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POSITIVITY OF THE GREEN FUNCTIONS FOR HIGHER
ORDER ORDINARY DIFFERENTIAL EQUATIONS

MICHAEL I. GIL’

Abstract. We consider the equation
nX

k=0

ak(t)x(n−k)(t) = 0, t ≥ 0,

where a0(t) ≡ 1, ak(t) (k = 1, . . . , n) are real bounded functions. Assuming

that all the roots of the polynomial zn+a1(t)zn−1+· · ·+an(t) (t ≥ 0) are real,
we derive positivity conditions for the Green function for the Cauchy problem.

We also establish a lower estimate for the Green function and a comparison

theorem for solutions.

1. Introduction and statement of the main result

In this paper we establish positivity conditions of the Green function for the
Cauchy problem (the fundamental solution) for the scalar equation

n∑
k=0

ak(t)x(n−k)(t) = 0, t > 0, (1.1)

where a0(t) ≡ 1; ak(t) (k = 1, . . . , n) are real continuous functions bounded on
[0,∞).

The literature on the positive and nonoscillating solutions of ordinary differential
equations is very rich, cf. [1, 6, 13, 14, 15] and references therein. In particular,
Yu and Levin [11, Section 5] among other remarkable results, proved the following
result: Suppose that, the roots r1(t), . . . , rn(t) of the polynomial

P (z, t) :=
n∑

k=0

ak(t)zn−k, z ∈ C.

for each t ≥ 0 are real and satisfy the inequalities

ν0 ≤ r1(t) < ν1 ≤ r2(t) < ν2 ≤ · · · < νn−1 ≤ rn(t) ≤ νn, t ≥ 0,

where νj are constants. Then equation (1.1) has non-oscillating solutions. That
result is very useful, see for instance [7, 8] and references therein. It should be
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noted that the existence of non-oscillating solutions does not guarantee the pos-
itivity of the Green function. Obtaining the positivity conditions for the Green
function requires additional restrictions. On the other hand such conditions are
very important for various applications, cf. [9, 10]. To the best of our knowledge,
the positivity conditions for the Green function were established only in the cases
of the second order equations, cf. [10], and equations with constant coefficients
[8]; the nonautonomous higher order differential equations were not found in the
available literature.

A solution of (1.1) is a function x(t) having continuous derivatives up to n-order
satisfying (1.1) for all t > 0 and given initial conditions. Recall that the Green
function G(t, τ) for (1.1) is a function defined for t ≥ τ ≥ 0, satisfying (1.1) for
t > τ ≥ 0, and the initial conditions

lim
t↓τ

∂kG(t, τ)
∂tk

= 0 (k = 0, . . . , n− 2); lim
t↓τ

∂n−1G(t, τ)
∂tn−1

= 1. (1.2)

Assume that
ak(t) ≤ bk, t ≥ 0; k = 1, . . . , n, (1.3)

where bk are constant, and introduce the polynomial

Q(λ) = λn + b1λ
n−1 + b2λ

n−2 + · · ·+ bn.

The aim of this paper is to prove the following theorem.

Theorem 1.1. Assume (1.3), and let all the roots of polynomial Q(z) be real and
non-negative. Then the Green function for (1.1) is positive. Moreover,

∂kG(t, s)
∂tk

≥ 0, t > s ≥ 0, k = 1, . . . , n− 1 (1.4)

This theorem is proved in the next section. Below we also consider the case
when Q has negative roots. Theorem 1.1 supplements the very interesting recent
investigations of higher order differential equations, cf. [2, 4, 16].

2. Proof of Theorem 1.1

Denote by C(R+) the Banach space of functions continuous and bounded on
R+ := [0,∞) and consider the nonhomogeneous equation

n∑
k=0

ak(t)Dn−kv(t) = f(t) (2.1)

with a positive f ∈ C(R+), Dkx(t) := dkv
dtk , t > 0, and the zero initial conditions

v(k)(0) = 0, k = 0, 1, . . . , n− 1. (2.2)

Since the coefficients of (2.1) are bounded on R+, a solution v(t) of problem (2.1)–
(2.2) satisfies the conditions

|v(k)(t)| ≤ Meνt, t ≥ 0, k = 0, 1, . . . , n

with constants M ≥ 1 and ν. So v(t) admits the Laplace transform. Let ṽ(λ) be
the Laplace transform to v(t), λ the dual variable. Put ỹ(λ) = Q(λ)ṽ(λ). Then

v(t) =
1

2πi

∫ c0+i∞

c0−i∞

eλtỹ(λ)
Q(λ)

dλ (c0 = const). (2.3)
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We can write as

f(t) = P (D, t)v(t) =
1

2πi

∫ c0+i∞

c0−i∞

eλtP (λ, t)ỹ(λ)dλ

Q(λ)
. (2.4)

Hence,

f(t) =
1

2πi

∫ c0+i∞

c0−i∞
eλt[1− Q(λ)− P (λ, t)

Q(λ)
]ỹ(λ)dλ = y(t)− Z(t) (2.5)

where y(t) is the Laplace original to ỹ(λ) and

Z(t) =
1

2πi

∫ c0+i∞

c0−i∞
eλt Q(λ)− P (λ, t)

Q(λ)
ỹ(λ)dλ.

