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SPATTIAL PATTERNS FOR THE THREE SPECIES
GROSS-PITAEVSKII SYSTEM IN THE PLANE

MARCO CALIARI, MARCO SQUASSINA

ABSTRACT. In this paper we highlight some particular spatial patterns of
ground state solutions for the three species Gross—Pitaevskii system in the
plane having physical coefficients with particular attention to the cases where
the inter-species coefficients become large. The solutions models least energy
stationary states of a mixture of three Bose—Einstein condensates.

1. INTRODUCTION

Although Bose-Einstein condensates were predicted by Einstein [9] around 1925,
their successful experimental realization for atomic gases was firstly achieved in
1995, see [1]. Next, in 1997, the condensation for a mixture of two interacting
species with the same mass was realized, see [I4]. Finally, around 2003, triplet
species states were observed in [I7]. In two recent papers [0l [6] we investigated the
numerical approximation (via spectral methods) and the large interaction patterns
(via variational arguments) of ground state solutions for a class of vector Gross—
Pitaevskii equations in R? modelling a binary mixture of Bose-Einstein condensates
[8, 15]. As known, depending upon the anisotropy of the trapping potentials, there
are various situations where the full physical model in R? can be reduced, with a
good approximation, to the planar case (see [2, Section 2.2]), which, therefore, is
physically meaningful. The aim of this paper is to complete the work initiated in
[6], by showing some particular spatial patterns, in the large interaction regime, for
the ground state solutions of the three species 2D Gross—Pitaevskii system
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for the unknown v; : R? — C, where & denotes the reduced Planck constant and m;
are the masses of the atomic species composing the Bose-Einstein triple mixture.
The coefficients of the coupling matrix (6;;), which is symmetric so as to give the
system a variational structure, are positive and play the role of intra-species (6;;)
and inter-species (6;;) coefficients respectively and can be represented as

Uij 1 1 1

01) =27 ) = + ’ 0ij = Oji, 7’7] = 172a37
mij mij m; mj

where the constants o;; are related to the scattering lengths for the i-j species,
depending on the interaction potential between atoms. We point out that, due
to Feshbach resonance, the interspecies scattering lengths can be made large, by
applying a suitable external magnetic field (see [12]). Concerning the potential
functions, we consider the general harmonic off-centered case, that is there are
three centers (z%,2%) and six positive constants wi,,w;y, i = 1,2, 3, such that

Vi(w1,m2) = % (0, (21 — 21)? + wi, (32 — 25)?).

The potential V;s are often taken with the same centers, typically, without loss of
generality, the origin. On the other hand, there are some relevant physical situations
which lead to consider the off-centered case (see e.g. [16]).

We will prove that, when one of the inter-species coefficients, say 6;,;,, becomes
very large, then phase separation behaviour between the wave densities 1;, and
1j, tends to appear. We shall highlight analytically (see Proposition and
numerically (see Figures within Section [5)) the spatial segregation of
the solution components ¢; of the ground state. In general, this phenomenon can
appear by two possibly coexisting causes, that is the separation of the trapping
potential centers on one side (see Section 4| and Figure [2) and the large interaction
regime on the other (see Section |3|and Figure , the second one persisting also in
absence of external potentials.

2. FUNCTIONAL SETTING

Let H be the Hilbert subspace of H(R?,C3) defined by

M= { (0, ve, 0 € R CY) s [

R2
which is the natural framework for bound state solutions, endowed with the norm

Vion,@a)lnf? < o0, i = 1,2,3},

3 52
(| (1, 2, 93) |3, = ;/Rz TWWZMQ + Vi1, z2) [,

and consider the total energy associated with the system, given by the Hamiltonian
FE = FE, + J, where Eo,,J : H — R are defined by

