
Electronic Journal of Differential Equations, Vol. 2008(2008), No. 82, pp. 1–37.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

WHEN SINGULAR POINTS DETERMINE QUADRATIC
SYSTEMS

JOAN C. ARTÉS, JAUME LLIBRE, NICOLAE VULPE

Abstract. When one considers a quadratic differential system, one realizes
that it depends on 12 parameters of which one can be fixed by means of a

time change. One also can notice that fixing 4 finite real singular points plus 3

infinite real ones (all its possible singular points) implies to fix 11 conditions,
that is, 11 equations that the parameters must satisfy. Since these conditions

are linear with respect to the parameters, it is obvious to think that the system
will be determined, except that the fixed conditions are incompatible with a

quadratic differential system having finitely many singular points.

In this paper we prove exactly this. That is, if we fix the position of
the 7 singular points of a quadratic differential system in a distribution that

does not force an infinite number of finite singular points, then the system is

completely determined, and consequently its phase portrait is also determined.
This determination includes the local behavior of all singular points, even if

they are weak focus or centers, the global behavior of separatrices, and even

the existence or not of limit cycles. This also implies that limit cycles are
sensitive to small perturbations of the coordinates of singular points, even if

they are far from the singular points.

The result of the paper goes far beyond this, since we state that this result
is independent of the fact that the fixed singular points are real or complex,

and it does not mind if the infinite singular points are simple or multiple due

to the collision of several infinite singular points. Only when some data is
lost due to the collision of finite singular points or to the collision of some

finite singular points with infinite ones, this adds free parameters to the set of
parameters at the same rate than the number of finite singular points are lost.

1. Introduction and statement of main results

We consider the real polynomial differential systems

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1.1)

where P and Q are polynomials in x and y with real coefficients; i.e. P,Q ∈ R[x, y].
We say that systems (1.1) are quadratic if max

(
deg(P ),deg(Q)

)
= 2.
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Quadratic differential systems have been studied from many different points of
view (the following lists clearly are not complete): studying their finite singular
points [12, 13, 9, 10, 22, 23, 24, 51, 7], studying their infinite singular points [30,
33, 48], studying systems with limit cycles [18, 17], studying systems with invariant
straight lines [37, 38, 39, 47, 46], studying systems with centers [25, 29, 26, 44, 15,
51, 45, 52], and systems with weak focus [5, 32, 6], studying systems with invariant
algebraic curves or first integrals [4, 31], classifying phase portraits according to the
number of finite singular points [27, 41, 42, 43], classifying phase portraits according
to the structural stability of the portrait [3], and many others ways up to more than
1000 papers have been published on these systems [40].

But up to now no one seems to have noticed the relation between the number of
parameters of a quadratic differential systems, and the number of conditions that
are fixed by determining the situation of the 4 finite singular points and 3 infinite
ones that a quadratic system can have. Intuitively one easily realizes that fixing
11 conditions forces a linear system of equations which if it is not incompatible, it
depends just on one parameter and it determines uniquely a phase portrait since
one parameter can be removed by means of a time change.

This case could be proved by means of simple algebra tools, and so we tried to
go a bit further, and realized that it was not important whether the singular points
were real or complex. The conditions would be the same. Moreover it did not
matter whether the infinite singular points where simple or multiple, meanwhile
their multiplicity was due only on the collision of infinite singular points.

It was also clear that when a finite singular point collided with another finite
singular point or infinite, we would lose two data (of the coordinates of the singular
point) but win one data from the non-hyperbolicity. Thus the system should now
have one free parameter. However the conditions are no more linear and thus it
is not so obvious that the result should be that. When one adds more collisions
between singular points, and specially if several points collide all together, it is even
less obvious how many degrees of freedom will be obtained.

In order to compute this we have used the theory of invariants developed by
Sibirsky and his disciples (cf. [49], [50], [36], [8], [16]) and completed for the qua-
dratic differential systems by Schlomiuk and Vulpe [48] when dealing with infinite
singular points and by Artes, Llibre and Vulpe [7] when dealing with finite singular
points.

The main result of this paper is the following.

Theorem 1.1. We consider a family of quadratic systems (1.1) depending on 12
parameters. Assume that one parameter is removed via a time rescaling and that
all the coordinates of the singularities (finite and infinite, real and/or complex,
simple and/or multiple) are fixed and that this does not force an infinite number of
finite singular points. Then we get a family of quadratic systems whose number of
free parameters is four minus the number of distinct finite singular points (real or
complex).

In Section 2 we introduce some preliminary results and definitions needed for the
rest of the work, and which deal mainly with the theory of invariants. The proof
of the Main Theorem is split in five sections from the 3 to the 7 since we develop
separately the cases with four finite singular points (real or complex) in Section 3,
three finite singular points (real or complex) in Section 4, two finite singular points
(real or complex) in Section 5, less than two finite singular points in Section 6, and



EJDE-2008/82 QUADRATIC SYSTEMS 3

systems with the infinite full of singular points which have been skipped into the
previous sections are considered all together in Section 7.

It is worth to note that a quadratic system with 4 distinct finite singular points
(real or complex) has its phase portrait completely determined once these four
points and the infinite points (real or complex, simple or multiple) are fixed. That
is, whether the singular points are saddles, nodes, foci or centers is imbedded by
the position of the singular points. Even more, whether a focus is strong or weak,
whether there is a separatrix connection or not, an invariant straight line, and even
the existence of limit cycles comes determined in this case only by the position of
the singular points.

This implies that the perturbation of one singular point (finite or infinite, real
or complex) may affect the phase portrait. It may, for example, imply the born or
death of limit cycles.

To illustrate this last case, we are going to provide an example. In [18] it is
proved that the system:

ẋ = 1 + xy,

ẏ = 0.722 + 15.28x + 8.4y − 12x2 − 1.398xy + 3y2,
(1.2)

has exactly three concentric limit cycles of visible size around the singular point
p1 = (1,−1). The other finite singular point is p2 = (−0.7571298123634432 . . . ,
1.320777472595376 . . .) and there are two finite complex singular points being
p3,4 = (0.515231572848387 . . .± 0.2544224724528470 . . . i,
− 1.56038873629768 . . . ±0.770523355317071 . . . i). The infinite singular points are
the (0, 0) of the local chart U2 and the points z1 = (−2.1247979307270, 0) and
z2 = (2.8237979307270, 0) of the local chart U1.

We must remark that the study of the limit cycles of polynomial differential
systems (even for quadratic) is still far from be completed, and that numerical
tools can only provide evidence of existence of large limit cycles but are useless to
detect infinitesimal ones. So we will limit now to talk about these large limit cycles
which can be observed in (1.2).

Now we will perturb a little one of the infinite singular points. Concretely we
will take z = z2 + (ε, 0). With the help of the numerical program P4 [2], we can
numerically show that when ε = 0.00018 the three large limit cycles persist, at
ε = 0.0002 only one large limit cycle persists, and at ε = 0.001 there is no large
limit cycles. Moreover the inner limit cycle of (1.2) has disappeared in a Hopf
bifurcation changing the stability of the focus p1 and the central and outer limit
cycles have collapsed in a double semi–stable limit cycle.

It is also remarkable that all known situations of quadratic differential systems
having the maximum number of known limit cycles correspond to cases with four
finite singular points (two of them complex). That is they correspond to cases that
are completely determined (up to a time change) by the location of the singular
points. It is also known that some conditions (like having an invariant straight line)
restrict the number of possible limit cycles (in the case of one invariant straight line
the maximum is one [21, 19], and with two invariant straight lines none is possible
[20]). It may happen that the maximum number of limit cycles is also related with
the number of parameters which are not determined by the position of the singular
points of the system.



4 J. C. ARTÉS, J. LLIBRE, N. VULPE EJDE-2008/82

2. Some preliminary results and definitions

2.1. Zero-cycles associated to finite and infinite singularities. Consider real
quadratic systems of the form

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y),

(2.1)

with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x and y, where

p0 = a00, p1(x, y) = a10x + a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x + b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

We associate with the two polynomials P,Q ∈ R[x, y] defining systems (2.1), the
homogeneous polynomials P ∗, Q∗ in X, Y, Z of degree 2 with real coefficients defined
as follows

P ∗(X, Y, Z) = Z2P (X/Z, Y/Z), Q∗(X, Y, Z) = Z2Q(X/Z, Y/Z),

and denote C∗(X, Y, Z) = Y P ∗(X, Y, Z)−XQ∗(X, Y, Z).
We shall use the notions of zero-cycle and divisor in order to describe the number

and multiplicity of singularities of a quadratic system (2.1) (for the definitions
of these notions see [35]). The notions of zero-cycle and divisor were used for
classification purposes of planar quadratic differential systems by Pal and Schlomiuk
[35], Llibre and Schlomiuk [32], Schlomiuk and Vulpe [48] and by Artes and Llibre
and Schlomiuk [6]. Following [35] (see also [48]) we define here the next zero-cycle
and divisor.

For a system (S) belonging to family (2.1) we denote σ(P,Q) = {w ∈ C2 | P (w) =
Q(w) = 0} and we define the zero-cycle Df

S
(P,Q) =

∑
w∈σ(P,Q) Iw(P,Q)w, where

Iw(P,Q) is the intersection number or multiplicity of intersection at w. It is clear
that for a non–degenerate quadratic system deg(Df

S
) =

∑
Iw(P,Q) ≤ 4. For a de-

generate system (i.e. gcd(P,Q) 6= constant) the zero-cycle Df
S
(P,Q) is undefined.

Assume that a system (S) is such that P (x, y) and Q(x, y) are relatively prime
over C and that yp2 − xq2 is not identically zero. The following divisor on the line
at infinity Z = 0 is then well defined

D∞
S

=
∑

w∈{Z=0}

(
Iw(P ∗, Q∗)
Iw(C∗, Z)

)
w.

We note that the zero-cycle Df
S

describes the number of finite singularities which
could arise from a perturbation of (S) from singularities in the phase plane of (S).
On the other hand the divisor D∞

S
describes the number of singularities which

could arise from a perturbation of (S) from singularities at infinity of (S) in both
the finite plane and at infinity.

2.2. Affine invariant polynomials associated with infinite singularities. It
is known that on the set QS of all quadratic differential systems (2.1) acts the group
Af f(2, R) of the affine transformation on the plane (cf. [48]). For every subgroup
G ⊆ Aff(2, R) we have an induced action of G on QS. We can identify the set QS
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of systems (2.1) with a subset of R12 via the map QS → R12 which associates to
each system (2.1) the 12-tuple (a00, . . . , b02) of its coefficients.

For the definitions of a GL-comitant and invariant as well as for the definitions
of a T -comitant and a CT -comitant we refer the reader to the paper [48]. Here we
shall only construct the necessary T -comitants and CT -comitants associated to con-
figurations of finite and infinite singularities (including multiplicities) of quadratic
systems (2.1).

Using the so called transvectant of order k (see [28], [34]) of two polynomials
f, g ∈ R[a, x, y],

(f, g)(k) =
k∑

h=0

(−1)h

(
k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
,

we shall construct the following invariant polynomials

Ci(a, x, y) = ypi(x, y)− xqi(x, y), i = 0, 1, 2;

K(a, x, y) = Jacob
(
p2(x, y), q2(x, y)

)
/4;

µ0(a) = Res x(p2, q2)/y4 = Discrim
(
K(a, x, y)

)
/16;

M(a, x, y) = 2 Hess
(
C2(a, x, y)

)
;

η(a) = Discrim
(
C2(a, x, y)

)
;

H(a, x, y) = −Discrim(αp2(x, y) + βq2(x, y))
∣∣
{α=y, β=−x};

κ(a) = (M,K)(2);

κ1(a) = (M,C1)(2);

L(a, x, y) = 16K + 8H −M ;

K1(a, x, y) = p1(x, y)q2(x, y)− p2(x, y)q1(x, y).

Consider the differential operator L = x·L2−y·L1 acting on R[a, x, y] constructed
in [11], where

L1 = 2a00
∂

∂a10
+ a10

∂

∂a20
+

1
2
a01

∂

∂a11
+ 2b00

∂

∂b10
+ b10

∂

∂b20
+

1
2
b01

∂

∂b11
,

L2 = 2a00
∂

∂a01
+ a01

∂

∂a02
+

1
2
a10

∂

∂a11
+ 2b00

∂

∂b01
+ b01

∂

∂b02
+

1
2
b10

∂

∂b11
.

Using this operator we construct the following polynomials

µi(a, x, y) =
1
i!
L(i)(µ0), i = 1, . . . , 4, where L(i)(µ0) = L(L(i−1)(µ0)).

These polynomials are in fact comitants of systems (2.1) with respect to the group
GL(2, R) (see [11]). Their geometrical meaning is revealed in Lemmas 2.1 and 2.2
below.

2.3. Some useful assertions.

Lemma 2.1 ([11, 48]). The system P ∗(X, Y, Z) = Q∗(X, Y, Z) = 0 possesses m
(1 ≤ m ≤ 4) solutions [Xi : Yi : Zi] with Zi = 0 (i = 1, . . . ,m) (considered with
multiplicities) if and only if for every i ∈ {0, 1, . . . ,m− 1} we have µi(a, x, y) = 0
in R[a, x, y] and µm(a, x, y) 6= 0.
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Lemma 2.2 ([11]). The point M0(0, 0) is a singular point of multiplicity k (1 ≤
k ≤ 4) for a quadratic system (2.1) if and only if for every i ∈ {0, 1, . . . , k − 1} we
have µ4−i(a, x, y) = 0 in R[a, x, y] and µ4−k(a, x, y) 6= 0.

