous, and so Au(t) is equicontinuous in PC1−α([t0, t0 +
µ], Rn). Hence, AUβ

1−α is compact in PC1−α([t0, t0 + µ]) showing that A is com-
pletely continuous. Therefore, we conclude by Schauder’s theorem that A has at
least one fixed-point in Uβ

1−α which is exactly a solution to (2.1 )-(2.3) in view of
lemma 2.1. The proof is now complete. �

Theorem 3.3. Besides the hypotheses of theorem 3.1, we suppose that there exists
a constant L such that

0 < L <
αΓ(α)

µα
, (3.5)

where µ is defined as in theorem 3.2, and

‖f(t, u)− f(t, w)‖ ≤ L‖u− w‖, for every u, w ∈ Rn.

Then, the solution u(t) of (2.1)-(2.3) is unique in PC1−α([t0, t0 + µ], Rn).

Proof. In virtue of theorem 3.1 there exists at least one solution u(t) of (2.1)-(2.3)
in PC1−α([t0, t0 + µ], Rn).

First, suppose to the contrary that there exist two different solutions u and w
in PC1−α([t0, t0 + µ], Rn) which satisfy the integral equation (2.4). It is easy to see
that

‖u(t)− w(t)‖ ≤ 1
Γ(α)

∫ t

t0

(t− s)α−1‖f(s, u(s))− f(s, w(s))‖ ds

≤ µα

αΓ(α)
L‖u(t)− w(t)‖.

It follows that

‖u(t)− w(t)‖1−α ≤
µα

αΓ(α)
L‖u(t)− w(t)‖1−α,

and taking into account condition (3.5) we obtain

‖u(t)− w(t)‖1−α = 0.

So, the two solutions are identical in PC1−α([t0, t0 + µ], Rn) which completes the
proof. �

To illustrate the foregoing results we propose the following example:

Example 3.4. On the interval [0, 1], Consider the impulsive fractional differential
initial-value problem

D1/2u(t) =
e−t

t + 2
sinu(t); t 6= k

k + 1
, k = 1, 2;

D−1/2u(0) = 0; t1/2u(t)
∣∣
t=0

= 0;

D−1/2(u(t+k )− u(t−k )) = tk cos tk; tk =
k

k + 1
, k = 1, 2

(t− k

k + 1
)1/2u(t)

∣∣
t= 1

k+1
=

k√
π(k + 1)

cos(
k

k + 1
), k = 1, 2.

(3.6)
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We see that f(t, u) = e−t

t+2 sinu ∈ C([0, 1] × R; R); Ik(t) ∈ C([0, 1]; R), and since
Γ(1/2) =

√
π, then the solution of (3.6) satisfies the integral equation

u(t) =
1√
π

∫ t

t0

(t− s)−1/2 e−s

s + 2
sinu(s) ds

+
1√
π

∑
0<tk≤t

(
t− k

k + 1
)−1/2 k

k + 1
cos

( k

k + 1
)
.

(3.7)

Since |f(t, u)| = | e−t

(t+2) sinu| ≤ 1
2 , for every t ∈ [0, 1] and u ∈ R, and

|f(t, u)− f(t, w)| ≤ 1
2
|u− w|, for every u, w ∈ R,

condition (3.5) is easily satisfied and so in view of theorems 3.2 and 3.3, (3.6) admits
a unique solution u(t) in PC1/2([0, 1], R).

4. Existence of a global solution

In this part we shall prove the existence of a global solution to (2.1)-(2.3) under
suitable assumptions, by using the following Brouwer’s fixed-point theorem.

Theorem 4.1. Set Ω be a closed, bounded, convex non empty subset of X a Banach
space and let A : Ω → X be a continuous mapping. If A(Ω) ⊂ Ω, then A has a
fixed-point in Ω.

Consider the scalar fractional differential equation

Dαv(t) = g(t, v(t)); t ∈ [t0,+∞[; t 6= tk, k = 1, . . . ,m; 0 < α ≤ 1; (4.1)

subject to the initial conditions

Dα−1v(t) = v0; (t− t0)1−αv(t)
∣∣
t=t0

=
1

Γ(α)
v0; (4.2)

and the impulsive conditions

Dα−1v(t+k )−Dα−1v(t−k ) = Jk(tk); k = 1, . . . ,m

(t− tk)1−αv(t)
∣∣
t=tk

=
1

Γ(α)
Jk(v(tk)), k = 1, . . . ,m.