3
Em(¢1,¢27¢3) = Z E(Z)o(w’b)’
i=1

3
J(w1,¢27¢3) = Z JZ](%a ?wb]))
i#£]
being, for any i,j = 1,2, 3,

)= [ o [Tl + il )il + 20
oc\W¥i) — w2 Qmi 7 i\L1, L2 7 2 A
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T (i, 1hy) = 0507 /Rz i[5

We assume that 8;; > 0 for any ¢, j. It is standard to see that, along a solution, the
energy map

{t'_)E(wl('vt)ﬂ/@('?t)vwS('at))}a tZO

is a constant and that the total particle numbers are time independent,
g i( )P =Niy t>0,4=1,2,3. (2.1)
The ground state solution (also called least energy solution) of the Gross—Pitaevskii
system is a solution (¢1, 19, 13) € H with ansatz
i1, 0,t) = e F di(x1,22), (x1,20) €RZ, >0, i=1,2,3 (2.2)

where (¢1, ¢2, ¢3) € H is real valued and minimizes the functional F constrained
to the normalization conditions (2.1 (with ¢; in place of ;). Consequently, the
functions ¢;s solve the nonlinear eigenvalue problem

2 3
*Zhﬁﬁ% + Vi(wy, ma)¢1 + 011871 [P 1 + Zaljh2|¢j\2¢1 = 11,
i1
K2 20412 - 2412
*Tmzﬁ% + Va(z1, 22)$2 + 02217 2| "2 + 2923‘5 |9j"p2 = paga,
J#2 (2.3)
h? 20412 - 2, 12
—ngﬁ% + Va(w1,22) b3 + O33h°|da[ b5 + Y _ 03,7705 ds = pachs,

J#3
#?=N;, i=1,2,3.
]R2

A direct computation yields the representation formula for the eigenvalues

2 3

N = Eio(on) + 75 [ 164 Y 0 0n,), (24)

R2 —

J#i
for any ¢ = 1,2,3. The existence of nontrivial solutions of the nonlinear system
is straightforward as all the coupling constants are positive, which makes the
Hamiltonian E coercive and weakly lower semicontinuous on the L2 x L? sphere
in ‘H. In addition, by the standard gradient inequality [g. [V|¢]|* < [g. [V@]?, it
follows that the ground state solutions can be sought among nonnegative functions,

so the ¢; are positive.

3. LARGE INTER-SPECIES PARAMETERS

Let H C H'(R?) x H'(R?) be the realization of the Hilbert subspace given in
the introduction. For any index pair i # j, we set

S= {(¢17¢27¢3) eEHR: /]R? @7 = Ni, Vi= 172,3}7
S5 ={(01,02,05) €S /Rﬁ(b;:o},
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3
s*= () S
i#£4, i,5=1
Assume now that one of the inter-species parameter, say 0;,;, with ig # jo, gets
very large, say 0;,j, = £ — oo while the other remain bounded, say 6, € (0,1]
for any other I,m = 1,2,3 with [ # m. The least energy level of the ground state
solutions is then defined and denoted as follows

10J0 — ] f E ’ 5 + L],,€ s s ,
o (¢1’¢12171¢3)€S[ oo (91, b2, ¢3) (01,02 ¢3)]

where the Hamiltonian is £ + J, = E, = F : H — R, with
3
#whwﬁazn#/\@mwmﬁr Do T (nbm):
e nem, nio, m#jo
We also define the candidate for the limiting (as kK — 0o) energy ciojo,
3

S {Ew(¢1,¢2,¢3) + 3 J"m((bn,(bm)]. (3.1)
(91:62:03)€5550 n#m, n#io, m#jo

With obvious modifications one can define the energy levels corresponding to the
case where more than one parameter diverges. In the case where 6;; — oo for all
1 # 7 then the limiting energy is cqo,

Coo = inf Eoo(p1, 02, P3). 3.2
(¢1,02,03)ES> (¢1 92 ¢3) ( )

As 8% C & C S, taking into account the definition of clodo | ¢hodo and ey it holds
ciodo < clodo < e (3.3)
for any x > 0. In this setting the following result holds.