Remark 2.3. We note that according to Lemma 2.1 at least two finite singular
points of a quadratic system have gone to infinity if and only if µ0 = µ1 = 0.

Remark 2.4. Assume that the polynomials p2(x, y) and q2(x, y) of systems (2.1)
have a common linear factor αx+βy. Then these systems have the infinite singular
point N(−β, α, 0) and via a rotation we can assume that this infinite singularity is
located in the direction x = 0, i.e. x will be a factor of p2(x, y) and q2(x, y). This
implies a02 = b02 = 0 for systems (2.1).

The next lemma follows directly from [48, Theorem 5.1].

Lemma 2.5. Assume that at least two finite singular points of a quadratic system
with finite number of infinite singularities have gone to infinity (i.e. µ0 = µ1 =
0). Then the configurations of the infinite singularities are given by the following
conditions.

(a) 3 real distinct points(
2
1

)
p +

(
0
1

)
q +

(
0
1

)
r ⇔ µ2 6= 0, κ 6= 0;(

1
1

)
p +

(
1
1

)
q +

(
0
1

)
r ⇔ µ2 6= 0, κ = 0;(

3
1

)
p +

(
0
1

)
q +

(
0
1

)
r ⇔ µ2 = 0, µ3 6= 0, κ 6= 0;(

2
1

)
p +

(
1
1

)
q +

(
0
1

)
r ⇔ µ2 = 0, µ3 6= 0, κ = 0;(

4
1

)
p +

(
0
1

)
q +

(
0
1

)
r ⇔ µ2 = µ3 = 0, µ4 6= 0, κ 6= 0;(

3
1

)
p +

(
1
1

)
q +

(
0
1

)
r ⇔ µ2 = µ3 = 0, µ4 6= 0, κ = 0, K1 6= 0;(

2
1

)
p +

(
2
1

)
q +

(
0
1

)
r ⇔ µ2 = µ3 = 0, µ4 6= 0, κ = 0, K1 = 0;

(b) one real and 2 complex singular points(
2
1

)
p +

(
0
1

)
qc +

(
0
1

)
rc ⇔ µ2 6= 0, κ 6= 0;(

0
1

)
p +

(
1
1

)
qc +

(
1
1

)
rc ⇔ µ2 6= 0, κ = 0;(

3
1

)
p +

(
0
1

)
qc +

(
0
1

)
rc ⇔ µ2 = 0, µ3 6= 0;(

4
1

)
p +

(
0
1

)
qc +

(
0
1

)
rc ⇔ µ2 = µ3 = 0, µ4 6= 0, κ 6= 0;(

0
1

)
p +

(
2
1

)
qc +

(
2
1

)
rc ⇔ µ2 = µ3 = 0, µ4 6= 0, κ = 0;
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(c) one double and one simple real singular points(
2
1

)
p +

(
0
2

)
q ⇔ µ2 6= 0, κ 6= 0;(

0
1

)
p +

(
2
2

)
q ⇔ µ2 6= 0, κ = 0, L 6= 0;(

1
1

)
p +

(
1
2

)
q ⇔ µ2 6= 0, κ = 0, L = 0;(

3
1

)
p +

(
0
2

)
q ⇔ µ2 = 0, µ3 6= 0, κ 6= 0;(

0
1

)
p +

(
3
2

)
q ⇔ µ2 = 0, µ3 6= 0, κ = 0, L 6= 0;(

2
1

)
p +

(
1
2

)
q ⇔ µ2 = 0, µ3 6= 0, κ = 0, L = 0, κ1 6= 0;(

1
1

)
p +

(
2
2

)
q ⇔ µ2 = 0, µ3 6= 0, κ = 0, L = 0, κ1 = 0;(

4
1

)
p +

(
0
2

)
q ⇔ µ2 = µ3 = 0, µ4 6= 0, κ 6= 0;(

0
1

)
p +

(
4
2

)
q ⇔ µ2 = µ3 = 0, µ4 6= 0, κ = 0, L 6= 0;(

3
1

)
p +

(
1
2

)
q ⇔ µ2 = µ3 = 0, µ4 6= 0, κ = 0, L = 0, κ1 6= 0;(

1
1

)
p +

(
3
2

)
q ⇔ µ2 = µ3 = 0, µ4 6= 0, κ = 0, L = 0, κ1 = 0, K1 6= 0;(

2
1

)
p +

(
2
2

)
q ⇔ µ2 = µ3 = 0, µ4 6= 0, κ = 0, L = 0, κ1 = 0, K1 = 0;

(d) one real triple point:(
2
3

)
p ⇔ µ2 6= 0;

(
3
3

)
p ⇔ µ2 = 0,

µ3 6= 0;
(

4
3

)
p ⇔ µ2 = µ3 = 0, µ4 6= 0.

Lemma 2.6. The polynomial C2(x, y) = yp2(x, y) − xq2(x, y) 6≡ 0 is completely
determined up to a time rescaling by the coordinates of the three infinite singular
points (real and/or complex, simple or multiple).

Proof. It is known that the coordinates of infinite singular points of a quadratic
system (2.1) are given by the linear factors over C of the polynomial

C2(x, y) = yp2(x, y)− xq2(x, y)

= (u1x + v1y)(u2x + v2y)(u3x + v3y)

= Ux3 + Uvx2y + Vuxy2 + V y3,

(2.2)

where U = u1u2u3, Uv = u1u2v3 + u1v2u3 + v1u2u3, V = v1v2v3, Vu = u1v2v3 +
v1u2v3 + v1v2u3. Since C2(x, y) 6≡ 0 we have U2 + U2

v + V 2
u + V 2 6= 0.
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If U 6= 0 we may set U = θ and take u1 = θ, u2 = u3 = 1. Then the infinite
singular points (real or complex) Ni(ki, 1, 0) (i = 1, 2, 3) completely determine
v1 = −θk1, v2 = −k2 and v3 = −k3. Thus U = θ, Uv = −θ(k1 + k2 + k3),
Vu = θ(k1K2 + k1k3 + k2k3), V = −θk1k2k3.

If U = 0 6= Uv (i.e. N1(0, 1, 0) is an infinite singular point of systems (2.1))
we may set Uv = θ and take u1 = 0, v1 = u3 = 1, u2 = θ. Then the remaining
infinite singular points (real or complex) determine v2 = −θk2 and v3 = −k3. As in
the previous case (and also the next two) the coefficients of C2 become completely
determined (up to a multiplication of the parameter θ) by the infinite singularities.

If U = Uv = 0 6= Vu (i.e. N1(0, 1, 0) is at least a double infinite singular point of
systems (2.1)), we may set Vu = θ and take u1 = u2 = 0, v1 = v2 = 1, u3 = θ and
the remaining infinite singular point (which must be real) determines v3 = −θk3.

If U = Uv = Vu = 0 (then V 6= 0) we may set V = θ and the only infinite
singularity is the point N1(0, 1, 0), which is at least of multiplicity three. �

Remark 2.7. We are trying to determine the number of free parameters of qua-
dratic systems once the coordinates of the singular points and their configuration
is fixed. In order to simplify calculations we shall use the group Af f(2, R) of affine
transformations. We say that an affine transformation is admissible if it is defined
using only the coordinates of some singular points (finite or infinite). It is clear
that an admissible affine transformation keeps the number of free parameters of the
respective family of systems.

3. Quadratic systems with four distinct finite singularities

3.1. Systems with four real simple singular points. Evidently a quadratic
system with four real simple singular points can be brought via an admissible (in
the sense of Remark 2.7) affine transformation to the form

ẋ = cx + dy − cx2 + 2hxy − dy2 ≡ P (x, y),

ẏ = ex + fy − ex2 + 2mxy − fy2 ≡ Q(x, y).
(3.1)

Each system from this family has the singular points M1(0, 0), M2(1, 0), M3(0, 1)
and M4(α, β). Now will find the dependence among the coefficients of systems
(3.1) and the parameters α and β of the fourth singular point. Since αβ 6= 0 (we
cannot have three distinct singular points placed on one line) from the identities
P (α, β) = Q(α, β) = 0 we obtain

h =
cα(α− 1) + dβ(β − 1)

2αβ
, m =

eα(α− 1) + fβ(β − 1)
2αβ

.

Therefore after a time rescaling (t → αβt1) and some re–parametrization (cα → c,
eα → e, dβ → d, fβ → f) we get the following family of systems

ẋ = c βx(1− x) + d αy(1− y) +
[
c(α− 1) + d(β − 1)

]
xy,

ẏ = e βx(1− x) + fαy(1− y) +
[
e(α− 1) + f(β − 1)

]
xy.

(3.2)

Evidently each system of this family possesses the singular points M1(0, 0), M2(1, 0),
M3(0, 1) and M4(α, β) and for this family by Lemma 2.1 the following condition
must be satisfied

µ0 = αβ(α + β − 1)(cf − de)2 6= 0, (3.3)
otherwise the systems become degenerate.
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Since for systems (3.2) we have

C2(x, y) = eβx3+[e(1−α)+f(1−β)−cβ]x2y+[c(α−1)+d(β−1)+fα]xy2−dαy3,

considering the factorization (2.2) we get the following system of linear (with respect
to the parameters c, d, e and f) equations

e β = U, e(1− α) + f(1− β)− cβ = Uv,

d α = −V, c(α− 1) + d(β − 1) + fα = Vu.

Solving this system we obtain

c = −α2(α− 1)U + α2βUv + αβ(β − 1)Vu + β(β − 1)2V
αβ(α + β − 1)

, d = −V

α
,

f =
α(α− 1)2U + αβ(α− 1)Uv + αβ2)Vu + β2(β − 1)V

αβ(α + β − 1)
, e =

U

β
,

where αβ(α+β−1) 6= 0 by condition (3.3). Thus taking into account Lemma 2.6 we
obtain that the coefficients of systems (3.2) depend exclusively on the coordinates
of their singular points (finite and infinite).

3.2. Systems with two real simple and two complex singular points. By
[7] such a quadratic system can be brought via an affine transformation to the form

ẋ = a− (a + g)x + gx2 + 2hxy + ay2,

ẏ = b− (b + l)x + lx2 + 2mxy + by2.
(3.4)

These systems possess the singular points M1,2(0,±i), M3(1, 0) and the fourth one,
whose coordinates we will force to be (α, β).

First we observe that α 6= 0, otherwise from the relation P (0, β) = Q(0, β) = 0
we obtain a(1+β2) = b(1+β2) = 0 and this leads to degenerate systems. So α 6= 0
and we shall consider two subcases β 6= 0 and β = 0.

3.2.1. The case β 6= 0. From the identities P (α, β) = Q(α, β) = 0 for systems (3.4)
we obtain

h =
(α− 1)(a− gα)− aβ2

2αβ
, m =

(α− 1)(b− lα)− bβ2

2αβ
.

Therefore we get the following family of systems

ẋ = a(1− x + y2) + gx(x− 1) +
1

αβ

[
(α− 1)(a− gα)− aβ2

]
xy,

ẏ = b(1− x + y2) + lx(x− 1) +
1

αβ

[
(α− 1)(b− lα)− bβ2

]
xy.

(3.5)

Evidently each system of this family possesses the singular points M1,2(0,±i),
M3(1, 0) and M4(α, β) and for this family by Lemma 2.1 the following condition
must be satisfied µ0 =

[
(α− 1)2 + β2

]
(al − bg)2/(αβ2) 6= 0.

We shall consider now the infinite singular points. For systems (3.5) we have

C2(x, y) = −lx3 +
1

αβ

[
(α− 1)(lα− b) + β(gα + bβ)

]
x2y

+
1

αβ

[
(α− 1)(a− gα)− β(bα + aβ)

]
xy2 + ay3.
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Using the factorization (2.2) and solving the respective linear system with respect
to the parameters a, b, g and l we obtain

g =
(1− α + β2)2V + α2β(α− 1)U + αβ2(Uvα + Vuβ)− αβ(α− 1)Vu

α
[
(α− 1)2 + β2

] , a = V,

b = −β(1− α + β2)V + α(α− 1)2U + αβ2Vu + αβ(α− 1)Uv

(α− 1)2 + β2
, l = −U.

Therefore considering Lemma 2.6 we obtain the family of systems which depend
exclusively on the coordinates of their singular points (finite and infinite).

3.2.2. The case β = 0. In this case from the identities P (α, 0) = Q(α, 0) = 0 for
systems (3.4) we obtain

(1− α)(a− gα) = 0, (1− α)(b− lα) = 0,

and since 1−α 6= 0 (otherwise the fourth point coincides with M3(1, 0)) we get the
following family of systems

ẋ = g(x− 1)(x− α) + 2hxy + gαy2,

ẏ = l(x− 1)(x− α) + 2mxy + lαy2,

for which

µ0 = 4α(gm− hl)2 6= 0, C2 = −lx3 + (g − 2m)x2y + (2h− lα)xy2 + gαy3.

In the same way as above using the factorization (2.2) and solving the corresponding
linear system with respect to the parameters g, h, l and m we obtain

g =
V

α
, h =

Vu − αU

2
, m =

V − αUv

2α
, l = −U.

Thus these parameters depend linearly on U , Uv, Vu and V and applying the same
arguments and actions as above we again obtain the family of systems which depend
exclusively on the coordinates of their singular points (finite and infinite).

In short the Main Theorem is proved for systems with two real simple and two
complex singular points.

3.3. Systems with four distinct complex singular points. First we shall
prove the following lemma concerning the complex singular points of quadratic
systems.

Lemma 3.1. If a quadratic system (2.1) with real coefficients possesses two com-
plex (conjugated) singular points M1,2(α± iβ, γ ± iδ) then via an admissible affine
transformation this system can be brought to the form

ẋ = a + cx + gx2 + 2hxy + ay2,

ẏ = b + ex + lx2 + 2mxy + by2,
(3.6)

having the singular points M̃1,2(0,±i).

