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POSITIVE PERIODIC SOLUTIONS FOR A PREDATOR-PREY
MODEL WITH TIME DELAYS AND IMPULSIVE EFFECT

SHAN GAO, YONGKUN LI

ABSTRACT. In this article, a two-species predator-prey model with time delays
and impulsive effect is investigated. By using Mawhin’s continuation theorem
of coincidence degree theory, sufficient conditions are obtained for the existence
of positive periodic solutions.

1. INTRODUCTION

In the past few years, predator-prey models and with many kinds of functional
responses have been of great interest to both applied mathematicians and ecologists
see references in this article. Recently, by using Floquet theory of linear periodic
impulsive equation, Song and Li [I5] considered the following T-periodic predator-
prey model with modified Leslie-Gower and Holling-type II schemes and impulsive
effect

i) =50 () - et~ 55 )

_ a(t)y(t)

y(t) = y(t) (Tz(t) - m)
() = (1 + hy)x ()
y(rd) = (1 + gr)y(Tk)

where by (t),r;(t), a;(t), ki (t)(i = 1,2) are continuous w-periodic functions such that
bi(t) > 0,7;(t) > 0,a;(t) > 0,k;(t) > 0(: = 1,2) and Zy = {1,2,...}; hg,gx(k €
Z4) are constants and there exists an integer ¢ > 0 such that hyyq = hi, grtq =
ks Thtq = Tk +w, and 1 + A > 0,1+ g > 0 for all k € Z,. They obtain some
conditions for the linear stability of trivial periodic solution and semitrivial periodic
solutions.

However, as pointed out in [9], naturally, more realistic and interesting models
of single or multiple species growth should take into account both the seasonality
of the changing environment and the effects of time delays.

t#le k€Z+7

} t:Tk7k€Z+.
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In this paper, we consider the following w-periodic predator-prey system with
time delays and impulses:

i(t) = 2(t) (r1 () = bu () (t = 7(1) C(Ltl (—t)i/l(;t)) :r: Iiri)()t))

t#tk, k€Zy,
o az(t)y(t — o2(t))
i6) = ) (rate) = 2022
z(t)) = I(z(ty)) + z(ty,) -
y(th) = Jk(y(tr)) + y(tk)} t=ty, ke€Zy.
(1.1)

where z(t)), z(t; ), y(t)), y(t;, ) represent the right and the left limit of z(t) and
y(tx), respectively, in this paper, we assume that x, y are left continuous at tx; by (¢),
7(t), a;i(t), ri(t), ki(t), o:(t), 7(t) (i = 1,2) are all positive periodic continuous
functions with period w > 0 and Z4 = {1,2,...}; I, Jp € C(RT,R) satisfy that
Ii(u) > —u, Ji(v) > —v, and there exists a positive integer p such that tx4, =
ty + w, Ityp = I, Jtp = Ji, k € Z. Without loss of generality, we also assume
that [0,w)N{ty : k€ Zy} = {t1,t2,...,tp}.

Our purpose of this paper is by using continuation theorem of coincidence de-
gree theory [6] to establish criteria to guarantee the existence of positive periodic

solutions of system (|1.1)).

2. NOTATION AND PRELIMINARIES

To obtain our main result of this paper, we first need to make the following
preparations. For any non-negative integer ¢, let

C'(q)[O,w; tl,tg,...,tp]
= {sc 1 [0,w] — R such that 29 () exists for t # t1,...,t,; D), D (t;)
exists at t1,...,tp; and x(j)(tk) = x(j)(t,;), k=1,2,....,p,7=0,1,2,.. .,q}

with the norm
|2]lq = max{ sup [« (t)]}7_,.

te(0,w
It is easy to see that C'(@) [0,w;t1,t,...,%p] is a Banach space and the functions
in C[0,w; t1,ta,...,t,] are continuous with respect to ¢ different from ¢1,¢s,...,%,.