(4.3)

We assume that v0 is a positive constant; f(t, u) ∈ C([t0,+∞[×Rn, Rn); g(t, v) ∈
C([t0,+∞[×R+, R+), Ik(t) ∈ C([t0,+∞[, Rn) and Jk(t) ∈ C([t0,+∞[, R+); k =
1, . . . ,m.

In view of theorem 3.1 the solution of (4.1)-(4.3) satisfies the integral equation

v(t) =
v0

Γ(α)
(t− t0)α−1 +

1
Γ(α)

t∫
t0

(t− s)α−1g(s, v(s)) ds

+
1

Γ(α)

∑
t0<tk≤t

(t− tk)α−1Jk(tk).

(4.4)

in the Banach space PC1−α([t0,+∞[, R) endowed with the norm

|v|1−α = sup
t∈[t0,+∞[\{tk}k=0,1,...m

(t− t0)2−α
m∏

i=1

(t− ti)2−α|v(t)|.
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Theorem 4.2. Assume that ‖f(t, u)‖ ≤ g(t, ‖u‖) for every t ≥ t0 and u ∈ Rn,
where g(t, v) is nonnegative and nondecreasing in v, for each t ≥ t0, and

‖Ik(tk)‖ ≤ Jk(tk), for t = tk, k = 1, . . . m.

If (4.1)-(4.3) has a positive solution v(t) in PC1−α([t0,+∞[, R), then (2.1)-(2.3)
has at least a solution in PC1−α([t0,+∞[, Rn) such that ‖u‖1−α ≤ |v|1−α, for each
u0 ∈ Rn satisfying ‖u0‖ ≤ v0.

Proof. To apply Brouwer’s theorem we use the Banach space PC1−α([t0,+∞[, Rn),
0 < α ≤ 1 , which we equip with the norm

‖u‖1−α = sup
t∈[t0,+∞[\{tk}k=0,1,...m

(t− t0)2−α
m∏

i=1

(t− ti)2−α‖u(t)‖.

Next, define a subset of PC1−α([t0,+∞[, Rn) by

V1−α =
{
u ∈ PC1−α([t0,+∞[, Rn) : ‖u‖1−α ≤ |v|1−α;

where v(t) is a positive solution of (4.1)-(4.3)
}
.

It is not difficult to verify that V1−α is a closed, convex, and bounded subsect of
PC1−α([t0,+∞[, Rn).

The operator A defined by (3.1) is continuous, and so, it remains to prove that
A(V1−α) ⊂ V1−α. For each u ∈ V1−α, by (3.1), we have

‖Au(t)‖ ≤
m∏

i=1

(t− ti)α+1 ‖u0‖
Γ(α)

+
1

Γ(α)

∫ t

t0

(t− s)α−1‖f(s, u(s))‖ ds

+ (t− t0)α+1
m∏

i=1,i 6=k

(t− ti)α+1 1
Γ(α)

∑
t0<tk≤t

‖Ik(tk)‖ .

From the assumptions, we obtain

‖Au(t)‖ ≤ v0

Γ(α)
(t− t0)α−1 +

1
Γ(α)

∫ t

t0

(t− s)α−1g(s, v(s)) ds

+
1

Γ(α)

∑
t0<tk≤t

(t− tk)α−1Jk(tk)
(4.5)

It follows from (4.4) that

‖Au(t)‖ ≤ v(t), t ≥ t0;

and since

lim
t→t+0

(t− t0)1−α‖Au(t)‖ ≤ lim
t→t+0

(t− t0)1−αv(t),

lim
t→t+K

(t− tk)1−α‖Au(t)‖ ≤ lim
t→t+K

(t− tk)1−αv(t); k = 1, . . . ,m,

it follows that
‖Au‖1−α ≤ |v|1−α.

Hence, A(V1−α) ⊂ V1−α. Hence, as all the requirements of Brouwer’s fixed-point
theorem are satisfied, then A has a fixed point in V1−α which is the solution of
(2.1)-(2.3) such that ‖u‖1−α ≤ |v|1−α. �



EJDE-2009/136 EXISTENCE OF SOLUTIONS 9

References

[1] R. Atmania; Existence and oscillation results of some impulsive delayed integrodifferential
problem, D. C. D. I. S., 14 (2007) , 309-319.