Proof. Admit that a non-degenerate system (2.1) possesses the singular points
M1,2(α ± iβ, γ ± iδ) (β2 + δ2 6= 0). Via the change x ↔ y we can assume β 6= 0
and then we can consider β = 1 via the rescaling x → x/β. Therefore the affine
transformation

x̃ = −δx + y + αδ − γ, ỹ = x− α,
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replace the singular points M1,2(α ± i, γ ± iδ) by the singular points M̃1,2(0,±i).
Then since P (0, i) = Q(0, i) = 0 yield a00 + ia01− a02 = 0 and b00 + ib01− b02 = 0.
Thus a01 = b01 = 0, a02 = a00 and b02 = b00 and setting some new parameters we
obtain the canonical system (3.6). �

We shall construct now the canonical form of the family of quadratic systems
which possess four distinct complex singular points. By Lemma 3.1 doing an affine
transformation we can locate two complex singularities at the points M1,2(0,±i).
So we shall consider systems (3.6) which besides the singular points (0,±i) have
the singular points M3,4(x3,4, y3,4) where

x3,4 = A± iB, y3,4 = C ± iD, B2 + D2 6= 0,

which are also complex. We claim that x3,4 6= 0, i.e. A2 + B2 6= 0. Indeed, if
A = B = 0 then the point (0, C + iD) is a singular point of system (3.6) and we
have

P (x3, y3) = a + a(C + iD)2 = a(1 + C2 −D2 + 2iCD) = 0,

Q(x3, y3) = b + b(C + iD)2 = b(1 + C2 −D2 + 2iCD) = 0.

Since C,D ∈ R and a2 + b2 6= 0 (otherwise systems (3.6) become degenerate) we
obtain C = 0 and D = ±1. Hence (x3,4, y3,4) = (0,±i) and the complex singular
points have multiplicity 2. This proves our claim.

We note that the transformation x1 = αx, y1 = βx+ y keeps the singular points
(0,±i) and transforms the singular points (x3,4, y3,4) to the points

(Aα± iBα, Aβ + C ± i(Bβ + D)) (3.7)

Since A2 + B2 6= 0 we shall consider two cases B 6= 0, and B = 0, A 6= 0.

3.3.1. The case B 6= 0. Then we may set α = 1/B, β = −D/B and the singular
points (3.7) become (p ± i, q) (p, q ∈ R). In this case the relations P (p ± i, q) =
Q(p± i, q) = 0 yield

a(1 + q2) + g(p2 − 1) + p(c + 2hq)± i(c + 2gp + 2hq) = 0,

b(1 + q2) + l(p2 − 1) + p(e + 2mq)± i(e + 2lp + 2mq) = 0.

Herein we obtain the relations a = g(p2 + 1)/(q2 + 1), c = −2(gp + hq), b =
l(p2 + 1)/(q2 + 1), e = −2(lp + mq), and this leads to the following family of
systems

ẋ =
g(p2 + 1)
q2 + 1

(1 + y2)− 2(gp + hq)x + gx2 + 2hxy,

ẏ =
l(p2 + 1)
q2 + 1

(1 + y2)− 2(lp + mq)x + lx2 + 2mxy,

with the singular points M1,2(0,±i) and M3,4(p ± i, q). For these systems the
condition gm− lh 6= 0 must be fulfilled (otherwise systems become degenerate) and
calculations yield

C2 = −lx3 + (g − 2m)x2y +
[
2h− l

p2 + 1
q2 + 1

]
xy2 + g

p2 + 1
q2 + 1

y3.
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Using the factorization (2.2) and solving the corresponding linear system with re-
spect to the parameters g, h, l and m we obtain

g =
q2 + 1
p2 + 1

V, m =
(q2 + 1)V − (p2 + 1)Uv

2(p2 + 1)
,

h =
(q2 + 1)Vu − (p2 + 1)U

2(q2 + 1)
, l = −U.

Thus taking into consideration Lemma 2.6 we again get a family of systems which
depend exclusively on the coordinates of their singular points (finite and infinite).

3.3.2. The case B = 0. Then A 6= 0 and from (3.7) by setting α = 1/A and
β = −C/A we obtain the singular points (1,±ip) with p = D 6= 0. In this case the
identities P (1,±ip) = Q(1,±ip) = 0 yield

a(1− p2) + c + g ± 2ihp = 0, b(1− p2) + e + l ± 2imp = 0.

Herein we obtain the relations

h = m = 0, c = a(p2 − 1)− g, e = b(p2 − 1)− l,

which lead to the systems

ẋ = a + [a(p2 − 1)− g]x + gx2 + ay2,

ẏ = b + [b(p2 − 1)− l]x + lx2 + by2

with al−bg 6= 0. These systems possess the singular points M1,2(0,±i), M3,4(1,±ip)
and we calculate C2 = −lx3 + gx2y − bxy2 + ay3. Considering the factorization
(2.2) we obtain a = V , b = −Vu, g = Uv, l = −U . Thus considering Lemma 2.6 we
obtain a family of systems which depends exclusively on the coordinates of their
singular points (finite and infinite).

4. Quadratic systems with three distinct finite singularities

4.1. Systems with one double and two simple real finite singular points.
Assume that a quadratic system (2.1) possesses one double and two simple real
singular points. By [7] in this case it can be brought via an admissible (in the sense
of Remark 2.7) affine transformation to the form

ẋ = cx + cqy − c x2 + 2hxy − cqy2,

ẏ = ex + eqy − e x2 + 2mxy − eqy2,
(4.1)

with a double singular point M1(0, 0) and two simple ones M2(1, 0) and M3(0, 1).
For these systems we calculate

µ0 = 4q(cm− eh)2 6= 0, C2 = ex3 − (c + 2m)x2y + (2h + eq)xy2 − cqy3.

Using the factorization (2.2) and solving the corresponding linear system with re-
spect to the parameters c, e, h and m we obtain

c = −V

q
, e = U, h =

Vu − qU

2
, m =

V − qUv

2q
. (4.2)

Taking into consideration Lemma 2.6 we conclude that systems (4.1) with param-
eters c, e, h, m defined in (4.2), form a family of systems which depends on the
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coordinates of the infinite points (which can be complex and multiple) as well as of
the parameter q.

4.2. Systems with one double and two simple complex singular points.
Assume that a quadratic system (2.1) possesses one double and two complex sin-
gular points. By [7] in this case it can be brought via an admissible affine transfor-
mation to the form

ẋ = cmx + cn y + g x2 − cn xy + (g + cm) y2,

ẏ = emx + en y + l x2 − en xy + (l + em) y2.
(4.3)

with a double singular point M1(0, 0) and two complex M2,3(1,±i). For these
systems we calculate

µ0 = (cl − eg)2(m2 + n2) 6= 0,

C2 = −lx3 + (g + en)x2y − (l + em + cn)xy2 + (g + cm)y3.

Considering the factorization (2.2) we obtain

c =
nU + mV −mUv − nVu

m2 + n2
, e =

mU − nV + nUv −mVu

m2 + n2
,

g =
n2V −mnU + m2Uv + mnVu

m2 + n2
, l = −U.

(4.4)

Taking into account these relations we observe that all the coefficients of systems
(4.3) are homogeneous functions on the parameters m and n. So, since (m2+n2) 6= 0
considering Lemma 2.6 we conclude that the family of systems (4.3) with parameters
c, e, g and l defined in (4.4), is a family which depends on the coordinates of infinite
points as well as of one parameter γ = m/n or γ = n/m.

4.3. Systems with three simple real finite singular points. In this case only
one finite singular point is gone to infinity (i.e. µ0 = 0) and hence the polynomials
p2(x, y) and q2(x, y) have a common linear factor. By Remark 2.4 due to an ad-
missible transformation we can assume a02 = b02 = 0 for systems (2.1). Then via a
translation one of the finite singularities can be placed at the origin and we obtain
the systems

ẋ = cx + dy + gx2 + 2hxy ≡ P (x, y), ẏ = ex + fy + lx2 + 2mxy ≡ Q(x, y), (4.5)

with M1(0, 0).
We claim that the other real singular points M2(x2, y2) (and M3(x3, y3)) of these

systems has the coordinate x 6= 0. Indeed, if we suppose x2 = 0 then we obtain
P (0, y2) = d y2 = 0, Q(0, y2) = f y2 = 0, and since y2 6= 0 (M1 and M2 are
distinct) we have d = f = 0. However the last relations yield degenerate systems.
Thus x2 6= 0 and via the linear transformation x̄ = x/x2 and either ȳ = y if y2 = 0,
or ȳ = x − x2y/y2 if y2 6= 0 (which keeps the form (4.5)), we locate the singular
point M2(x2, y2) at the point M2(1, 0). In this way we obtain the systems

ẋ = cx + dy − cx2 + 2hxy ≡ P (x, y), ẏ = ex + fy − ex2 + 2mxy ≡ Q(x, y) (4.6)

with the three singular points M1(0, 0), M2(1, 0) and M3(α, β). Now will find the
dependence among the coefficients of system (4.6) and the parameters α and β.
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Since β 6= 0 (we cannot have three distinct singular points placed on the line y = 0)
and P (α, β) = Q(α, β) = 0, we obtain

d =
cα(α− 1)− 2hαβ

β
, f =

eα(α− 1)− 2mαβ

β
.

Therefore after the time rescaling (t → βt1) and the re-parametrization (hβ → h,
mβ → m) we get the following family of systems

ẋ = c βx(1− x) + c α(α− 1)y + 2h(x− α)y,

ẏ = e βx(1− x) + e α(α− 1)y + 2m(x− α)y.
(4.7)

Evidently each system of this family possesses the singular points M1(0, 0), M2(1, 0)
and M3(α, β) and for this family according to Lemma 2.1 we have µ0 = 0 and the
following condition is satisfied µ1 = 4(cm − eh)2αβ(1 − α)x 6= 0, otherwise the
systems become degenerate. For these systems we calculate C2 = eβx3 − (cβ +
2m)x2y + 2hxy2. Using the factorization (2.2) (in this case V = 0) and solving
the corresponding linear system with respect to the parameters c, e, h and m we
can determine only three parameters e, h and either c or m. So we get e = U/β,
h = Vu/2, c = −(2m + Uv)/β. Therefore considering Lemma 2.6 we conclude that
the family of systems (4.7) becomes a family which depends on the coordinates of
singular points (finite and infinite) as well as on the parameter m.

4.4. Systems with one real simple and two complex finite singular points.
In this case taking into account Remark 2.4 according to [7] via an admissible affine
transformation the quadratic systems can be written into the form

ẋ = −2(h + gq)x + g(q2 + 1)y + gx2 + 2hxy,

ẏ = −2(m + lq)x + l(q2 + 1)y + lx2 + 2mxy,
(4.8)

with three singular points M1(0, 0) and M2,3(q±i, 1). For these systems considering
Lemma 2.1 we have µ0 = 0 and we calculate

µ1 = 4(gm− hl)2(q2 + 1)x 6= 0, C2 = −lx3 + (g − 2m)x2y + 2hxy2.

Then using the factorization (2.2) we can determine only the three parameters l, h
and either g or m. So we have g = 2m + Uv, h = Vu/2, l = −U . By Lemma
2.6 the family of systems (4.8) becomes a family which depends on the coordinates
of singular points (finite and infinite) as well as on the parameter m.

5. Quadratic systems with two distinct finite singularities

5.1. Systems with two double real finite singular points. By [7] and doing
an affine transformation (using only the coordinates of the two double real singu-
larities) a such quadratic system can be written into the form

ẋ = cx + cpy − cx2 + 2cqxy + ky2,

ẏ = ex + epy − ex2 + 2eqxy + ny2,
(5.1)

with two double singular points M1(0, 0) and M2(1, 0). For these systems we cal-
culate

µ0 = (cn− ek)2 6= 0, C2 = ex3 − (c + 2eq)x2y + (2cq − n)xy2 + ky3.

Then using the factorization (2.2) and solving the corresponding system of equations
with respect to the parameters c, e, n and k we obtain c = −(2qU + Uv), e = U ,
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k = V , n = −(4q2U + 2qUv + Vu). Considering Lemma 2.6 we get that the family
of systems (5.1) becomes a family which depends on the coordinates of infinite
singular points as well as on two independent parameters p and q.

5.2. Systems with two double complex finite singular points. First we shall
construct the respective canonical form for this class of systems. Assume that a
quadratic system possesses 2 complex singular points. Then according to [7] (see
the proof of Lemma 4.3) these points can be replaced by the points M1,2(0,±i).
Thus we consider the canonical system

ẋ = a + cx + gx2 + 2hxy + ay2,

ẏ = b + ex + lx2 + 2mxy + by2,
(5.2)

which besides the singular points (0,±i) has the singular points M3,4(x3,4, y3,4)
where

x3,4 =
(
2d25d56 − d26d46 ± 2d56

√
D̃

) /
µ0,

y3,4 =
(
d26d45 − d24d56 ∓ d46

√
D̃

) /
µ0,

and D̃ = d2
25− d2

46− d24d26 + 4d45d56, µ0 = d2
46− 4d45d56 6= 0 (by Lemma 2.1) and

d24 = cl − eg, d25 = cm− eh, d26 = bc− ae,

d45 = gm− hl, d46 = bg − al, d56 = bh− am.