Let
PC, ={z € C[0,w;ty,ts,...,t) : 2(0) = z(w)}
with the same norm as that of C[0,w;t1,t2,. .., tp].

Let X,Y be normed vector spaces, L : Dom L C X — Y be a linear mapping,
and N : X — Y be a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dim ker L = codimIm L < 400 and Im L is closed in Y.
If L is a Fredholm mapping of index zero, and there exist continuous projectors:
P:X—>Xand @Q:Y — Y such that InP =ker L, ker@Q = Im L = Im(I — Q).
It follows that mapping L|pom rrker P : (I — P)X — Im L is invertible. We denote
the inverse of that mapping by Kp. If €2 is an open bounded subset of X, the
mapping N will be called L-compact on 2 if QN (Q) is bounded and Kp(I — Q)N
Q — X is compact. Since Im @ is isomorphic to ker L, there exists an isomorphism
J:Im@ — ker L.
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Definition 2.1. The set F is said to be quasi-equicontinuous in [0, w] if for any
€ > 0 there exists § > 0 such that if z € F, k € Z4, t1,t2 € (tg—1,tx) N [0, w],
‘tl — t2| < (5, then |£C(t1) — x(t2)| < €.

Lemma 2.2 ([2]). The set F' C PC,, is relatively compact if and only if

(1) F is bounded, that is, ||fllpc, = [Ifllo = supiepw [f(E)] < M for each
f € F and some M > 0;
(2) F is quasi-equicontinuous in Dom f.

Now, we introduce Mawhin’s continuation theorem.

Lemma 2.3 ([6]). Let @ C X be an open bounded set and let N : X — Y be a
continuous operator which is L-compact on . Assume

(a) for each X € (0,1), x € 902N Dom L, Lz # ANz,

(b) for each x € 00 Nker L, QNx # 0,

(¢) deg(JQN,QNker L,0) # 0.
Then Lx = Nx has at least one solution in QN Dom L.

Throughout this paper, we assume that there exist p1y, pok, Gk, q2x € R, k € Z4
such that

Ik (u
inf k() > q > —1, sup
u>0 U u>0

< P1k < +00,

Iy (u)

v
) < pog < H00.

Ji (v
it} Z q2k > _17 sup
v>0 v v>0

For convenience, we introduce the notation

7_l ) M—max
=2 [ s (),

te[0, w]
Lk = max{|ln(1 + p1k)l, | In(1 +q1k)|}, log, = max{|ln (14 pag)l, | In(1 +q2k)|}

where f is a continuous w-periodic function and k € Z,.

3. MAIN RESULT

Let

H1 =In

T+ L In(TTH_( 1%))
(Arenimbrn))

)

p
M, = H1+2wr1+1n(H 1+p1k>+ l1k;
k=1

x>
-
3

+ = In(TTo— (1 + gar))
Hy =1In w :
( () )
My = Hy = 2w — I ( [T+ p20)) =D laws
k=1 k=1
Hy=In ((k2M +eMi) (75 + i:mi_l(l +p2k))))7

=

M32H3+2w6+ln(

(1 -HU%)) + ) ok

1 k=1

=~
Il
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4+ L In([T0_, (1 + —eMs (@
H4:1n( 1 ) (Hk,1(7Q1k)) (kl)),
b1
p
My = Hy = 2077 —In ( [T+ pw0)) - sz
k=1

Our main result of this paper is as follows:

Theorem 3.1. If

s

T+ lln( (1+p1k)) >0,

>
Il
—

i~

T2 + 1ln( (1—i-qQk))>07

k

Il
-

P

R L ( [T+ qlk)) — eM3% >0,

k=1

then (1.1) has at least one w-periodic positive solution.