[2] M. Benchohra, J. Henderson, S. Ntouyas; Impulsive Differential Equations and Inclusions,

Hindawi Publishing Corporation, New York, 2006.
[3] K. Diethelm, N. J. Ford; Analysis of fractional differential equations, J. Math. Anal. Appl.

265 (2002), 229–248.

[4] A. Kilbas, H. Srivastava, J. Trujillo; Theory and Applications of fractional differential equa-
tions, Elsevier , Amesterdam, 2006.

[5] W. Lin; Global existence theory and chaos control of fractional differential equations, J. Math.
Anal. and Appl. 332 (2007), 709-726.

[6] K. S. Miller, B. Ross; An Introduction to the Fractional Calculus and Fractional Differential

Equations, John Wiley and Sons, 1993.
[7] G. Mophou; Existence and uniqueness of mild solutions to impulsive fractional differential

equations, Nonlinear Anal., TMA (2009), doi.10.1016/j.na.2009.08.046

[8] K. B. Oldham, J. Spanier; Fractional Calculus: Theory and Applications, Differentiation and
Integration to Arbitrary Order, Academic Press, New York, 1974.

[9] C. Yu, G. Gao; Existence of fractional differential equations, J. Math. Anal. Appl. 310 (2005),

26–29.

Corrigendum posted on August 31, 2010.

First, we apologize for the misprints in the original article. Now we correct those
misprints and present a new proof of the global existence result, using Schauder’s
fixed-point theorem instead of Brouwer’s theorem.

- Page 2, line 6: Replace “For this reason we prefer to use Caputo’s definition
which gives better results than those of Riemann-Liouville” by “For this reason,
and despite our use of the Riemann-Liouville derivative, many authors prefer to
use Caputo’s definition”

- Page 2, line 10: Replace Dαu(t) by cDαu(t)
- Page 2, in the second condition of (2.3): Replace u(t) by u(t+)
- Page 2, line 7 from the bottom: Replace (t+0 ) by u(t+0 )
- Page 3, Eq. (2.6): Replace lim

t→t+k

(t− tk)αu(t) by lim
t→t+k

(t− tk)1−αu(t)

- Page 3 line 1: Insert the sentence:
The notation PC([t0, t0 + τ ]) stands for PC([t0, t0 + τ ], Rn) throughout this article.

- Page 6, last line: Replace u(t) by u(t+)
- Page 7: Delete the entire Theorem 4.1.
- Page 7, in the second condition of (4.3): Replace v(t) by v(t+)
- Page 7, line 5 from the bottom: Replace “theorem 3.1” by “Lemma 2.1”
- Page 7 after Eq. (4.4), insert the paragraph:

Since, PC1−α([t0,+∞[, Rn) is not a Banach space, we introduce the Banach space

PCb
1−α([t0,+∞[, Rn)

= {u ∈ PC1−α([t0,+∞[, Rn) : sup
t∈J∗

m∏
i=0

(t− ti)2−α‖u(t)‖ < +∞},

where J∗ = [t0,+∞[\{tk}k=0,...,m. This space is endowed with the norm ‖ · ‖α−1

defined on page 8, which is still valid for n = 1. Therefore, it is clear that the
solution of (4.1)-(4.3) satisfies (4.4) in PCb

1−α([t0,+∞[, R+).
- Page 7, line 2 from the bottom: Replace PC1−α([t0,+∞[, R) by

PCb
1−α([t0,+∞[, R+)
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- Page 8, line 4: Replace PC1−α([t0,+∞[, R) by PCb
1−α([t0,+∞[, R+),

- Page 8, line 5: Replace PC1−α([t0,+∞[, Rn) by PCb
1−α([t0,+∞[, Rn)

- Page 8: Replace the proof of Theorem 4.2 by the following proof.

