\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2009(2009), No. 129, pp. 1--8.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu} \thanks{\copyright 2009 Texas State University - San Marcos.} \vspace{8mm}} \begin{document} \title[\hfilneg EJDE-2009/129\hfil Existence and uniqueness of solutions] {Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spaces} \author[J. Wu, Y. Liu \hfil EJDE-2009/129\hfilneg] {Jun Wu, Yicheng Liu} % in alphabetical order \address{Jun Wu \newline College of Mathematics and Computer Science, Changsha University of Science Technology, Changsha, 410114, China} \email{junwmath@hotmail.com} \address{Yicheng Liu \newline Department of Mathematics and System Sciences, College of Science, National University of Defense Technology, Changsha, 410073, China} \email{liuyc2001@hotmail.com} \thanks{Submitted August 21, 2009. Published October 7, 2009.} \thanks{J. Wu was supported by grants 08C117 from the Scientific Research Fund of Hunan \hfill\break\indent Provincial Education Department, and 1004132 from the Scientific Research Fund for the \hfill\break\indent Doctoral Program of CSUST.} \subjclass[2000]{34K45} \keywords{Fractional integro-differential equations; nonlocal condition; \hfill\break\indent equivalent norms} \begin{abstract} In this article, we established the existence and uniqueness of solutions for fractional integro-differential equations with nonlocal conditions in Banach spaces. Krasnoselskii-Krein-type conditions are used for obtaining the main result. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{corollary}[theorem]{Corollary} \allowdisplaybreaks \section{Introduction} In this article, we are interesting in the existence and uniqueness of solutions for the Cauchy problem with a Caputo fractional derivative and nonlocal conditions: \begin{gather}\label{ivp1} D^qx(t)=f(t,x(t),[\theta x](t)),\quad q\in(0,1)\; t\in I:=[0,1],\\ \label{ivp2} x(0)+g(x)=x_0, \end{gather} where $q\in (0,1)$, $f:I\times X\times X\to X$, $g:C(I,X)\to X$, $\theta: X\to X$ defined as $$ [\theta x](t)=\int_0^tk(t,s,x(s))ds, $$ and $k:\Delta\times X\to X$, $\Delta=\{(t,s):0\leq s\leq t\leq 1\}$. Here, $(X,\|\cdot\|)$ is a Banach space and $C=C(I,X)$ denotes the Banach space of all bounded continuous functions from $I$ into $X$ equipped with the norm $\|\cdot\|_C$. The study of fractional differential equations and inclusions is linked to the wide applications of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics. The theory of fractional differential equations has seen considerable development, see for example the monographs of Kilbas et al. \cite{Kilbas} and Lakshmikantham et al. \cite{Laks-book}. Recently, existence and uniqueness criteria for the various fractional (integro-)differential equations were considered by Ahmad and Nieto \cite{ahmad-Nieto}, Bhaskar\cite{B-Laks-Lee2}, Lakshmikantham and Leela et al \cite{Laks-Lee1,Laks-Lee2}. For more information in this fields, see \cite{ahmad-Siva, anguraj} and the references therein. As indicated in many previous articles, the nonlocal condition $x(0)+g(x)=x_0$ generalizes the Cauchy condition $x(0)=x_0$, and can