Proposition 3.1. As k goes to infinity, the sequence of ground state solutions

(o5, 95, 95) C S converges in H to a function (¢7°, #3°, $3°) € S5 at energy level

clodo Moreover, there exist ug® > 0 such that the variational inequalities hold
h2
my;

foralli=1,2,3.

AGY + Viwr, m2)d5° + 002 16°205° < ¢ in R?, (3.4)

Remark 3.2. It is natural to wonder if the limit function ¢;° solves the equation

h2
5 AT+ Vi@, )07 + 0:h°(67°)° = pi*¢7  in Qi = {4} > 0}

when Q; C R? is an open set. In other words, taken any positive and compactly
supported function ¢ with support in €;, do we have k fR2 |¢§“|2¢fgp — 0 when
k — o0? We believe this is true.

Proof of Proposition[3. In light of the first inequality of (3.3), if (¢, ¢5, %) € H,
¢% # 0 for any i is the ground state solution, we have E, (9%, ¢5, ¢45) = c0%0 and

3
[ 16RO < 3 0t [ 16,Pl0

n#Em R
< (Ju + Exo)(97, 05, 95)
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— C;ojo < Céoojo’

for every £ > 0. As a consequence, we obtain [p. |% \2|¢?0 |? — 0 as k — oo. In ad-
dition, we have |[(¢F, #5, ¢5)[12, < Ex(df, ¢5, ¢5) < ciojo for any k > 0. Hence, the
sequences (¢F, ¢5, @%) is bounded in H, with respect to . In particular there exist
(93°, 95°, %) in H such that, up to a subsequence, (¢f, d5, d5) — (P3°, p5°, P3°)
in H and ¢f(xq1,m2) — (21, 32) for ae. (z1,22) € R? as k — oo. Hence,
by Fatou’s Lemma, we get [p.(¢2%)2( %;)2 = 0, namely ¢77¢5° = 0 a.e. in R2.
Since by definition [, |¢F[* = N; for any x > 0 and H in compactly embedded
into the space L"(R?) x L"(R?) for any r > 2 (combining an inequality like (3.7))
with the Gagliardo—Nirenberg inequalities), up to a further subsequence, we have
Jg2 [65°12 = N; for i = 1,2,3. Whence

(¢7°, 957, 957) € Sivjy- (3-5)
Observe also that E’_(¢%) < ciojo for any i = 1,2,3 and

1 , 0> >
sup = -sup {EL(67) + 255 [ 10t + 3 b [ 05 Plor} < oc,
K>1 Ni x>1 2 Jre : R2
m#i
denoting pf the eigenvalues corresponding to ¢F. Hence, up to a subsequence,
wE — pu® as k — oo. By testing the equations of the system by an arbitrary
compactly supported positive function 7, we get

h2
Vor Vot | Vienamon+ o [ JorPorn < [ o

Qmi R2 R2

for all kK > 0. Hence, letting x — oo, it turns out that ¢$° satisfies the variational
inequalities (3.4). Notice that, by Fatou’s lemma and the first inequality of (3.3]),

we have

3 g2 , 3 , 59,2 \

2] vee Vil o

> g Jo VO 32 [ Wi+ 355 [ 1o
3

PR WA DR Uy

n#m, n#io, m#jo

QU |2 L |2 > 0.h2 w14
<3 g it [ 1V0r S imint [ vl 32 i 1o
3
+ lim KHQ/ EARCARE lim inf J™™ (¢, ¢,
e e n#m, nio, m#jo
SllmlnfEH(¢’fa¢ga¢§) :liminfc?jo SC?Ojo.
K—00 K—00

Recalling formula (3.5)), by the definition of c%2/0 the above inequalities rewrite as
3
Eo(¢7°,65°,65°) + lim nff/ 05 Ple5 12+ D T, o)
R n#m, nio, m#jo
3