In order to have two double complex singular points it is necessary that D̃ < 0.
Therefore we can have x3 = x4 = 0 if and only if d56 = d26d46 = 0. Since the
condition µ0 6= 0 imply d46 6= 0 we obtain bc − ae = bh − am = 0. Due to the
condition a2 + b2 6= 0 (otherwise systems (5.2) become degenerate) we may set
c = ap, e = bp and h = aq, m = bq (where p and q are some new parameters).
Then we obtain the needed family of quadratic systems

ẋ = a + apx + gx2 + 2aqxy + ay2,

ẏ = b + bpx + lx2 + 2bqxy + by2,
(5.3)

possessing two double complex singular points M1,2(0,±i). For these systems we
calculate

µ0 = (al − bg)2 6= 0, C2 = −lx3 + (g − 2bq)x2y + (2aq − b)xy2 + ay3.

Then using the factorization (2.2) and solving the corresponding system of linear
equations with respect to the parameters c, e, n and k we obtain

a = V, b = 2qV − Vu, g = 4q2V + Uv − 2qVu, l = −U.

By Lemma 2.6 we obtain that the family of systems (5.3) becomes a family which
depends on the coordinates of the infinite singular points (finite points being fixed)
as well as on two independent parameters p and q.

5.3. Systems with one triple and one simple real finite singular points.
By [7] in this case via an affine transformation (depending only on the coordinates
of the two finite singularities) a such quadratic system can be written into the form

ẋ = cx + cpy − cx2 + 2hxy + (2hp + cq)y2,

ẏ = ex + epy − ex2 + 2mxy + (2mp + eq)y2,
(5.4)
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with one triple M1(0, 0) and one simple M2(1, 0) real singular points. For these
systems we calculate

µ0 = 4(p2 − q)(cm− eh)2 6= 0,

C2 = ex3 − (c + 2m)x2y + (2h− 2mp− eq)xy2 + (2hp + cq)y3.

Using the factorization (2.2) and solving the corresponding linear system with re-
spect to the parameters c, e,m and h (as q − p2 6= 0) we obtain

c =
−p qU + p2Uv − pVu + V

q − p2
, h =

q2U − p qUv + qVu − pV

2(q − p2)
,

m =
p qU − qUv + pVu − V

2(q − p2)
, e = U.

Taking into account Lemma 2.6 we obtain that the family of systems (5.4) becomes
a family which depends on the coordinates of the infinite singular points (finite
singular points being fixed) as well as on two independent parameters p and q.

5.4. Systems with one double and one simple real finite singular points.
Since in this case only one finite singularity has gone to infinity we conclude that
p2(x, y) and q2(x, y) have a linear common factor. Then taking into considera-
tion Remark 2.4, according to [7] via an admissible affine transformation a such
quadratic system can be written into the form

ẋ = cx + cpy − cx2 + 2hxy,

ẏ = ex + epy − ex2 + 2mxy,
(5.5)

with one double M1(0, 0) and one simple M2(1, 0) real singular points. By Lemma
2.1 we have µ0 = 0 and the condition µ1 = −4p(cm−eh)2x 6= 0 holds. We calculate
C2 = ex3− (c+2m)x2y+2hxy2. Then using the factorization (2.2) and solving the
corresponding linear system with respect to the parameters c, e and h we obtain
c = −(2m + Uv), e = U , h = Vu/2. By Lemma 2.6 we obtain that the family of
systems (5.5) becomes a family which depends on the coordinates of the infinite
singular points as well as on two independent parameters m and p.

5.5. Systems with two simple real finite singular points. In this case µ0 =
µ1 = 0 and two singular points of quadratic systems (2.1) have gone to infinity.
Therefore the form of the respective canonical systems depends of the degree of
gcd(p2, q2) and we shall investigate two cases K 6= 0 and K = 0.

5.5.1. The case K 6= 0. Then deg(gcd(p2, q2)) = 1, i.e. p2(x, y) and q2(x, y) have a
linear common factor. So taking into consideration Remark 2.4, according to [7] via
an admissible affine transformation a quadratic system in this case can be written
into the form

ẋ = cx + dy − cx2 + 2dqxy,

ẏ = ex + fy − ex2 + 2fqxy,
(5.6)

which possess simple singular points M1(0, 0) and M2(1, 0). For these systems we
calculate µ0 = µ1 = 0, µ2 = (cf − de)2(2q + 1)x2 6= 0, K = q(de − cf)x2 6= 0 and
C2 = ex3 − (c + 2fq)x2y + 2dqxy2. Then using the factorization (2.2) and solving
the corresponding system of linear equations with respect to the parameters c, e and
d (since q 6= 0) we get the following relations c = −2fq − Uv, e = U , d = Vu/(2q).
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Thus the family of systems (5.6) becomes a family which depends on the coordinates
of the infinite singular points as well as on two independent parameters f and q.

5.5.2. The case K = 0. In this case the polynomials p2(x, y) and q2(x, y) are pro-
portional, i.e. the identity αp2(x, y) − βq2(x, y) = 0 with α2 + β2 6= 0 holds
in R[x, y]. Moreover we can assume α 6= 0 due to the change x ↔ y. Since
C2(a, x, y) = yp2(x, y)− xq2(x, y) we conclude that one of the factors of C2 in the
factorization (2.2) coincides with αx − βy. If M1(x0, y0) is a singular point of the
quadratic systems, then via the admissible affine transformation x1 = αx−βy−x0

and y1 = y − y0 we obtain the systems (keeping the old notation)

ẋ = cx + dy ≡ P (x, y),

ẏ = ex + fy + lx2 + 2mxy + ny2 ≡ Q(x, y).

Besides the singular point M1(0, 0) these systems possess a real simple singular
point M2(x2, y2). Since x2

2 + y2
2 6= 0, using the transformation x1 = x and either

y1 = y/y2 (if y2 6= 0), or y1 = x/x2 + y (if y2 = 0) the point M2 could be placed at
the coordinates (q, 1), where q is some parameter. So, since P (q, 1) = Q(q, 1) = 0
we get the family of systems

ẋ = c(x− qy),

ẏ = e(x− qy)− (n + 2mq + lq2)y + lx2 + 2mxy + ny2,
(5.7)

for which µ0 = µ1 = 0, µ2 = c2(n + 2mq + lq2)q2(x, y) 6= 0 and C2 = −lx3 −
2mx2y − nxy2. Then using the factorization (2.2) and solving the corresponding
linear system with respect to the parameters l,m and n we get the following rela-
tions l = −U , m = −Uv/2, n = −Vu. Thus the family of systems (5.7) becomes a
family which depends on the coordinates of the singular points (finite and infinite)
as well as on two independent parameters e and c.

5.6. Systems with two complex finite singular points. We shall consider the
canonical system (3.6) which has the singular points (0,±i) and some two other
singular points (x3,4, y3,4). To construct the needed canonical form we must find
out the conditions on the parameters which locate both singular points (x3,4, y3,4)
at infinity. For this according to Lemma 2.1 the conditions µ0 = µ1 = 0 have to be
fulfilled.

For system (3.6) we calculate

µ0 = d2
46 − 4d45d56 = 0, K = d45x

2 + d46xy + d56y
2, (5.8)

where d45 = gm−hl, d46 = gb−al, d56 = bh−am and we shall consider two cases
K 6= 0 and K = 0.

5.6.1. The case K 6= 0. Since µ0 is the discriminant of the binary form K(a, x, y) 6=
0 then the condition µ0 = 0 implies K(a, x, y) = ±(αx + βy)2 6= 0.

On the other hand, computations yield that Resultant[K(a, x, y), C2(x, y), γ] =
µ0W (a), γ = x/y or γ = y/x, where W (a) is a polynomial of degree 4 in the
coefficients of systems (2.1). Hence the condition µ0 = 0 also implies that K and
C2 have a common non–constant factor, which in this case is αx + βy. Hence this
factor indicates a real infinite singular point and we claim that this point cannot
be in the direction x = 0, i.e. β 6= 0.

Indeed suppose β = 0. Then K = α̃x2 and from (5.8) we obtain d56 = d46 = 0,
d45 6= 0. Therefore we obtain the relations d45 = gm − hl 6= 0, d46 = gb − al = 0,
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d56 = bh− am = 0, which imply a = b = 0. This leads to degenerate systems (3.6).
So our claim is proved and β 6= 0.

Now via the admissible transformation x1 = x, y1 = αx/β + y (which keeps the
singular points (0,±i) and depends only on the coordinates of the infinite points) we
obtain K = d56y

2 6= 0. So we have reached the relations d45 = d46 = 0 and hence
we have d45 = gm−hl = 0, d46 = gb−al = 0, d56 = bh−am 6= 0. Herein we obtain
g = l = 0. Then for system (3.6) we calculate µ1 = −4(bh − am)(eh − cm)y and
the condition µ1 = 0 implies eh− cm = 0. Since the condition d56 = bh− am 6= 0
yields m2 + h2 6= 0 we may set c = hq and e = mq. Thus we get the following
systems

ẋ = a + hqx + 2hxy + ay2,

ẏ = b + mqx + 2mxy + by2,
(5.9)

which have the singular points M1,2(0,±i) and the other two singular points have
gone to infinity. For these systems we calculate µ0 = µ1 = 0, µ2 = (am− bh)2(q2 +
4)y2 6= 0 and C2 = −2mx2y +(2h− b)xy2 +ay3. Then using the factorization (2.2)
and solving the corresponding linear system with respect to the parameters a, b
and m we get a = V , b = 2h − Vu, m = −Uv/2. Thus the family of systems (5.9)
becomes a family which depends on the coordinates of the singular points (finite
and infinite) as well as on two independent parameters h and q.

5.6.2. The case K = 0. In this case the polynomials p2(x, y) and q2(x, y) are pro-
portional and as above (see subsection 5.5.2) via an admissible linear transformation
we can force a20 = a11 = a02 = 0. Therefore we obtain the systems

ẋ = a + cx + dy ≡ P (x, y),

ẏ = b + ex + fy + lx2 + 2mxy + ny2 ≡ Q(x, y),

which need to possess two complex singular points M1,2(A ± iB, C ± iD) with
B2 + D2 6= 0, and we shall consider two subcases B 6= 0 and B = 0.

Subcase B 6= 0. Using the transformation x1 = x/B and y1 = −Dx + By we
place these points at M̃1,2(p ± i, q) where p and q are some parameters. So, since
P (p + i, q) = Q(p + i, q) = 0 we get the family of systems

ẋ = d(y − q),

ẏ = l(p2 + 1)− q(f + nq)− 2(lp + mq)x + fy + lx2 + 2mxy + ny2,
(5.10)

for which µ0 = µ1 = 0, µ2 = d2l(lx2 + 2mxy + ny2) 6= 0. For these systems we
calculate C2 = −lx3−2mx2y−nxy2. Then using the factorization (2.2) and solving
the corresponding linear system with respect to the parameters l,m and n we get
l = −U , m = −Uv/2 and n = −Vu. Thus the family of systems (5.10) becomes a
family which depends on the coordinates of the singular points (finite and infinite)
as well as on two independent parameters d and f .

Subcase B = 0. Then D 6= 0 and via the rescaling y → y/D we get the singular
points M̃1,2(p, q±i) where p = A and q = C/D. So, from P (p, q+i) = Q(p, q+i) = 0
we get the family of systems

ẋ = c(x− p),

ẏ = n(q2 + 1)− p(e + lp) + ex− 2(mp + nq)y + lx2 + 2mxy + ny2,
(5.11)

for which µ0 = µ1 = 0, µ2 = c2n(lx2 + 2mxy + ny2) 6= 0. For these systems we
obtain C2 = −lx3 − 2mx2y− nxy2, and taking into consideration the factorization
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(2.2) and solving the corresponding linear system with respect to the parameters
l, m and n we get l = −U , m = −Uv/2 and n = −Vu. Thus the family of systems
(5.11) becomes a family which depends on the coordinates of the singular points
(finite and infinite) as well as on two independent parameters c and e.

6. Systems with at most one finite singular point

In this section we shall use another point of view. Since this family of systems has
at most one finite singularity, in order to use admissible (in the sense of Remark 2.7)
affine transformations we shall use the possible configurations of infinite singular
points.

6.1. The case of three real infinite singular points. In this case the polyno-
mial C2 = yP (x, y)− xQ(x, y) has three real linear factors. Therefore via a linear
transformation this binary cubic form can be written in the form C2 = xy(x− y).
We note that the applied transformation is admissible (see Remark 2.7) because
it depends only on the coordinates of infinite singularities of systems (2.1). Then
using the factorization (2.2) and a time rescaling we get the systems

ẋ = a + cx + dy + gx2 + (h− 1)xy, ẏ = b + ex + fy + (g − 1)xy + hy2, (6.1)

with µ0 = gh(g + h− 1).

6.1.1. The case µ0 6= 0. By Lemma 2.1 the unique finite singularity must be of
multiplicity four. Translating this point to the origin of coordinates we get the
family of systems

ẋ = cx + dy + gx2 + (h− 1)xy, ẏ = ex + fy + (g − 1)xy + hy2. (6.2)

Clearly if the singular point (0, 0) has at least multiplicity 2 the condition cf−de = 0
must hold.
Subcase d 6= 0. Then e = cf/d and for systems (6.2) calculations yield

µ4 = µ3 = 0, µ2 =
F1

d

[
fgx2 + (d− f − dg + fh)xy − dhy2

]
,

where F1 = f(dg + c− ch)− c(d−dg + ch). By Lemma 2.2 in order to have a point
of multiplicity 4 we must force the conditions µ2 = µ1 = 0 to be fulfilled. Since
µ0 6= 0 (i.e. h 6= 0) the condition µ2 = 0 is equivalent to F1 = 0.