Proof. Let x(t) = ¢"®), y(t) = ¢*® then is reformulated as
0 =)= 0 exp{at = (1) - LD~ on)
) — ey @2 eD{vlE — 1)
(1) =r2(t) =t = 720} + D) 51)
for t # ty, k € Z,, and
u(th) = ex(u(ty)) +ulty)
v(ty) = fu(v(te)) +v(ty)

} t=tp,keZy,

where

ex(u(ty)) = In (Ik(exp{u(gi/;){}i(;rljip{u(tk)} )
fr(v(ty)) = In (Jk(eXp{vé:;){}g(; ;%fp{v(tk)})_

It is easy to see that
In(1+ qix) < e (u(tr)) < In(1+ pig),
(1 + q2x) < fi(v(ty)) < In(1 + pag).
If system has an w-periodic solution (u(t),v(t)), then
("™, e’ ™) = (a*(1), y*(1))

is a positive w-periodic solution to system (|1.1)). So, in the following, we discuss
the existence of w-periodic solution to system (3.1). Here, we denote

A(t) = () — bi () explu(t — (1)} - exp({ igx_p{z((t ) }Ui(gl)(}t) :

_ _aa(t) exp{u(t — oa(t))}
exp{u(t — 72(t))} + ka(t)
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To use the continuation theorem of coincidence degree theory to establish the
existence of an w-periodic solution of (3.1]), we take

X =PC,x PC,, Y =X xR?,
Then X is a Banach space with the norm

[zl x = ll(w,v)l|x = [lullo + lvllo = sup |u(t)]+ sup [v(t)],
tel0,w] te[0,w]

and Y is also a Banach space with the norm
Izly = llzllx + llyllz, =€ X, yeR?,

where || - ||z in R™ is defined as

I€]l2 = [1(61, &2, - €)ll2 = D 14
=1

So if x = (u,v) € X NR?, then ||z||x = ||z|2. Let
Dom L = {(u, v) i u,v € C(l)[O,w;tl,tg, ot u(0) = u(w),v(0) = v(w)},
L:DomLNX —=Y
(u,v) = (4,0, Au(tq), ..., Au(ty), Av(t1), ..., Av(ty)),
and let N: X — Y with
N(z) = N(u,v) = (A(t), B(t), Au(ty), ..., Aulty), Av(ty), ..., Av(ty)).

Obviously, ker L = {(u,v) cu,v €ER,E € [O,W]} =R2,

w p
ImL = {z:(f,g,cl,...,cp,dl,...,dp) EY:/ f(s)ds+ch:O,
0 k=1

/Owg(s)ds+édk:0}

and dimker L = codimIm L = 2. So that, Im L is closed in Y, L is a Fredholm
mapping of index zero. Define the two projectors

1 w p 1 w p
Qz:(—/f(s)der Crl,— / g(s)ds + dk,O,...,O).
=y Sl 51 >l
i
It is easy to show that P and @) are continuous and satisfy
ImP=kerL =R? ImL=kerQ=Im(l - Q).

Further, let Lp = and the generalized inverse Kp = L;l is given by

L‘Dom LnNker P

t w t P p
szz(/o f(s)ds+zclc—£/0 /Of(s)det_kZ_:lck‘Fi;tkck’

t>ty

t 1 w t p 1 p
g(s)ds+ dk——/ /gs dsdt — dr + — trdy ).
Jaas+ S a2 [ [ gasa=37 S )

t>1tg k=1
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Thus, the expression of QNz is

(i[/owA(s)ds + 3 entuler)]. i[/ouB(s)ds + 3 fule(t) 0.....0),

and then
Kp(I ~ Q)N
:(/OA d3+§ek %/ /OA()dsdtJr z_;tkek )
+(;—£)/OWA()dS— 5 ki ’
/ ds+t§fk /O/OB()dsdt+ Ztkfk )
G-2 [ <>ds<;+£>lif<<tk>>)

Hence, QN and Kp(I — Q)N are both continuous. Using Lemma it is easy to
show that Kp(I —Q)N(Q) is compact for any open bounded set Q C X Moreover,
QN(Q) is bounded. Therefore, N is L-compact on Q for any open bounded set
QCX.