Proof of Theorem 4.2. To apply Schauder’s theorem we have to establish that the
operator A, defined by (3.1), is completely continuous. To prove that claim we
define the set

V1−α =
{

u ∈ PCb
1−α([t0,+∞[, Rn) : Dα−1u(t0) = u0,

‖u(t)‖ ≤ v(t), t 6= tk, k = 0, . . . ,m,

sup
t∈J∗

m∏
i=0

(t− ti)2−α‖u(t)‖ ≤ sup
t∈J∗

m∏
i=0

(t− ti)2−αv(t),

v(t) being a positive solution of (4.1)-(4.3) in PCb
1−α([t0,+∞[, R+)

}
.

It is not difficult to verify that V1−α is not empty, closed, convex and bounded
in PCb

1−α([t0,+∞[, Rn). The operator A is continuous, and so for each u ∈ V1−α,
we have for each t 6= tk, k = 0, . . . ,m,

‖Au(t)‖ ≤ (t− t0)α−1 ‖u0‖
Γ(α)

+
1

Γ(α)

∫ t

t0

(t− s)α−1‖f(s, u(s))‖ds

+
1

Γ(α)

∑
t0<tk≤t

(t− tk)α−1‖Ik(tk)‖.

From the assumptions of theorem 4.2, we obtain

‖Au(t)‖ ≤ v(t), t 6= tk, k = 0, . . . ,m,

and since

lim
t→t+k

(t− tk)1−α‖Au(t)‖ ≤ lim
t→t+k

(t− tk)1−αv(t), k = 0, . . . ,m,

we have

sup
t∈J∗

m∏
i=0

(t− ti)2−α‖Au(t)‖ ≤ sup
t∈J∗

m∏
i=0

(t− ti)2−αv(t).

Hence, A(V1−α) ⊂ V1−α. The elements of AV1−α are uniformly bounded in
PCb

1−α([t0,+∞[, Rn) because
m∏

i=0

(t− ti)2−α‖Au(t)‖ ≤
m∏

i=0

(t− ti)2−αv(t) < ∞.

Next, we prove that the elements in the set AV1−α are equicontinuous in the space
PCb

1−α([t0,+∞[, Rn). To do this, we show that the derivative of u1(t) (defined in
section 3) is uniformly bounded in PCb

1−α([t0,+∞[, Rn). Note that

‖u′1(t)‖ ≤
(1− α)
Γ(α)

(
v0(t− t0)α−2 +

∑
t0<tk≤t

(t− tk)α−2Jk(tk)
)

≤ (1− α)
Γ(α)

v(t); t 6= tk, k = 0, . . . ,m,
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and since v(t) is a solution of (4.1)-(4.3) in PCb
1−α([t0,+∞[, R+), we have

‖u′1(t)‖1−α ≤ |v(t)|1−α
(1− α)
Γ(α)

< +∞.

On the other hand, regarding the set Bu(t) defined in section 3, the uniform
convergence in PCb

1−α([t0,+∞[, R+) is equivalent to the uniform convergence in
PCb

1−α([t0, Tp], Rn), for each Tp, with [t0, tm] ⊂ [t0, Tp] and lim
p→∞

Tp = ∞. Thus,

for each s1 and s2 different from tk, k = 0, . . . ,m, satisfying t0 < s1 < s2 < Tp, we
have

‖Bu(s2)−Bu(s1)‖

≤ 1
Γ(α)

[ ∫ s2

t0

(s2 − s)α−1 −
∫ s1

t0

(s1 − s)α−1
]
‖f(s, u(s))‖ds

≤ 1
Γ(α)

[ ∫ s1

t0

(s2 − s)α−1 − (s1 − s)α−1 +
∫ s2

s1

(s2 − s)α−1
]
g(s, v(s))ds,

and since g(s, v(s)) is continuous and positive, we obtain

‖Bu(s2)−Bu(s1)‖ ≤
G

Γ(α)
[2(s2 − s1)α + |(s2 − t0)α − (s1 − t0)α|],

where
G = sup

t∈[t0,+∞[

g(t, v(t)).

Clearly, the right hand side tends to zero as s1 → s2. We infer that

‖Bu(s2)−Bu(s1)‖1−α → 0, as s1 → s2.

Therefore, AV1−α is compact and A is completely continuous. We conclude by
Schauder’s theorem that A has at least one fixed point in V1−α which is the solution
to the given problem (2.1)-(2.3). Furthermore, it satisfies the estimate ‖u‖1−α ≤
|v|1−α. The proof is complete. �

End of the corrigendum.
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