We claim that for dg+c−ch = 0 we cannot have a point of multiplicity 4. Indeed,
if g = c(h − 1)/d and we get the contradiction µ0 = c(c + d)h(h − 1)2/d2 6= 0
and F1 = −c(c + d) = 0. So dg + c − ch 6= 0 and the condition F1 = 0 gives
f = c(d− dg + ch)/(dg + c− ch). Then we calculate

µ1 =
F2

d(dg + c− ch)
[
g(dg − d− ch)x + h(dg + c− ch)y

]
,

where F2 = (dg−ch)2−c2h−d2g. Since h(dg+c−ch) 6= 0 the condition µ1 = 0 is
equivalent to F2 = 0. We observe that Discrim[F2, c] = 4d2gh(g + h− 1) = 4d2µ0.
So for the existence of real parameters c, d, h and g in order to have a point of
multiplicity 4 for a non–homogeneous quadratic system (2.1) it is necessary µ0 > 0.
Then we have c1,2 = (dgh± d

√
gh(g + h− 1))/(h(h− 1)) = dc̃1,2, and this leads to

the families of systems

ẋ = dc0x + dy + gx2 + (h− 1)xy,
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ẏ =
dc2

0(1− g + c0h)
c0 + g − c0h

x +
dc0(1− g + c0h)

c0 + g − c0h
y + (g − 1)xy + hy2,

where c0 is one of the values c̃1,2. Therefore we get two families of systems, each
of them depending on 3 parameters. However fixing the coordinates of three dis-
tinct real infinite singularities and fixing the multiplicity 4 for finite singularity we
automatically get only one of these families, which depends on three parameters.
Subcase d = 0. Then we have cf = 0 and we claim that in order to have the singular
point M0(0, 0) of multiplicity 4 it is necessary that c = 0. Indeed if c 6= 0 then
f = 0 and for systems (6.2) we get µ4 = µ3 = 0 and µ2 = ch

[
− egx2 +(e− c+ cg−

eh)xy + chy2
]
. Since µ0 6= 0 (i.e. h 6= 0) we obtain ch 6= 0 and this yields µ2 6= 0.

Now c = 0 and for systems (6.2) we calculate µ4 = µ3 = 0 and µ2 = f(e + fg −
eh)

[
gx + (h− 1)y

]
x. In this case the condition µ2 = 0 implies f(e + fg− eh) = 0.

Then calculations yield either µ1 = eh(1−h)
[
gx+(h−1)y

]
if f = 0, or µ1 = e(h−

1)(g+h−1)x if f = e(h−1)/g. Since µ0 6= 0 in both cases we get f = 0 = e(h−1).
Therefore in the case f = e = 0 as well as in the case f = h − 1 = 0 we obtain a
family of quadratic systems depending on two parameters.

6.1.2. Case µ0 = 0, µ1 6= 0. The condition µ0 = 0 yields gh(g + h − 1) = 0 and
without loss of generality we may assume that for systems (6.1) the condition g = 0
holds. Indeed, if h = 0 (respectively g + h − 1 = 0) we can apply the admissible
linear transformation which sends the straight line y = 0 to x = 0 (respectively
y = 0 to y = x). So assuming g = 0 and translating the singular point to the origin
of coordinates we get the family of systems

ẋ = cx + dy + (h− 1)xy, ẏ = ex + fy − xy + hy2, (6.3)

for which µ1 = h(h − 1)(e − eh − c)y 6= 0 because (0, 0) must be of multiplicity 3.
Clearly in order to have at least of multiplicity 2 the condition cf − de = 0 must
hold.
Subcase d 6= 0. Then e = cf/d and for systems (6.2) calculations yield µ4 = µ3 = 0
and µ2 = c

[
f(1 − h) − ch − d

][
(fh − f + d)x − dhy

]
y/d. By Lemma 2.2 to have

a point of multiplicity 3 we must force the condition µ2 = 0 to be fulfilled. Since
µ1 = ch(1− h)(fh− f + d)y/d 6= 0 (i.e. ch 6= 0) the condition µ2 = 0 is equivalent
to f(1 − h) − ch − d = 0 and this gives c = (f − fh − d)/h. Thus we obtain the
family depending on three parameters d, f and h.
Subcase d = 0. Then we have cf = 0 and we claim that to in order to have the
singular point M0(0, 0) of multiplicity 3 it is necessary c = 0. Indeed, if c 6= 0 then
f = 0 and for systems (6.3) we get µ4 = µ3 = 0 and µ2 = ch

[
(e− eh− c)x + chy

]
y.

Since µ1 6= 0 (i.e. h 6= 0) we obtain ch 6= 0 and this yields µ2 6= 0. Thus c = 0 and
in this case we calculate µ1 = −eh(h−1)2y and µ2 = −ef(h−1)2xy, and by µ1 6= 0
the condition µ2 = 0 gives f = 0. So we get the family of systems depending on
two parameters e and h.

6.1.3. Case µ0 = µ1 = 0. In this case according to Lemma 2.1 at least two finite
singularities have gone to infinity. As it was shown above from µ0 = gh(g+h−1) = 0
without loss of generality we may assume that for systems (6.1) the condition g = 0
holds. Then for these systems calculations yield

µ1 = (c− e + eh)h(1− h)y, κ = 16h(1− h). (6.4)

By Lemma 2.5 for µ0 = µ1 = 0 the configurations of infinite singularities are
governed by the invariant polynomial κ(a).
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Subcase κ 6= 0. Then h(h− 1) 6= 0 and he condition µ1 = 0 yields c = e(1− h).
Thus we get the 4–parameter family of systems

ẋ = a + e(1− h)x + dy + (h− 1)xy, ẏ = b + ex + fy − xy + hy2, (6.5)

for which
µ2 = h(h− 1)

[
a + de + (h− 1)(b + ef + e2h)

]
y2. (6.6)

We separate the proof of this subcase in three pieces.
First µ2 6= 0. In this case systems possess exactly one real singular point of mul-
tiplicity 2. Then translating this point to the origin of coordinate we obtain the
systems

ẋ = e(1− h)x + dy + (h− 1)xy, ẏ = ex + fy − xy + hy2, (6.7)

for which µ0 = µ1 = 0, µ2 = eh(h − 1)
[
d + (h − 1)(f + eh)

]
y2, µ3 = e(d − f +

fh)
[
(d + (h − 1)(f + eh))x − dhy

]
y2 and µ4 = 0. By Lemma 2.2 in order to have

a double point at the origin of coordinates we must force µ3 = 0. Since µ2 6= 0 we
obtain d = f(1− h) and we get the family of systems

ẋ = (1− h)(ex + fy − xy), ẏ = ex + fy − xy + hy2,

which depends on three parameters e, f and h.
Second µ2 = 0 and µ3 6= 0. In this case by Lemma 2.2 the singular point M0(0, 0)
of systems (6.7) is a simple real one. The conditions µ2 = 0 and µ3 6= 0 imply
d = (1 − h)(f + eh). Thus the family of systems (6.7) becomes again a family
depending of three parameters e, f and h.
Third µ2 = µ3 = 0 and µ4 6= 0. Since there are no finite singularities and µ0 =
µ1 = 0, we shall consider systems (6.5) for which according to (6.6) the conditions
µ2 = 0 and κ 6= 0 (i.e. h(h− 1) 6= 0) yield a = −de + (1− h)(b + ef + e2h). Then
we calculate

µ3 = h(1− h)(b + ef + e2h)
[
d + (h− 1)(f + 2eh)

]
y3,

µ4 = (b + ef + e2h)y3 W (b, e, f, h, x, y)

where W (b, e, f, h, x, y) is a linear homogeneous polynomial in x and y. Taking into
consideration the condition κµ4 6= 0 the relation µ3 = 0 yields d = (1−h)(f +2eh).
In such a way we get a family of systems depending on four parameters b, e, f
and h.

Subcase κ = 0. Then from (6.4) for systems (6.1) with g = 0 we have h(h−1) = 0.
Without loss of generality we can assume h = 0 (if h = 1 we can apply the linear
transformation which sends the straight line x = 0 to y = x). Thus we get the
systems

ẋ = a + cx + dy − xy, ẏ = b + ex + fy − xy, (6.8)

for which µ0 = µ1 = 0 and µ2 = (c − e)(f − d)xy. We separate the proof of this
subcase in three pieces.
First µ2 6= 0. Then these systems possess exactly one real singular point of mul-
tiplicity 2 and translating it to the origin of coordinates we obtain the systems

ẋ = cx + dy − xy, ẏ = ex + fy − xy, (6.9)

for which the condition cf −de = 0 must be forced in order to have a double point.
Since c2 + e2 6= 0 (otherwise we get degenerate systems) without loss of generality
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we may assume f = qe and d = qc. In such of way we get the family of systems

ẋ = cx + qcy − xy, ẏ = ex + qey − xy, (6.10)

which depends on three parameters c, e and q 6= 0.
Second µ2 = 0 and µ3 6= 0. Then the singular point M0(0, 0) of systems (6.9) is
simple and we must force the condition µ2 = (c−e)(f−d)xy = 0. This yields either
c = e or f = d, and in each of these cases we get a family of systems depending on
three free parameters.
Third µ2 = µ3 = 0 and µ4 6= 0. Since there are no finite singularities, we shall
consider the systems (6.8) for which the condition µ2 = 0 yields (c− e)(f − d) = 0
and without loss of generality we can consider e = c via the replacing x with y, c
with f , d with e, and a with b, which keeps the form of these systems. Then we
get the systems

ẋ = a + cx + dy − xy, ẏ = b + cx + fy − xy,

for which µ0 = µ1 = µ2 = 0 and µ3 = (d − f)(a − b + cd − cf)xy2. Therefore the
condition µ3 = 0 yields either f = d or a = b − cd + cf and in each of these cases
we get a family of systems depending on four free parameters.

6.2. The case of one real and two complex infinite singular points. In this
case the polynomial C2 = yP (x, y)− xQ(x, y) has one real and two complex linear
factors. Therefore this cubic binary form can be written as C2 = x(x2 + y2) via an
admissible linear transformation (depending only on the coordinates of the infinite
singularities of the considered family of systems (2.1); see Remark 2.7). Using the
factorization (2.2) and a time rescaling we get the family of systems

ẋ = a + cx + dy + gx2 + (h + 1)xy, ẏ = b + ex + fy − x2 + gxy + hy2, (6.11)

with µ0 = −h
[
g2 + (h + 1)2

]
.

6.2.1. The case µ0 6= 0. By Lemma 2.1 the unique finite singularity must be of the
multiplicity four and translating it to the origin of coordinates we get the family of
systems

ẋ = cx + dy + gx2 + (h + 1)xy, ẏ = ex + fy − x2 + gxy + hy2. (6.12)

Clearly in order that the singular point (0, 0) has at least of multiplicity 2 the
condition cf − de = 0 must hold.
Subcase d 6= 0. Then e = cf/d and for systems (6.12) we obtain µ4 = µ3 = 0 and
µ2 = −F3

[
(fg + d)x2 + (f − dg + fh)xy − dhy2

]
/d, where F3 = f(c− dg + ch)−

(d2 + cdg− c2h). By Lemma 2.2 in order to have a point of multiplicity 4 we must
force the conditions µ2 = µ1 = 0 to be fulfilled. Since d 6= 0 and µ0 6= 0 (i.e. h 6= 0)
the condition µ2 = 0 is equivalent to F3 = 0.

We observe that c−dg + ch 6= 0, otherwise g = c(h+1)/d and then F3 = −(c2 +
d2) 6= 0. So c−dg+ch 6= 0 and from F3 = 0 we get f = (d2+cdg−c2h)/(c−dg+ch).
Then we get µ1 = F4

[
(d+dg2+dh−cgh)x+h(dg−c−ch)y

]
/(d(dg−c−ch)), where

F4 = (dg − ch)2 + h(c2 + d2) + d2. Since h(dg − c − ch) 6= 0 the condition µ1 = 0
is equivalent to F4 = 0. We observe that Discrim[F4, c] = −4d2h

[
g2 + (h + 1)2] =

4d2µ0. So for the existence of real parameters c, d, h and g in order to have a point of
multiplicity 4 for a non–homogeneous quadratic system (2.1) it is necessary µ0 > 0.
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Then we have either c1,2 = (dgh ± d
√
−h

[
g2 + (h + 1)2])/(h(h + 1)) = dc̃1,2 if

h 6= −1, or c3 = −dg/2 = dc̃3 if h = −1, and this leads to the families of systems

ẋ = dc0x + dy + gx2 + (h + 1)xy,

ẏ =
dc0(1 + c0g − c2

0h)
c0 − g + c0h

x +
d(1 + c0g − c2

0h)
c0 − g + c0h

y − x2 + gxy + hy2,

where c0 is one of the values c̃i for i = 1, 2, 3. Thus in the generic case fixing the
coordinates of singularities and fixing the multiplicity 4 for the finite singularity we
obtain a family of systems depending on three parameters d, g and h.
Subcase d = 0. Then we have cf = 0 and we claim that in order to have the
singular point M0(0, 0) of multiplicity 4 it is necessary c = 0. Indeed if c 6= 0
then f = 0 and for systems (6.12) with d = f = 0 we get µ4 = µ3 = 0 and
µ2 = ch

[
− (c + eg)x2 + (−e + cg − eh)xy + chy2

]
. Since µ0 6= 0 (i.e. h 6= 0) we

obtain ch 6= 0 and this yields µ2 6= 0.
Since c = 0 for systems (6.12) we calculate µ4 = µ3 = 0 and µ2 = f(−e + fg −

eh)
[
gx+(h+1)y

]
x. In this case the condition µ2 = 0 implies f(−e+ fg− eh) = 0.