Now, it needs to show that there exists a domain 2 that satisfies all the re-
quirements given in Lemma Corresponding to operator equation Lx = ANz,
A€ (0,1), x = (u,v), we get

a1 (t) exp{o(t — o1(1))} }
exp{u(t — 71(1))} + k1 (t)
Lo st esp{ut — ox(t)))
o(t) = A {Tz(t) exp{u(t — m2(t))} + kz(t)]

for t # ty, k € Z4, and
u(ty) = Aeg(ulty)) + u(ty)
o(t) = Me(v(te)) +v(ty)

Suppose & = (u,v) is an w-periodic solution to system (3.2)). By integrating (3.2))
over [0, w] we obtain

/Ow () dt+ Y ex(u(te)
k=1
a1(t) expfo(t —o1(t))}

= /0 {bl(t) exp{u(t - T( ))} + exp{u(t - Tl(t))} + kl(t)

w P [ aa(t) exp{u(t — oa(t))}
/0 ra(t) dt + ; fr(v(te)) = /0 exp{u(t — 72(t))} + ka(t) v

at) = /\[rl(t) — by () explult — (1))} —

} t:tk,k€Z+

dt,  (3.3)
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From (3.2) and (3.3), we have
w w P
/ [a(t)|dt < 2/ ri(t)dt + Z er(u(ty)),
0 0 1

/O |i1(t)\dt<2/0 ra(t) dt+kZ:1 Folw(t)).

Since u(t),v(t) € PC,,, there exist &1,&2,m,n2 € [0,w] such that

u(é1) = téﬁl&ﬁ] u(t), u(m)= o u(t),

v(&2) = té?éﬂ,] v(t), w(nz) = max, v(t).

Then by (3.3) and (3.6)), we obtain

P w
T+ % ; er(u(ty)) > %/O by (£)e*() dt
I 1 (¥ ag(t)ev()
D Al < ;/0 o
that is,
7 1 = 1 P
w(€) < In [7“1 +5 Zibf €k(u(tk))] <In [7‘1 + 5 1“( b/i—1(1 +p1k-))]
and
() (%)
Hence
w P
u(t) < u(é) + /O ()| dt + > len(ulty))]
k=
p 1 P
< H; +2wﬁ+ln(]:[(1 + pix)) +Zl1k =: M,
k=1 k=1
and
w p
olt) 2 o(m) = [ 0Ot Y [u(wlte))
p = p
> Hy — 2&)7‘72—111(1_‘[(1 —l—pzk)) — Zl2k =: Mo>.
k=1 k=1
So we have

1< 1 [ ag(t)ev(€) 1 [¥ ao(t)ev&)
- ) > — [ e g s 2 2We Ty
T2t — > (o k))_w/o Fa(t) + &M —w/o KMy oM

(k" +e™) (72 + 5 iy fk(v(tm)))

az

= Hl

=: HQ.

i
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=: H3

1 ((ké” +et) (72 + 5 ([T, 0 +pzk>)))
< =
Thus

o(t) < (&) + / T+ S [felolt)
k=1

P P
< Hs+ 205 +In ([ (1 +pan) + D lok =: Ms.
k=1 k=1

Similarly, we have

1< 1 [“ , 1 [“ ay(t)eMs
;Z <;/ bl(t)e“("l)dt—l——/ %idt;
Pt 0 w Jo 1(t)
that is,
T+ = e t eMs (@
sy 1 [ B o) o
1
A+ LI (TTh_,(1+ —eMs (@
Zln[ T+ 5 k_l(b qix)) (kl)}::m_
1
Then

u(t) > u(m) / lag)lde -3 ex(uln
k=1

p
> Hy 72(.07’717111(1_[(1 +p1k)) *lek =: My.

Now, we have
M4 S u(t) S ]\417 M2 S U(t) S Mg.
Let D = |My| + |Ma| + |M3| 4 |My|. We have
zllx = llullo + [lvllo < D.