be applied in physics with better cases than the Cauchy condition. The term $g(x)$ denotes the nonlocal effects, which describe the diffusion phenomenon of the a small amount in a transparent tube, with the general form $g(x)=\sum_{i=1}^{p}c_ix(t_i)$. Also, the problem \eqref{ivp1}-\eqref{ivp2} includes many classical formulations. For example, $g(x)=x_0-x(T)$ becomes a periodic boundary problem, $g(x)=x_0+x(T)$ becomes an antiperiodic boundary problem, while $g(x)=0$ becomes a Cauchy problem. In \cite{ahmad-Siva}, the authors presented some existence and uniqueness results for the problem \eqref{ivp1}-\eqref{ivp2}, when $f(t,x(t),[\theta x](t))=p(t,x(t))+\int_0^tk(t,s,x(s))ds$. In \cite{anguraj}, the authors presented some existence and uniqueness results for the problem \eqref{ivp1}-\eqref{ivp2}, when $f(t,x(t),[\theta x](t))=\int_0^tk(t,s,x(s))ds$. The aim of this paper is to present some existence results for the problem \eqref{ivp1}-\eqref{ivp2} for some Krasnoselskii-Krein-type conditions. Our methods are based on the equivalence of norms and a fixed point theorem. \section{Main results} For the next theorem, we sue the following assumptions: \begin{itemize} \item[(F1)] $f$ is continuous and there exist constants $\alpha,\beta\in(0,1]$, $L_1, L_2>0$ such that for $t\in I$ and $x_i,y_i\in X$, $$ \|f(t,x_1,y_1)-f(t,x_2,y_2)\|\leq L_1\|x_1-y_1\|^\alpha +L_2\|x_2-y_2\|^\beta\,; $$ \item[(F2)] $k$ is continuous and there exist $\beta_1\in (0,1]$, $h\in L^1(I)$ such that $$ \|k(t,s,x)-k(t,s,y)\|\leq h(s)\|x-y\|^{\beta_1},\quad (t,s)\in \Delta,\; x,y\in X\,; $$ \item[(G)] $g$ is bounded, continuous, and there exists a constant $b\in (0,1)$ such that $\|g(u)-g(v)\|\leq b\|u-v\|$. \end{itemize} \begin{theorem} \label{thm1} Under Assumptions {\rm (F1), (F2), (G)}, Problem \eqref{ivp1}-\eqref{ivp2} has a unique solution. \end{theorem} For special cases of $f$, we obtain the following corollaries. \begin{corollary} \label{coro1} Let $f(t,x(t),[\theta x](t))=p(t,x(t))+\int_0^tk(t,s,x(s))ds$. Assume {\rm (F2), (G)} and that $p$ is continuous and there exist constants $\beta\in(0,1]$, $L>0$ such that $$ \|p(t,x)-p(t,y)\|\leq L\|x-y\|^\beta\quad t\in I,\; x,y\in X. $$ Then \eqref{ivp1}-\eqref{ivp2} has a unique solution. \end{corollary} \begin{corollary} \label{coro2} Assume {\rm (F1), (G)} and that $k(t,s,x(s))=\gamma(t,s)x(s)$ and $\gamma\in C(\Delta)$. Then \eqref{ivp1}-\eqref{ivp2} has a unique solution. \end{corollary} For the next theorem, we use the assumptions: \begin{itemize} \item[(F1')] $f$ is continuous and there exist constants $p_1,p_2\in[0,q)$, $L_1, L_2, C>0$ such that $$ \|f(t,x,y)\|\leq \frac{L_1}{t^{p_1}}\|x\|+\frac{L_2}{t^{p_2}}\|y\|+C, \quad t\in I, \; x,y\in X\,; $$ \item[(F2')] $k$ is continuous and there exist $h\in L^1(I)$, $K>0$ such that $$ \|k(t,s,x)\|\leq h(s)\|x\|+K,\quad (t,s)\in \Delta,\; x,y\in X. $$ \end{itemize} \begin{theorem} \label{thm2} Assume {\rm (F1'), F(2'), (G)}. Then \eqref{ivp1}-\eqref{ivp2} has at least one solution. \end{theorem} We remark that Theorem \ref{thm1} extends \cite[Theorem 2.1]{ahmad-Siva} and \cite[Theorem 2.1]{anguraj}. \section{Proof of