If h 6= −1 then calculations yield either µ1 = −eh(1+h)
[
gx+(h+1)y

]
if f = 0,

or µ1 = −f [g2 + (h + 1)2]x if e = fg/(h + 1). Since µ0 6= 0 in both cases we get
e = f = 0 and this leads to a family of homogeneous quadratic systems depending
on two parameters.

Assume now h = −1. Then the condition µ0 6= 0 implies g 6= 0. Hence the
conditions µ2 = f2g2x2 = 0 and µ1 = −2fg2x = 0 yield f = 0. In this case we
obtain the family of systems

ẋ = gx2, ẏ = ex− x2 + gxy − y2,

which also depends on two parameters.

6.2.2. Case µ0 = 0, µ1 6= 0. In this case by Lemma 2.1 a single singularity of
systems (6.11) must be of multiplicity 3. We observe that for systems (6.11) the
polynomial µ1 can be represented in the form µ1 = gW1(x, y) + (h + 1)W2(x, y),
where W1 and W2 are polynomials in the coefficients of systems (6.11) as well as
homogeneous of degree one in x and y. Then we conclude that the conditions
µ0 = 0 and µ1 6= 0 yield h = 0 and after a translation we get the systems

ẋ = cx + dy + gx2 + xy, ẏ = ex + fy − x2 + gxy, (6.13)

for which µ1 = (dg− f)(g2 + 1)x 6= 0. Since (0, 0) is of multiplicity 3 the condition
cf − de = 0 must hold.
Subcase d 6= 0. Then e = cf/d and for systems (6.13) we obtain µ4 = µ3 = 0
and µ2 =

[
c(dg − f) + d(d + fg)

][
(fg + d)x + (f − dg)y

]
x/d. By Lemma 2.2 in

order to have a point of multiplicity 3 we must force the condition µ2 = 0 to be
fulfilled. Since µ1 6= 0 (i.e. dg − f 6= 0) the condition µ2 = 0 is equivalent to
c = d(d + fg)/(f − dg) and then systems (6.13) become a family of systems which
depends on three parameters d, f and g.
Subcase d = 0. Then we have cf = 0 and µ1 = −f(g2 + 1)x 6= 0. Therefore c = 0
and calculations yield µ4 = µ3 = 0, µ2 = f(fg−e)(gx+y)x and µ1 = −f(g2 +1)x.
Since µ1 6= 0 the condition µ2 = 0 gives e = fg. So in this case we get a family of
systems which depends on two parameters f and g.
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6.2.3. Case µ0 = µ1 = 0. In this case according with Lemma 2.1 at least two finite
singularities have gone to infinity. For systems (6.11) we calculate

µ0 = −h
[
(h + 1)2 + g2

]
, κ = −16

[
g2 + (1 + h)(1− 3h)

]
(6.14)

and for forcing µ0 = 0 we have to distinguish two possibilities: κ 6= 0 and κ = 0.
Subcase κ 6= 0. In this case the condition µ0 = 0 yields h = 0 and then the

condition µ1 = (dg−f)(g2 +1)x = 0 yields f = dg. So we get the family of systems

ẋ = a + cx + dy + gx2 + xy, ẏ = b + ex + dgy − x2 + gxy, (6.15)

with the configuration
(
2
1

)
ν1 +

(
0
1

)
ν c
2 +

(
0
1

)
ν c
3 at infinity (see Lemma 2.5) and

µ2 = (ag − b + d2 + de− cdg + d2g2)(g2 + 1)x2. (6.16)

We divide the proof of this subcase in three steps.
First µ2 6= 0. Then according with Lemma 2.1 the unique finite singularity must be
of multiplicity 2. So translating this singularity to the origin we obtain the family
(6.15) with a = b = 0 and

µ2 = d(d+e−cg+dg2)(g2+1)x2, µ3 = d(e−cg)
[
(c+eg)x+(d+e−cg+dg2)y

]
x2.

(6.17)
Since µ2 6= 0 the condition µ3 = 0 yields e = cg and we obtain the family of systems

ẋ = cx + dy + gx2 + xy, ẏ = cgx + dgy − x2 + gxy,

which has all singularities fixed (its configuration at infinity corresponds to
(
2
1

)
ν1 +(

0
1

)
ν c
2 +

(
0
1

)
ν c
3 and depends on three parameters c, d and g.

Second µ2 = 0 and µ3 6= 0. Then systems (6.11) possess exactly one real singular
point. Hence without loss of generality we can consider a = b = 0 translating
this point to the origin and we obtain systems (6.15) with a = b = 0. For these
systems we have µ0 = µ1 = 0 and the values of µ2 and µ3 are given in (6.17). But
in this case the conditions µ2 = 0 and µ3 6= 0 must hold. Evidently this implies
e = cg − d− dg2 and we get the family of systems

ẋ = cx + dy + gx2 + xy, ẏ = (cg − d− dg2)x + dgy − x2 + gxy,

depending on three parameters c, d and g.
Third µ2 = µ3 = 0 and µ4 6= 0. Since there are no finite singularities we consider
systems (6.15) with µ0 = µ1 = 0 and the value of the polynomial µ2 is given by
(6.16). Hence the condition µ2 = 0 yields b = ag + d2 + de− cdg + d2g2 and then
for these systems we obtain µ3 = (g2 + 1)(a− cd + d2g)(2d + e− cg + 2dg2)x3 and
µ4 = (a− cd + d2g)x3W3(a, c, d, e, g, x, y). Thus the conditions µ3 = 0 and µ4 6= 0
imply e = cg− 2d(g2 +1). In such a way we get a family of systems which depends
on four parameters a, c, d and g.

Subcase κ = 0. Then considering (6.14) for systems (6.11) the conditions µ0 =
κ = 0 yield g = 0 = h + 1. Thus we get the systems

ẋ = a + cx + dy, ẏ = b + ex + fy − x2 − y2, (6.18)

for which µ0 = µ1 = 0 and µ2 = (c2 + d2)(x2 + y2). We separate the proof in two
parts.
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First µ2 6= 0. Now systems (6.18) have exactly one (double) real singular point.
Then without loss of generality we can consider a = b = 0 translating it to the
origin of coordinates. Then we have µ4 = 0 and µ3 = (cf − de)(cx + dy)(x2 + y2),
and by Lemma 2.2 for having a double singular point M0(0, 0) of systems (6.18)
with a = b = 0 we have to force the condition µ3 = 0. Hence since µ2 6= 0 we get
cf − de = 0. Due to the fact taht c2 + e2 6= 0 without loss of generality we may
assume f = qe and d = qc. In such of way we get the family of systems

ẋ = cx + qcy, ẏ = ex + qey − x2 − y2,

which depends on three parameters c, q and e.
Second µ2 = 0. Then we have µ2 = (c2 + d2)(x2 + y2) = 0 which implies c = d = 0.
So we obtain the family of systems

ẋ = a, ẏ = b + ex + fy − x2 − y2,

for which µ0 = µ1 = µ2 = µ3 = 0, µ4 = a2(x2 + y2)2 6= 0. We observe that this
family depends on four parameters a, b, e and f .

6.3. The case of one double and one simple real infinite singular points.
In this case the polynomial C2 = yP (x, y)−xQ(x, y) due to a linear transformation
can be written in the form C2 = x2y. Then using the factorization (2.2) and a time
rescaling we get the family of systems

ẋ = a + cx + dy + gx2 + hxy, ẏ = b + ex + fy + (g − 1)xy + hy2,

for which µ0 = gh2 and κ = −16h2.

6.3.1. The case µ0 6= 0. According with Lemma 2.1 the unique finite singularity
must be of multiplicity 4. Translating this point to the origin of coordinates we get
the family of systems

ẋ = cx + dy + gx2 + hxy, ẏ = ex + fy + (g − 1)xy + hy2. (6.19)

Clearly in order that the singular point (0, 0) has at least of multiplicity 2 the
condition cf − de = 0 must hold.
Subcase d 6= 0. Then e = cf/d and for systems (6.19) calculations yield µ4 = µ3 = 0
and µ2 = F5

[
fgx2+(d−dg+fh)xy−dhy2

]
/d, where F5 = f(dg−ch)−c(d−dg+ch).

According with Lemma 2.2 for having a point of multiplicity 4 we must force the
conditions µ2 = µ1 = 0 to be fulfilled. Since µ0 6= 0 (i.e. h 6= 0) the condition
µ2 = 0 is equivalent to F5 = 0.

We claim that for dg − ch = 0 we cannot have a point of multiplicity 4. Indeed,
supposing g = ch/d we get the contradiction µ0 = ch3/d 6= 0 and F5 = cd = 0. So
dg−ch 6= 0 and the condition F5 = 0 gives f = c(d−dg+ch)/(dg−ch). Then we get
µ1 = F6

[
g(dg−d− ch)x+h(dg− ch)y

]
/(d(dg − ch)), where F6 = (dg− ch)2−d2g.

Since h(dg− ch) 6= 0 the condition µ1 = 0 is equivalent to F6 = 0. We observe that
Discrim[F6, c] = 4d2gh2 = 4d2µ0. So for the existence of real parameters c, h, d and
g such that a non–homogeneous quadratic system (6.19) has a point of multiplicity
4 it is necessary that µ0 > 0. Then we have c1,2 = (dg ± d

√
g)/h = dc̃1,2, and this

leads to the two families of systems

ẋ = dc0x + dy + gx2 + hxy,

ẏ =
dc2

0(1− g + c0h)
g − c0h

x +
dc0(1− g + c0h)

g − c0h
y + (g − 1)xy + hy2,



26 J. C. ARTÉS, J. LLIBRE, N. VULPE EJDE-2008/82

where c0 is one of the values c̃1,2. Thus we get two families of systems each of
them depending on three parameters d, g and h. However fixing the coordinates of
singularities and fixing the multiplicity 4 for the finite singularity we automatically
get only one of these families depending on three parameters.
Subcase d = 0. Then we have cf = 0 and we claim that to have the singular point
M0(0, 0) of multiplicity 4 it is necessary that c = 0. Indeed, if c 6= 0 then f = 0 and
for systems (6.19) we get µ4 = µ3 = 0 and µ2 = ch

[
−egx2+(cg−c−eh)xy+chy2

]
.

Since µ0 6= 0 (i.e. h 6= 0) we obtain ch 6= 0 and this yields µ2 6= 0. Thus c = 0
and for systems (6.19) obtain µ4 = µ3 = 0 and µ2 = f(fg− eh)(gx + hy)x. In this
case the condition µ2 = 0 implies f(fg − eh)) = 0. Then calculations yield either
µ1 = −eh2(gx+hy) if f = 0, or µ1 = fghx if e = fg/h. Since µ0 6= 0 in both cases
we get e = f = 0 and this leads to the family of homogeneous quadratic systems
depending on two parameters.

6.3.2. The case µ0 = 0. Since κ = −16h2 we shall consider two subcases κ 6= 0 and
κ = 0.

Subcase κ 6= 0. Then h 6= 0 and the condition µ0 = 0 yields g = 0. So we get
the family of systems

ẋ = a + cx + dy + hxy, ẏ = b + ex + fy − xy + hy2, (6.20)

for which µ1 = −h2(c + eh)y. We separate the proof of this subcase in four steps.
First µ1 6= 0. In this case by Lemma 2.1 a single singularity of systems (6.11) must
be of multiplicity 3. After the respective translation we get the systems

ẋ = cx + dy + hxy, ẏ = ex + fy − xy + hy2, (6.21)

for which cf − de = 0 because (0, 0) is of multiplicity 3.
Subcase d 6= 0. Then e = cf/d and for systems (6.21) we obtain µ4 = µ3 = 0,
µ2 = −c(d+ ch+ fh)

[
(fh+ d)x− dhy

]
y/d and µ1 = −ch2(fh+ d)y/d. By Lemma

2.2 for having a singular point of multiplicity 3 the condition µ2 = 0 must hold.
Since µ1 6= 0 the condition µ2 = 0 is equivalent to c = −(fh + d)/h. Thus the
family of systems (6.21) becomes a family which depends on three parameters d, f
and h.
Subcase d = 0. Then we have cf = 0 and we claim that in order to have the singular
point M0(0, 0) of multiplicity 3 it is necessary that c = 0. Indeed, if c 6= 0 then
f = 0 and for systems (6.21) we get µ4 = µ3 = 0 and µ2 = ch

[
− (eh + c)x+ chy

]
y.

Since κ 6= 0 (i.e. h 6= 0) we obtain ch 6= 0 and this yields µ2 6= 0, but on the other
hand we must have µ2 = 0. This contradiction proves our claim. Thus c = 0 and in
this case we obtain µ1 = −eh3y and µ2 = −efh2xy, and since µ1 6= 0 the condition
µ2 = 0 gives f = 0. So we get the family of systems depending on two parameters
e and h.
Second µ1 = 0 and µ2 6= 0. In this case by Lemma 2.1 the finite singularity must
be double. Since κ 6= 0 (i.e. h 6= 0) the condition µ1 = −h2(c + eh)y = 0 yields
c = −eh. Thus after the respective translation systems (6.20) become the family
of systems

ẋ = −ehx + dy + hxy, ẏ = ex + fy − xy + hy2, (6.22)

for which we have

µ2 = eh2(d + fh + eh2)y2, µ3 = e(d + fh)
[
(d + fh + eh2)x− dhy

]
y2 (6.23)
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and according with Lemma 2.2 for having a double point at the origin we must
force µ3 = 0. Since µ2 6= 0 the condition µ3 = 0 yields d = −fh. Thus the family
of systems (6.22) becomes a family which depends on three parameters e, f and h.
Third µ1 = µ2 = 0 and µ3 6= 0. Then systems (6.20) possess exactly one real
singular point and due to a translation, by the same reasons as above we get the
family of systems (6.22) and we must force µ2 = 0. Considering (6.23) and µ3 6= 0
we have d = −h(f + eh) and we again arrive to the family depending on three
parameters e, f and h.
Fourth µ1 = µ2 = µ3 = 0 and µ4 6= 0. Since there are no finite singularities,
we consider systems (6.20) for which µ0 = 0 and due to the fact that κ 6= 0 the
condition µ1 = −h2(c + eh)y = 0 yields c = −eh. Thus we obtain the family of
systems

ẋ = a− ehx + dy + hxy, ẏ = b + ex + fy − xy + hy2, (6.24)
for which the condition µ2 = h2(a+de+bh+efh+e2h2)y2 = 0 implies a = −(de+
bh+efh+e2h2). Then calculations yield µ3 = −h2(b+ef+e2h)(d+fh+2eh2)y3 and
µ4 = (b+ef+e2h)y3 W4(b, d, e, f, h, x, y), where W4(b, d, e, f, h, x, y) is a polynomial
in the indicated parameters and is linear in x and y. Therefore the conditions µ3 = 0
and µ4 6= 0 give d = −(fh + 2eh2) and in such a way the family of systems (6.24)
becomes a family depending on four parameters b, e, f , h.