Clearly, D is independent of A. Denote M = D + Dy, where Dy is taken sufficiently
large such that each solution (u*,v*) of

w P _ d u a (t)ev
/0 ri(t) dt+’;ek(U(tk))—/o [bl(t)e +M] d,
w - _ [T e
/O ra(t) dt+; fr(u(tr)) —/0 ot ()

satisfies || (u*, v*)||x < Do, and we can obtain Dy by repeating the above arguments.
Then H(u*,v*)Hx < M.
Let @ = {z = (u,v) € X, |lz||x < M}, which satisfies condition (a) of Lemma.
When z € 9Q Nker L = 0Q N R?, z is a constant vector in R? with ||z|x =
Then

QNx:(l[/Ow (rl(t)—bl()exp{u}—w) dt—l—Zek }

w exp{u} + k

(3.7)
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S (0 - e Y )] 0 0)

2p
# 0,

which shows that condition (b) in Lemma holds.
Finally, we prove that condition (¢) in Lemma is satisfied. The isomorphism
J of Im @ onto ker L can be defined by

J:IIHQHX, (fvgvcla"-5Cp7d17"'7dp)*)(fvg)'
For z € ker L N €2, we have

JQNz = (i[/ow (rl(t)—bl(t)exp{u}—M)dt—i—Zek }

% [/Ow (r2t) - M) dt + ka(v(tk))} )
:(T bie® ——/ eu+k1 dt + — Zek
7_7/ eu+k2 pdi+ I;fk(u(tk))).

Denote ¢ : Dom L x [0,1] — X as the form

eV [¥ ag(t)
= — bre" - — —— 2 dt
o(u,v, @) (7“1 e, T3 /0 o k‘2( ) )

v

(=S [ G ! Zek »ik}_jlfk(v(tk))),

where p € [0,1] is a parameter. With the mapping ¢, we have p(u,v, ) # 0 for
(u,v) € 9QNker L. Otherwise, there exists a constant vector (u, v) with ||(u, v)||x =
M implies ¢(u,v, u) = 0; i.e.,

— e’ (Y ay(t
ﬁfble“fu—/o #dt+526k(u(tk))zo

w

and )
- ‘i/0 20 S i) = 0.

w

Similar to the above discussion, we know that ||(u,v)||x < M, which contradicts
|[(u,v)||x = M. From the property of coincidence degree theory, we can obtain

deg(JQNz,Q Nker L,0) = deg(p(u,v,1),Q2Nker L,0)
= deg(p(u,v,0),Q2Nker L, 0).
Obviously, the following algebraic equation has a unique solution (u*,v*)

H—Ee“:O

77* dt:().
/ e“+k‘2
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So
deg(JQNz, Q2 Nker L,0) = deg(p(u,v,0),2Nker L,0) =1 # 0.
By Lemma the system (1.1) has at least one w-periodic solution in 2. The
proof is complete. O
4. AN EXAMPLE

Consider the system

a1 (1 + @ cos2mt)y(t — o1 (¢ )))
(t —T1 t) + k’l
. as(1 + 0 cos 2mt)y(t — oa(t))
) =y(t)(rs —
9(t) =y )(“ 2(t — (1)) + ko )
for t # ty, k € Z4, and
a(ty) = (1—ha(ty)
y(t) = (1—g)y(t;)
where r = ].]., ro = 125, b1 = 06, ay = 0057 as = 07, kl = kz = ]., h = 05,
g=0.7,0 =0.5. Obviously, in this case, w =1,p =1 and
Hy < —038, M <182, Hs< 066, M <1.84,
0.40 < r; +1In(1 —h) <041, 0.04 <73+ 1n(1 —g) < 0.05,

@(t) = z(t) (m + sin 27t — bya(t — 7(t)) —

(4.1)

t=ty, keZly,

r1+1In(1— h) — M k—>040 0.32 =0.08 > 0.
1

So that, all conditions of Theorem (3.1 m are satisfied. Therefore, (4.1)) has at least
one w-periodic positive solution.
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