By the convolution property,

Z(t) =
∫ t

0

K(t, t− s)y(s)ds,

where

K(ν, t) =
1

2πi

∫ c0+i∞

c0−i∞
eλt Q(λ)− P (λ, ν)

Q(λ)
dλ, ν ≥ 0.

So

y(t)−
∫ t

0

K(t, t− s)y(s)ds = f(t).

Take into account that

K(ν, t) =
n∑

k=1

(bk − ak(ν))µk(t),

where

µk(t) =
1

2πi

∫ c0+i∞

c0−i∞
eλt λ

n−k

Q(λ)
dλ, k = 1, . . . , n. (2.6)

By [8, Lemma 1.11.2, p. 23]

µk(t) =
1

(n− 1)!
dn−1estsn−k

dsn−1

∣∣
s∈[z1,zn]

≥ 0 (2.7)

where z1 is the smallest (nonnegative) root of Q and zn is the largest root of Q.
Since bk − ak(t) ≥ 0, t ≥ 0, we can assert the K(ν, t) ≥ 0 for all ν, t ≥ 0.
Furthermore, denote by Cτ the Banach space of functions continuous on [0, τ ]

with a positive τ < ∞. In addition C+
τ denotes the cone of positive functions from

Cτ . Introduce on Cτ the Volterra operator V by

(V w)(t) =
∫ t

0

K(t, t− s)w(s)ds.

Then y − V y = f . By the Neumann series,

(I − V )−1f =
∞∑

k=0

V kf ≥ f ≥ 0.

Here I is the unit operator. Note that the Neumann series of any Volterra operator
with a continuous kernel converges in the sup-norm on each finite segment, since
the spectral radius of that operator in a space of continuous functions defined on
a finite segment is equal to zero, cf. [3]. So y(t) ≥ f(t), t ∈ [0, τ ]. But τ is an
arbitrary positive number. So we obtain y(t) ≥ f(t), t ∈ R+. Recall that y(t) is the



4 M. I. GIL’ EJDE-2008/97

Laplace original to ỹ(λ); so according to (2.3) and the convolution property, we get

v(t) =
∫ t

0

µn(t− s)y(s)ds (2.8)

where µn is defined by (2.6). According to (2.7),

µn(t) =
1

(n− 1)!
dn−1est

dsn−1

∣∣
s∈[z1,zn]

≥ ez1t tn−1

(n− 1)!
. (2.9)

Now the inequality y(t) ≥ f(t), t ≥ 0, yields

v(t) ≥
∫ t

0

µn(t− s)f(s)ds ≥ 0, t ≥ 0.

Thus the solution of problem (2.1)–(2.2) is positive, provided f is positive. But

v(t) =
∫ t

0

G(t, s)f(s)ds. (2.10)

Hence it follows that G(t, s) ≥ 0. Furthermore, by (1.2), (2.3) and the convolution
property

v(k)(t) =
1

2πi

∫ c0+i∞

c0−i∞

eλtλkỹ(λ)
Q(λ)

dλ =
∫ t

0

µn−k(t− s)y(s)ds.

But as it was above shown, µk(t) ≥ 0, k = 1, . . . , n. Thus v(k)(t) ≥ 0. So by (2.10),

v(k)(t) =
∫ t

0

∂kG(t, s)
∂tk

f(s)ds ≥ 0, k = 1, . . . , n− 1.

Hence (1.4) follows. As claimed.

3. Lower solution estimates and comparison of Green’s functions

Lemma 3.1. Under the hypothesis of Theorem 1.1, for any nonnegative f a solu-
tion of problem (2.1)–(2.2) satisfies the inequality

v(t) ≥ 1
(n− 1)!

∫ t

0

ez1(t−s)(t− s)n−1f(s)ds

where z1 ≥ 0 is the smallest root of Q(λ).

Indeed, this result immediately follows from (2.8) and (2.9). Recall also that
G(t, τ) is a solution of the equation

P (D, t)y = δ(t− τ), t > 0

where δ(t) is the Dirac Delta function. Hence thanks to the previous lemma we
easily get the inequality

G(t, τ) ≥ 1
(n− 1)!

(t− τ)n−1ez1(t−τ), t > τ.

Furthermore, together with (1.1), let us consider the equation
n−1∑
k=0

ck(t)x(n−k)(t) = 0, t > 0, (3.1)

where ck(t) are bounded real functions satisfying the conditions

ck(t) ≤ ak(t), t ≥ 0; k = 1, . . . , n. (3.2)
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Lemma 3.2. Let the Green function G(t, s) for (1.1) be positive and the inequal-
ities (1.4) and (3.2) hold. Then the Green function W (t, s) for (3.1) satisfies the
inequalities

W (t, s) ≥ G(t, s) ≥ 0;
∂kW (t, s)

∂tk
≥ ∂kG(t, s)

∂tk
≥ 0 (3.3)

for all t > s ≥ 0 and k = 1, . . . , n− 1.