<0 < Eao(¢7%, 05, 0) + Y, T )
n#m, n#io, m#jo
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which yields
i [ 1ot Plof = (3.6)

Therefore, the convergence of ¢f to ¢{° in H is strong, otherwise, assuming by
contradiction that this is not the case, the previous inequalities would become strict,
yielding immediately a contradiction with . Finally, as a further consequence,
coJo = B (6$°, ¢3°, ¢°), concluding the proof. O

Remark 3.3. In the assumptions and notations of Proposition not all the
components become mutually phase segregated. If not, then, ¢;7°¢7° = 0 a.e. for
any index i # j, and so, by definition we would have (¢3°, $3°, ¢3°) € S*. In turn,
by 7 and Fatou’s Lemma, we obtain

Coo < Eoo(67°,65°, ¢3°) < liminf B, (47, 65, ¢5) < ¢l < cox,
KR—00
which is a contradiction. This is confirmed by numerical experiments.

Remark 3.4. The strong convergence of ¢ to ¢$° in 'H, ) and (| . yield

; o 0”71 lm . .
Nupss = Bl (62°) + /\¢ SR, A
m#i
] ell
Nigjiig = B2 (630) + ool / <Y g, g,
m#io,jo

Remark 3.5. Assume that one of the parameters w; in the trapping potentials gets
very large, say wj,z = A — +oo while the other remain bounded, say wiz,w;y €
(0,1] for any ¢ = 1,2,3 with ¢ # ip. Then, numerical simulations show that the
corresponding component (bﬁ) of the ground state tends to assume a cigar-like shape
along one direction, and the bigger A is, the thinner is the profile of ¢;, (see e.g.
Figure . We show that, in the asymptotic process A — 400, contrary to what
happens in the strong interaction limit Kk — oo, the energies of the ground state
solutions cannot remain bounded from above. More precisely, set

A i ]
VM @1, 22) = 52 (A% (21 — 2)? + i, (22 — 29)?).
Hence, we denote the least energy of the ground state solution as follows

3
o= (¢1,¢igl,1£3)es (E‘Z\O (0i5) + #Z;O EX (o) + J(b1, P2, ¢3)>7

where E¥ = E% with V;, = Vlf)\ Then we have

I':=supcp = +0.
A>0
Indeed, assume by contradiction that this is not the case, namely I' < co. Hence,
the sequence of ground state solutions (¢4, ¢, #%) is bounded in H'(R%,R?). In
particular, up to a subsequence, it converges weakly in H!(R? R?) and pointwise
a.e. to a function (¢°, $3°, ¢3°). Moreover, since it holds

sup sup [92/ |¢¢Al2] <T, (3.7)
A>10>0 U Jr2\B, (2 ,08)
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for i = 1,2,3, it follows that (¢7, 93, ¢4) also converges, strongly, in L?(R2?, R3).
Since, for any A > 0 and i = 1,2, 3,

NG

taking the limit as A — +oo entails [5, [¢5°|* = N;. Whence ¢5° # 0 in H'(R?)
for every ¢ = 1,2,3. On the other hand, we also have

/ VA, a)|dd P <T,

for all A > 0, yielding in particular

m;, I
[, e -l < 45

By Fatou’s lemma this entails |z; — °[|¢2° (w1, 22)| = 0 for a.e. (x1,22) € R?,
namely ¢7° =0 in H 1(R?), which produces a contradiction.

4. LOCATION OF COMPONENTS

In the so called Thomas—Fermi regime, a very good approximation of the ground
state solutions of which holds for sufficiently large values of the coupling
constants ¢;;, can be obtained by simply dropping the diffusion terms —Ag;, the
kinetic contributions, namely assuming the wave functions to be slowly varying (cf.
[10, 18, 13]). In turn, system reduces to the algebraic system (h =m; = 1)

011|112 + O12|d2|? + 013 93] = p1 — Vi(z1, 22),
021|p1|% + Oaa|d2|? + Oa3|p3|* = pa — Va(z1, 22), (4.1)
031|p1]% + Os2|d2|? + O3] ¢3|* = ps — Va(z1, 22).