Subcase κ = 0. Then h = 0 and we get systems

ẋ = a + cx + dy + gx2, ẏ = b + ex + fy + (g − 1)xy, (6.25)

for which µ0 = 0 and µ1 = dg(g− 1)2x. We divide the proof of this subcase in two
steps.
First µ1 6= 0. In this case by Lemma 2.1 a single singularity of systems (6.25) must
be of multiplicity 3. After the respective translation we get the systems

ẋ = cx + dy + gx2, ẏ = ex + fy + (g − 1)xy, (6.26)

for which cf − de = 0 because (0, 0) is of multiplicity 3. Since µ1 6= 0 yields
d 6= 0. We obtain e = cf/d and for systems (6.26) we get µ4 = µ3 = 0, µ2 =
(cg − c + fg)

[
fgx + d(1 − g)y

]
x and µ1 = dg(g − 1)2x, and since µ1 6= 0 the

condition µ2 = 0 yields f = c(1 − g)/g. Thus the family (6.26) becomes a family
depending on three parameters c, d and g.
Second µ1 = 0. According with Lemma 2.5 for κ = 0 and µ0 = µ1 = 0 the
configurations of infinite singularities are governed by the invariant polynomial
L(a, x, y). For systems (6.25) we have µ1 = dg(g − 1)2x and L = 8gx2.

1) The case L 6= 0. Then g 6= 0 and the condition µ1 = 0 implies d(g − 1) = 0.
α) Assume that µ2 6= 0, i.e. the finite singularity is of multiplicity 2. Then

without loss of generality translating this singular point at the origin we can consider
a = b = 0 for systems (6.25). Thus we obtain the systems

ẋ = cx + dy + gx2, ẏ = ex + fy + (g − 1)xy, (6.27)

for which d(g − 1) = 0. Therefore we get

µ2 = fg(fg + c− cg)x2, µ3 = (de− cf)
[
egx + (fg + c− cg)y

]
x. (6.28)

Since µ2 6= 0 the condition µ3 = 0 yields de − cf = 0. As f 6= 0 without loss of
generality we introduce a new parameter q through e = qf , and then we get c = dq.
Thus we obtain the family of systems

ẋ = dqx + dy + gx2, ẏ = fqx + fy + (g − 1)xy,
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for which d(g − 1) = 0. Therefore for d = 0 (respectively g = 1) we get a family of
systems depending on three parameters f , q and g (respectively f , q and d).

β) For µ2 = 0 and µ3 6= 0 systems (6.25) possess exactly one simple real singular
point and doing a translation, by the same reasons as above, we get the family
of systems (6.27) and we must force µ2 = 0, taking into account the relation
d(g − 1) = 0.

If d = 0 from (6.28) and since µ3 6= 0 we have f 6= 0 and then the conditions
µ2 = 0 implies f = c(g − 1)/g. Thus we get the family of systems

ẋ = cx + gx2, ẏ = ex + c(g − 1)y/g + (g − 1)xy,

depending on three parameters c, e and g.
Assume d 6= 0. Then g = 1 and from (6.28) the condition µ2 = f2x2 = 0 yields

f = 0. So we again get the family of systems

ẋ = cx + dy + x2, ẏ = ex,

depending on three parameters c, d and e.
γ) Assume finally that µ2 = µ3 = 0 and µ4 6= 0, i.e. systems (6.25) have no

finite singularities. Then considering the condition L 6= 0 (i.e. g 6= 0) we obtain as
above that the condition µ1 = dg(g − 1)2x = 0 yields d(g − 1) = 0.

Suppose d = 0. Then we calculate µ2 = g
[
a(g − 1)2 − cf(g − 1) + f2g

]
x2.

If g 6= 1 then since g 6= 0 the condition µ2 = 0 gives a = [cf(g−1)−f2g]/(g−1)2

and we obtain µ3 = g(b + ef − bg)(c − cg + 2fg)x3/(1 − g) and µ4 = (b + ef −
bg)x3W5(b, c, e, f, g, x, y)/(1− g)2, where W5(b, c, e, f, g, x, y) is a polynomial in the
indicated parameters and linear in x and y. Thus the conditions µ3 = 0 and µ4 6= 0
imply c = 2fg/(g − 1). So we obtain the family of systems

ẋ = g(f − x + gx)2/(g − 1)2, ẏ = b + ex + fy + (g − 1)xy

depending on four parameters b, e, f and g.
If g = 1 then µ2 = f2x2 = 0 gives f = 0 and then µ3 = 0. This leads to the

family
ẋ = a + cx + x2, ẏ = b + ex,

which also depends on four parameters a, b, c and e.
Assume now d 6= 0. Hence the condition µ1 = 0 gives g = 1 and from µ2 =

f2x2 = 0 we get f = 0. Then µ3 = de2x3 = 0 and since d 6= 0 we obtain e = 0.
Thus we get the family of systems

ẋ = a + cx + dy + x2, ẏ = b

depending on four parameters a, b, c and d.
2) The case L = 0. Then g = 0 and systems (6.25) become

ẋ = a + cx + dy, ẏ = b + ex + fxy,

for which we have µ1 = 0 and µ2 = −cd xy.
α) Assume that µ2 6= 0, i.e. the finite singularity is of multiplicity 2. Then

translating this singular point at the origin we can consider a = b = 0. Thus we
get the systems

ẋ = cx + dy, ẏ = ex + fy − xy, (6.29)
for which calculations yield µ2 = −cd xy and µ3 = (de − cf)(cx + dy)xy. Since
µ2 6= 0 (i.e. cd 6= 0) the condition µ3 = 0 gives e = cf/d and hence the family of
systems (6.29) becomes a family depending on three parameters c, d and f .
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β) Suppose that µ2 = 0 and µ3 6= 0. By Lemma 2.1 there exists exactly one
simple real singular point on the phase plane of systems (6.25) and doing a transla-
tion we get the family of systems (6.29) for which we must force µ2 = −cd xy = 0.
So cd = 0 and since µ3 6= 0 the condition c2 + d2 6= 0 holds. We conclude that in
the case c = 0 as well as in the case d = 0 the family of systems (6.29) becomes a
family depending respectively on the remaining three parameters.

γ) Assume finally µ2 = µ3 = 0 and µ4 6= 0, i.e. systems (6.25) have no finite
singularities. For these systems we have µ2 = −cd xy and the condition µ2 = 0
yields cd = 0. By Lemma 2.5 in this case the configurations of infinite singularities
are governed by the invariant polynomial κ1 = −32d.

If κ1 6= 0 (i.e. d 6= 0) then c = 0 and we calculate µ3 = d(a + de)x2y. Hence
µ3 = 0 gives a = −de and we get the family of systems

ẋ = d(y − e), ẏ = b + ex + fy − xy,

depending on four parameters b, d, e and f . The configuration of infinite singular
points corresponds to

(
3
1

)
p +

(
1
2

)
q.

Assume κ1 = 0. Then d = 0 and for systems (6.25) we obtain µ3 = −c(a+cf)x2y
and K1 = −cx2y. Thus for K1 6= 0 the condition µ3 = 0 gives a = −cf and we get
the family of systems

ẋ = c(x− f), ẏ = b + ex + fy − xy,

depending on four parameters b, c, e, f and with the configuration
(
1
1

)
p +

(
3
2

)
q at

infinity.
If K1 = 0 we have c = 0 and this leads to the family of systems

ẋ = a, ẏ = b + ex + fy − xy,

which also depends on four parameters a, b, e and f , but with the configuration(
2
1

)
p +

(
2
2

)
q at infinity.

6.4. Systems with one triple real infinite singular point. In this case the
polynomial C2 = yP (x, y) − xQ(x, y) due to an admissible linear transformation
can be written into the form C2 = x3. Then using the factorization (2.2) as well as
a time rescaling we get the family of systems

ẋ = a + cx + dy + gx2 + hxy, ẏ = b + ex + fy − x2 + gxy + hy2, (6.30)

for which µ0 = −h3.

6.4.1. The case µ0 6= 0. By Lemma 2.1 the unique finite singularity must be of
multiplicity four and translating this point to the origin of coordinates we get the
family of systems

ẋ = cx + dy + gx2 + hxy, ẏ = ex + fy − x2 + gxy + hy2. (6.31)

Clearly the singular point (0, 0) will be at least of multiplicity 2 if the condition
cf − de = 0 holds.

If d 6= 0 then e = cf/d and for systems (6.31) we get µ4 = µ3 = 0 and µ2 =
F7

[
− (d + fg)x2 + (dg − fh)xy + dhy2

]
/d, where F7 = (c + f)(ch − dg) − d2.

So since µ0 6= 0 (i.e. h 6= 0) the condition µ2 = 0 implies F7 = 0. We observe
that ch − dg 6= 0, otherwise we get the contradiction F7 = −d2 = 0. So the
condition F7 = 0 gives f = d2/(ch − dg) − c and we obtain µ1 = F8

[
(dg2 +

dh − cgh)x + h(dg − ch)y
]
/(d(dg − ch)), where F8 = (dg − ch)2 + d2h. Since

h(dg − ch) 6= 0 the condition µ1 = 0 is equivalent to F8 = 0. We observe that
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Discrim[F8, c] = −4d2h3 = 4d2µ0. So it is necessary that µ0 > 0 in order that a
non–homogeneous quadratic system (6.31) has a singular point of multiplicity 4.
Then we have c1,2 = (dg ± d

√
−h)d = dc̃1,2, and this leads to the two families of

systems

ẋ = dc0x + dy + gx2 + hxy,

ẏ = −dc0(1 + c0g − c2
0h)

g − c0h
x− d(1 + c0g − c2

0h)
g − c0h

y − x2 + gxy + hy2,

where c0 is one of the values c̃1,2 above. Thus we get two families of systems each
of them depending on 3 parameters. However fixing the coordinates of singularities
and fixing the multiplicity 4 for the finite singularity we automatically get only one
of these families depending on three parameters.

Assume now d = 0. Then we have cf = 0 and we claim that for having the
singular point M0(0, 0) of multiplicity 4 it is necessary that c = 0. Indeed, if
c 6= 0 then f = 0 and for systems (6.31) we get µ4 = µ3 = 0 and µ2 = ch

[
−

(c + eg)x2 + (cg − eh)xy + chy2
]
. Since µ0 6= 0 (i.e. h 6= 0) we obtain ch 6= 0

and this yields µ2 6= 0. Thus c = 0 and for systems (6.31) we get µ4 = µ3 = 0,
µ2 = f(fg− eh)(gx + hy)x and µ1 = h

[
(fg2 − fg− egh)x + h(fg− eh)y)

]
. In this

case the conditions µ2 = µ1 = 0 imply e = f = 0 and this leads to the family of
homogeneous quadratic systems

ẋ = gx2 + hxy, ẏ = −x2 + gxy + hy2,

which depends on two parameters.

6.4.2. Case µ0 = 0 and µ1 6= 0. In this case by Lemma 2.1 the single singularity
of systems (6.30) must be of multiplicity 3. The condition µ0 = 0 yields h = 0 and
doing a translation we obtain the systems

ẋ = cx + dy + gx2, ẏ = ex + fy − x2 + gxy, (6.32)

for which µ1 = dg3x 6= 0. Clearly the singular point (0, 0) will be at least of
multiplicity 2 if the condition cf−de = 0 holds. Since d 6= 0 we can write e = cf/d,
and then µ4 = µ3 = 0 and µ2 = (d + cg + fg)

[
(fg + d)x− dgy

]
x. Since µ1 6= 0 the

condition µ2 = 0 yields f = −(d + cg)/g. Thus we obtain the family

ẋ = cx + dy + gx2, ẏ = −c(cg + d)x/(dg)− (cg + d)y/g − x2 + gxy,

depending on three parameters c, d and g.

6.4.3. Case µ0 = µ1 = 0 and µ2 6= 0. By 2.1 a single singularity of systems (6.30)
must be of multiplicity 2. Therefore after a translation we obtain systems (6.32) for
which µ1 = dg3x = 0 and the singular point (0, 0) is double. So dg = 0 and then
µ2 = (d2 − cfg2 + f2g2)x2 6= 0. Moreover we must force the condition cf − de = 0
to have a double singular point at the origin.