Theorem \ref{thm1}} The following lemma, due to Krasnoselskii, plays an important role in the proof of the existence part of Theorem \ref{thm1}. \begin{lemma}[\cite{Krasnoselskii}] \label{lem3.1} Let $M$ be a closed convex and nonempty subset of a Banach space $X$. Let $A, B$ be two operators such that (1) $Ax+By\in M$ whenever $x,y\in M$; (2) $A$ is compact and continuous; (3) $B$ is a contraction mapping. Then there exists $z\in M$ such that $z=Az+Bz$. \end{lemma} \begin{proof}[Proof of Theorem \ref{thm1}] First, we transform the Cauchy problem \eqref{ivp1}-\eqref{ivp2} into fixed point problem with $F:C(I,X)\to C(I,X)$ defined by \begin{equation} \label{e33} Fx(t)= x_0-g(x)+\frac{1}{\Gamma(q)}\int_{0}^{t}(t-s)^{q-1}f(s,x(s), [\theta x](s))ds. \end{equation} Let $F=A+B$, with \begin{gather} Ax(t) = \frac{1}{\Gamma(q)}\int_{0}^{t}(t-s)^{q-1}f(s,x(s), [\theta x](s))ds; \label{e34}\\ Bx(t)= x_0-g(x). \label{e35} \end{gather} Define the norm $\|\cdot\|_k$ in $C(I,X)$, for $u\in C(I,X)$ and for some $k\in \mathbb{N}$, by $$ \|u\|_k=\max\{e^{-kt}\|u(t)\|: t\in I\}. $$ Note that the norms $\|\cdot\|_C$ and $\|\cdot\|_k$ are equivalent. We prove Theorem \ref{thm1} in the following two steps. \noindent\textbf{Step 1: Existence.} Let $P=\sup_{x\in X}\|g(x)\|$, $M_0=\sup_{t\in I}\|\int_0^tk(t,s,0)ds\|$, $M_1=\sup_{t\in I}\|f(t,0,0)\|$ and $Q=\|x_0\|+P+\frac{M_1}{\Gamma(q+1)}+3$. Choose a $k_1\in N$ such that $$ \frac{1}{k_1^q}(L_1Q^\alpha+L_2(\|h\|_{L^1}Q^{\beta_1}+M_0)^\beta)<3. $$ Setting $B_Q=\{u\in C(I,X): \|u\|_{k_1}\leq Q\}$. For $u\in B_Q$, noting the assumption (F2), we have \begin{align*} \|[\theta u](t)\| &\leq \int_0^t\|k(t,r,u(r))-k(t,r,0)+k(t,r,0)\|dr\\ &\leq \|h\|_{L^1}\sup_{r\in[0,t]}\|x(r)\|^{\beta_1}+M_0\\ &\leq \|h\|_{L^1}e^{k_1t}Q^{\beta_1}+M_0. \end{align*} Thus $$ \|\theta u\|_{k_1}\leq \|h\|_{L^1}Q^{\beta_1}+M_0. $$ By assumption (F1), for $u\in B_Q$, we obtain \begin{align*} \|Fu(t)\| &\leq \|x_0\|+P +\frac{1}{\Gamma(q)}\int_{_{0}}^{^{t}}(t-s)^{q-1} \|f(s,u(s),[\theta u](s))-f(s,u(s),0)\|ds\\ &\quad +\frac{1}{\Gamma(q)}\int_{_{0}}^{^{t}}(t-s)^{q-1} \|f(s,u(s),0)-f(s,0,0)\|ds\\ &\quad + \frac{1}{\Gamma(q)}\int_{_{0}}^{^{t}}(t-s)^{q-1} \|f(s,0,0)\|ds\\ &\leq \|x_0\|+P +\frac{L_2}{\Gamma(q)}\int_{_{0}}^{^{t}}(t-s)^{q-1} \|[\theta u](s)\|^\beta ds\\ &\quad +\frac{L_1}{\Gamma(q)}\int_{_{0}}^{^{t}}(t-s)^{q-1} \|u(s)\|^\alpha ds+ \frac{M_1}{\Gamma(q+1)}\\ &\leq \|x_0\|+P+ \frac{M_1}{\Gamma(q+1)} +\frac{L_2}{\Gamma(q)}\int_{_{0}}^{^{t}}(t-s)^{q-1} e^{\beta k_1s}ds\|\theta u\|_{k_1}^\beta\\ &\quad +\frac{L_1}{\Gamma(q)}\int_{_{0}}^{^{t}}(t-s)^{q-1} e^{\alpha k_1s}ds\|u\|_{k_1}^\alpha \\ &\leq \|x_0\|+P+ \frac{M_1}{\Gamma(q+1)} +\frac{L_1}{\Gamma(q)}\int_{_{0}}^{^{t}}(t-s)^{q-1} e^{k_1s}ds\|u\|_{k_1}^\alpha \\ &\quad +\frac{L_2}{\Gamma(q)}\int_{_{0}}^{^{t}}(t-s)^{q-1} e^{k_1s}ds(\|h\|_{L^1}Q^{\beta_1}+M_0)^\beta\\ &\leq \|x_0\|+P+ \frac{M_1}{\Gamma(q+1)} +e^{k_1t}[\frac{L_1}{k_1^q}Q^\alpha+\frac{L_2}{k_1^q}(\|h\|_{L^1}Q^{\beta_1}+M_0)^\beta]. \end{align*} Thus $$ \|Fu\|_{k_1}\leq \|x_0\|+P+ \frac{M_1}{\Gamma(q+1)} +\frac{L_1}{k_1^q}Q^\alpha+\frac{L_2}{k_1^q}(\|h\|_{L^1}Q^{\beta_1} +M_0)^\beta