Proof. Rewrite (3.1) as
n∑

k=0

ak(t)x(n−k)(t) =
n∑

k=1

(an(t)− cn(t))x(n−k)(t), t ≥ 0.

Then with the notation w(t) = W (t, 0), we have

w(t) = G(t, 0) +
∫ t

0

G(t, s)
n∑

k=1

(an−k(s)− cn−k(s))w(k)(s)ds. (3.4)

Hence, according to (1.2),

w(k)(t) =
∂kG(t, 0)

∂tk
+

∫ t

0

∂kG(t, s)
∂tk

n∑
k=0

(an−k(s)− cn−k(s))w(k)(s)ds. (3.5)

Rewrite (3.4) and (3.5) as the n-vector equation

ŵ = Ĝ + Ṽ ŵ

where Ṽ is a Volterra equation with a positive continuous matrix kernel

Ĝ(t) = column
[
G(t, 0),

∂G(t, 0)
∂t

, . . . ,
∂n−1G(t, 0)

∂tn−1

]
,

ŵ(t) = column
[
w(t), w′(t), . . . , w(n−1)(t)

]
. Hence by the Neumann series

ŵ =
∞∑

k=0

Ṽ kĜ ≥ Ĝ.

So for s = 0 the inequalities (3.3) are proved. But the case s > 0 can be similarly
proved. As it was above mentioned, the Neumann series of any Volterra operator
with a continuous kernel converges in the sup-norm on each finite segment, since
the spectral radius of that operator in a space of continuous functions defined on a
finite segment is equal to zero. This proves the lemma. �

Note that a relatively special but related comparison result is due to MacKenna
and Reichel [12].

4. The case of negative roots

Let Q(λ) have at least one negative root. With a positive number r, substitute
in (1.1) x(t) = e−rtw(t). After simple calculations we get we equation

P (D − r, t)w(t) = 0.
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Take into account that

P (z − r, t) =
n∑

k=0

an−k(t)(z − r)k

=
n∑

k=0

an−k(t)
k∑

j=0

Cj
k(−r)k−jzj

=
n∑

j=0

zj
n∑

k=j

an−k(t)Cj
k(−r)k−j

=
n∑

j=0

zj ãn−j(t, r)

where Cj
k = k!

j!(k−j)! and

ãn−j(t, r) =
n∑

k=j

an−k(t)Cj
k(−r)k−j .

Thus we have
n∑

k=0

ãn−k(t, r)w(k)(t) = 0, t > 0, . (4.1)

Assume that

ãj(t, r) ≤ b̃j(r) (b̃j(r) = const; t ≥ 0; j = 1, . . . , n, (4.2)

and introduce the polynomial

Q̃(λ, r) = λn + b̃1(r)λn−1 + b̃2(r)λn−2 + · · ·+ b̃n(r).

Then applying Theorem 1.1 to equation (4.1), we obtain the following result.

Corollary 4.1. Under condition (4.2), for a positive number r, let all the roots of
polynomial Q̃(λ, r) be real and non-negative. Then the Green function for (1.1) is
positive. Moreover,

∂k(ertG(t, s))
∂tk

≥ 0, t > s ≥ 0; k = 1, . . . , n− 1.

In particular, consider the equation

x′′ + a1(t)x′ + a2(t)x = 0 (4.3)

assuming that
0 < mk ≤ ak(t) ≤ Mk, t ≥ 0; k = 1, 2, (4.4)

where mk and Mk are constant. Then

ã1(t, r) = −2r + a1(t), ã2(t, r) = r2 − a1r + a2(t).

Hence

ã1(t, r) ≤ b̃1(r) = −2r + M1, ã2(t, r) ≤ b̃2(r) = r2 −m1r + M2.

If b̃1(r) < 0, b̃2(r) > 0 and b̃2
1(r) ≥ 4b̃2(r), then Q̃(z, r) = z2 + b̃1(r)z + b̃2(r) has

two non-negative roots. Let m2
1 > 4M2. Take r ≥ M1. Then

r ≥ M1 > m1/2 +
√

m2
1/4−M2
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and therefore b̃2(r) > 0. We also should have the inequality

(−2r + M1)2 ≥ 4(r2 −m1r + M2).

Hence M2
1 − 4rM2

1 ≥ −4m1r + 4M2. So we get

M1 ≤ r ≤ (M2
1 − 4M2)/4(M1 −m1). (4.5)

Now the previous corollary implies the following result.

Corollary 4.2. Let the conditions (4.4), m2
1 > 4M2 and

1 ≤ (M2
1 − 4M2)

4M1(M1 −m1)
hold, then the Green function G(t, s) for (4.1) is positive. Moreover,

∂(ertG(t, s))
∂t

≥ 0, t > s ≥ 0,

for any r satisfying (4.5). In particular for r = M1.
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