If d = 0 we have cf = 0 and since f 6= 0 (otherwise systems (6.32) are degenerate)
we obtain c = 0. This leads to the systems

ẋ = gx2, ẏ = ex + fy − x2 + gxy

depending on three parameters e, f and g.
If g = 0 then µ2 = d2x2 6= 0 and then we have e = cf/d. This leads to the

family of systems
ẋ = cx + dy, ẏ = cfx/d + fy − x2,
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depending also on three parameters c, d and f .

6.4.4. Case µ0 = µ1 = µ2 = 0, µ3 6= 0. Then systems (6.30) possess exactly one
simple real singular point and due to a translation we shall consider systems (6.32)
with the conditions µ1 = dg3x = 0 and µ2 = (d2 − cfg2 + f2g2)x2 = 0.
Subcase g = 0. Then the condition µ2 = d2x2 = 0 gives d = 0 and we get the family

ẋ = cx, ẏ = ex + fy − x2,

which depends on three parameters c, e and f .
Subcase g 6= 0. Then d = 0 and for systems (6.32) we obtain µ2 = fg2(f − c)x2

and µ3 = −cf
[
(c + eg)x + g(f − c)y

]
x2, and since µ3 6= 0 and g 6= 0 the condition

µ2 = 0 implies f = c. This leads to the family of systems

ẋ = cx + gx2, ẏ = ex + cy − x2 + gxy

depending also on three parameters c, e and g.

6.4.5. Case µ0 = µ1 = µ2 = µ3 = 0 and µ4 6= 0. In this case systems (6.30) have
no finite singularities and the condition µ0 = 0 yields h = 0. So we obtain the
systems

ẋ = a + cx + dy + gx2, ẏ = b + ex + fy − x2 + gxy (6.33)

for which the condition µ1 = 0 yields dg = 0.
Subcase g = 0. In this case for systems (6.33) the condition µ2 = d2x2 = 0 gives
d = 0 and then µ3 = −c2fx3 = 0 and µ4 =

[
(a2 + ace− bc2)x+ acfy

]
x3 6= 0. Thus

we get the 5–parameter family of systems

ẋ = a + cx, ẏ = b + ex + fy − x2

for which the condition cf = 0 holds. Clearly this condition, in each of two cases,
leads to the family depending respectively on the remaining four parameters.
Subcase g 6= 0. Then d = 0 and for systems (6.33) the condition µ2 = g2(ag− cf +
f2)x2 = 0 implies a = f(c− f)/g. This leads to the systems

ẋ = (f + gx)(c− f + gx)/g, ẏ = b + ex + fy − x2 + gxy

for which µ4 = (f2 + efg − bg2)x3W6(b, c, e, f, g, x, y)/g2 and µ3 = (c − 2f)(f2 +
efg − bg2)x3, where W6(b, c, e, f, g, x, y) is a polynomial in the given parameters
and is linear in x and y. Thus, since µ4 6= 0 the condition µ3 = 0 gives c = 2f and
this leads to the family of systems depending on four parameters b, e, f and g.

7. Systems with the infinite line full of singularities

Assume that the polynomial C2 = yP (x, y) − xQ(x, y) = 0 in R[x, y]. Clearly
this class of quadratic systems have the form

ẋ = a + cx + dy + gx2 + hxy, ẏ = b + ex + fy + gxy + hy2, (7.1)

for which µ0 = 0. So by Lemma 2.1 these systems can possess finite singularities
of total multiplicity at most three.
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7.1. Systems with finite singularities of total multiplicity 3.

7.1.1. Systems with three finite real simple singularities. Assuming that Mi(xi, yi)
(i=1,2,3) are real distinct singular points of systems (7.1), due to an admissible
affine transformation we can move them to the points (0, 0), (0, 1) and (1, 0). There-
fore we get the family of systems

ẋ = cx− cx2 − fxy, ẏ = fy − cxy − fy2,

which up to a time rescaling depends on a single parameter.

7.1.2. Systems with one real and two complex finite singularities. As it was men-
tioned early (see Subsection 3.2) due to an admissible affine transformation which
moves the respective singularities to the points M1,2(0,±i), M3(1, 0) we get the
family of quadratic systems

ẋ = a− (a + g)x + gx2 + 2hxy + ay2,

ẏ = b− (b + l)x + lx2 + 2mxy + by2.

Now taking into consideration the identity C2(a, x, y) = 0 in R[x, y] we get a =
l = 0, m = g/2 and h = b/2. Hence we get the family of systems

ẋ = −gx + gx2 + bxy, ẏ = b− bx + gxy + by2,

which up to a time rescaling depends on one parameter.

7.1.3. Systems with one simple and one double real finite singularities. Via an ad-
missible affine transformation we can assume that the two distinct singularities of
systems (7.1) are placed at the points (0, 0) and (1, 0). Then evidently we get the
relations a = b = e = 0, g = −c and these systems become

ẋ = cx + dy − cx2 + hxy, ẏ = fy − cxy + hy2, (7.2)

and one of the singular points, say (0, 0), is double. Then the relation cf = 0
must hold. However the relation c = 0 yields degenerate systems and, hence we
obtain f = 0. Clearly this leads to a family of systems which up to a time rescaling
depends on two parameters.

7.1.4. Systems with one finite real triple singularity. In this case due to a translation
we have the systems (7.1) with a = b = 0 (then µ4 = 0) and we must force
µ3 = µ2 = 0 and µ1 6= 0 in order to have a point of multiplicity 3 at the origin.
Thus for systems (7.1) with a = b = 0 we have cf − de = 0.
The case d 6= 0. Then we have e = cf/d and calculations yield µ4 = µ3 = 0,

µ2 =
c + f

d
(dg− ch)(fx− dy)(gx + hy), µ1 =

dg − ch

d
(dg + fh)(gx + hy). (7.3)

So taking into consideration Lemma 2.1 we obtain that the conditions µ2 = 0 and
µ1 6= 0 imply f = −c. Then we get the following family of systems

ẋ = cx + dy + gx2 + hxy, ẏ = −c2x/d− cy + gxy + hy2,

which up to a time rescaling depends on three parameters.
The case d = 0. In this case we obtain cf = 0. Then for systems (7.1) with
a = b = d = cf = 0 we have µ4 = µ3 = 0 and for c = 0 (respectively, f = 0) we
calculate µ2 = f(fg − eh)(gx + hy)x and µ1 = h(fg − eh)(gx + hy) (respectively
µ2 = ch(gx + hy)(cy− ex) and µ1 = −h(cg + eh)(gx + hy)). As we can see in both
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cases the conditions µ2 = 0 and µ1 6= 0 imply c = f = 0 and we get the family of
systems

ẋ = x(gx + hy), ẏ = ex + gxy + hy2,

which up to a time rescaling depends on two parameters.

7.2. Systems with finite singularities of total multiplicity 2. By Lemma 2.1
for this class of systems the conditions µ0 = µ1 = 0 and µ2 6= 0 have to be fulfilled.

7.2.1. Systems with two finite real simple singular points. In this case we can con-
sider systems (7.2) possessing two singularities (0, 0) and (1, 0). For systems (7.2)
we obtain µ1 = −c(cd + ch − fh)(cx − hy) and µ2 = −c(cx − hy)

[
f(c − f)x +

(cd + df + ch − fh)y
]
. Hence the conditions µ1 = 0 and µ2 6= 0 yield c 6= 0 and

d = h(f − c)/c. This leads to the following family of systems

ẋ = cx + h(f − c)y/c− cx2 + hxy, ẏ = y(f − cx + hy),

which up to a time rescaling depends on two parameters.

7.2.2. Systems with two finite complex singular points. In this case according to
Lemma 3.1 via an admissible affine transformation a quadratic system can be
brought to the canonical form (3.6) with the singularities M̃1,2(0,±i). For these
systems the identity C2 = 0 yields a = l = 0, m = g/2 and h = b/2. Thus we get
the family of systems

ẋ = cx + gx2 + bxy, ẏ = b + ex + gxy + by2, (7.4)

for which the conditions µ0 = µ1 = 0 and µ2 6= 0 must hold. For systems (7.4)
calculations yield µ0 = 0, µ1 = −b(be + cg)(gx + by) and µ2 = b(gx + by)

[
(bg −

ce)x + (b2 + c2)y
]
. Thus b 6= 0 and the condition µ1 = 0 implies e = −cg/b. Hence

we get a family of systems which up to a time rescaling depends on two parameters.

7.2.3. Systems with one double real finite singular point. In this case due to a trans-
lation we obtain systems (7.1) with a = b = 0 (then µ4 = 0) and by Lemmas 2.1
and 2.2 we must force µ3 = µ1 = 0 and µ2 6= 0 in order to have a point of multi-
plicity 2 at the origin and no more finite singularities. Thus for systems (7.1) with
a = b = 0 we shall set cf − de = 0 in order to have a multiple point at the origin.

The case d 6= 0. Then we have e = cf/d (in this case µ3 = 0) and we get the
values of the polynomials µ1 and µ2 given in the formulas (7.3). Since µ2 6= 0 the
condition µ1 = 0 implies g = −fh/d. Thus we get the following family of systems

ẋ = cx + dy − fhx2/d + hxy, ẏ = cfx/d + fy − fhxy/d + hy2,

which up to a time rescaling depends on three parameters.
The case d = 0. In this case the point (0, 0) will be a double singular point for

systems (7.1) with a = b = 0 if cf = 0. For c = 0 we get the family of systems

ẋ = gx2 + hxy, ẏ = ex + fy + gxy + hy2,

for which µ0 = µ3 = µ4 = 0, µ1 = h(fg− eh)(gx + hy) and µ2 = f(fg− eh)x(gx +
hy). Hence the conditions µ1 = 0, µ2 6= 0 imply h = 0 and we get a family of
systems which up to a time rescaling depends on two parameters.

In the case f = 0 we obtain µ0 = µ3 = µ4 = 0, µ1 = −h(cg + eh)(gx + hy) and
µ2 = ch(−ex + cy)(gx + hy). So from µ1 = 0, µ2 6= 0 we obtain h 6= 0, e = −cg/h
and we again have a family of systems which up to a time rescaling depends on two
parameters.
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7.3. Systems with finite singularities of total multiplicity less than or
equal to 1.

7.3.1. Systems with one simple finite singular point. In this case due to a translation
we obtain systems (7.1) with a = b = 0 (then µ4 = 0) and by Lemma 2.1 we must
force µ1 = µ2 = 0 and µ3 6= 0 in order to have a simple singular point at the origin
and no more finite singularities. Thus for systems (7.1) with a = b = 0 we calculate

µ0 = µ4 = 0, µ1 = (dg2 − cgh + fgh− eh2)(gx + hy). (7.5)

The case g 6= 0. Then µ1 = 0 yields d = h(cg − fg + eh)/g2 and calculations
yield

µ2 =
1
g2

(eh− fg)(cg − fg + 2eh)(gx + hy)2,

µ3 =
1
g4

(eh− fg)(cg + eh)(gx + hy)2[egx + (fg − cg − eh)y].

Hence the conditions µ2 = 0 and µ3 6= 0 imply f = (cg + 2eh)/g and we get the
family of systems

ẋ = cx− eh2y/g2 + gx2 + hxy, ẏ = ex + (cg + 2eh)y/g + gxy + hy2,

which up to a time rescaling depends on three parameters.
The case g = 0. Then µ1 = −eh3y and µ3 = h(de− cf)y[ex2 +(f − c)cxy−dy2],

and since µ3 6= 0 the condition µ1 = 0 implies e = 0. Then µ2 = c(c − f)h2y2,
µ3 = cfhy2(cx− fx + dy) and hence the conditions µ2 = 0 and µ3 6= 0 yield f = c.
In such a way in this case we obtain the family of systems

ẋ = cx + dy + hxy, ẏ = cy + hy2,

which up to a time rescaling depends on two parameters.

7.3.2. Systems without finite singularities. By Lemma 2.1 for systems (7.1) (for
which µ0 = 0) we must force the conditions µ1 = µ2 = µ3 = 0 and µ4 6= 0.
For these systems we have the value of µ1 indicated in formulas (7.5). Therefore
following the above way we consider two cases g 6= 0 and g = 0.

The case g 6= 0. Then µ1 = 0 yields d = h(cg − fg + eh)/g2 and we get
µ2 =

[
ag3 − f(c − f)g2 + gh(ce− 3ef + bg) + 2e2h2

]
(gx + hy)2/g2, and evidently

the relation µ2 = 0 yields a =
[
f(c− f)g2 − gh(ce− 3ef + bg)− 2e2h2

]
/g3. Then

we have µ3 = − 1
g4 (cg − 2fg + 3eh)(bg2 − efg + e2h)(gx + hy)2 and µ4 = (bg2 −

efg+e2h)W7(x, y), and the conditions µ3 = 0 and µ4 6= 0 imply c = (2fg−3eh)/g.
Thus we get the family of systems

ẋ =
(fg − eh)2 − bg2h

g3
+

2fg − 3eh

g
x +

h(fg − 2eh)
g2

y + gx2 + hxy,

ẏ = b + ex + fy + gxy + hy2,

which up to a time rescaling depends on four parameters.
The case g = 0. Then µ1 = −eh3y and µ4 = hW8(b, c, e, f, g, h, x, y), and since

µ4 6= 0 the condition µ1 = 0 gives e = 0. In this case from µ2 = h2(c2−cf+bh)y2 =0
we obtain b = c(f − c)/h and then we have µ3 = h(2c − f)(cd − ah)y3 and µ4 =
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(cd − ah)W9(b, c, e, f, g, h, x, y). Hence, since µ4 6= 0 the condition µ3 = 0 implies
f = 2c and we get the family of systems

ẋ = a + cx + dy + hxy, ẏ = (c + hy)2/h,

which up to a time rescaling depends on three parameters.
Since all the possible cases were examined the Main Theorem is proved.
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