Let us denote by © = (6;;) the symmetric coupling matrix and set n; = ¢? and
Xi(z1,22) = pi — Vi(x1, x2), where the eigenvalues p;s should be computed through
the normalization conditions (2.I)). Moreover, assume that |©] > 0 (positive deter-
minant). Then, we obtain

X1(z1,m2) 012 O3
1|1 (21, 22) = |X2(x1,22) OG22 a3, (4.2)
X3(x1,x2) O3z 033

011 xi(z1,22) O3
O] n2(21,22) = |01 X2(w1,22) Oa3],
031 x3(w1,22) 033
011 b2 xa(z1,22)
[©|n3(x1,22) = |01 a2 X2(x1,22)|.
031 032 x3(x1,22)

As the coupling coefficients are positive, if we set r; = /2u; for i = 1,2,3, it is
evident that system (4.1) makes sense only if the right hand sides of each equation
in it is positive, that is in the set

D= 03 1D, D 7{ (z1,22) GR (xlfxll) +wl-2y(:r27xi2)2 gr?}.
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Furthermore, taking into account that, for any i, the 7;s are positive and are a com-
bination of quadratic polynomials (due to the structure of x;), there exist positive
constants Q;4, {0y, and R; and centers (y;1, y;2) which allow to define the (possibly
empty) overlap region of the components of the wave functions

0= ﬂleOi, Oi = {(331,332) eD: 9121(]}1 — yi1)2 + ny(xg — yi2)2 S RZQ}

Then, for O # 0, there is «; > 0 such that a non-smooth approximation of the i-th
component of the ground state is given by

ai(R} = Q2 (z1 — yin)® — O (22 — yi2)?), in O,
2_w? (z1—2i1)%—w2 (zo—2xi2)>
G2 (21, 35) = § i) e (e mea)” nD\o, (43)
0, in R2\ D;.

Thinking for instance to the case where the diagonal coeflicients 6;; are much larger
than the 6;;s, i.e. 6;; > 6;; > 1, we have from (4.2)), e.g. for the component ¢,

, xi1(z1,22) b2 b3
611022033 1 (w1, 22) = |x2(x1,22) b2z ba3| = x1(21, 22)022033.
x3(x1,22) O3z b33

This clarifies why it makes sense to extend to the set D; \ O the Thomas—Fermi
approximation defined in O according to the second line of formula (4.3)) (for i = 1).

5. NUMERICAL COMPUTATION OF SOLUTIONS

As done in [6], for the sake of self-containedness, we briefly describe the numer-
ical algorithm used for the computation of the ground states. For further details,
we refer the interested reader to [5]. It is sufficient to consider the single one-
dimensional Gross—Pitaevskii equation. In fact the extension to the case with any
number of equations is straightforward. Moreover, without loss of generality, we
reduce to the case h = m = 1. The main idea is to directly minimize the energy
E(¢) associated to a wave function ¢ (x) = e~ ¢(z), discretized by Hermite func-
tions, with a normalization constraint for the wave function. As it is known, the
Hermite functions (Hf )ien are defined by

2

H)(x) = H (z)e 27", 1€N,

where (Hlﬁ )ien are the Hermite polynomials [4], orthonormal in L? with respect

to the weight e~P*%" . The Hermite functions are the solutions (ground state, for

[ = 0, and excited states, if else) to the eigenvalue problem for the linear Schrodinger

equation with standard harmonic potential

1 d? 1
(= 25+ () Hi= At N=52(1+3).

2
If we set

b=> &t

leN
where

o= (p,Hy)p2 = /R¢Hl,
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the energy functional rewrites as

E(¢) = Z)xl(;ﬁ% +/ (V(x) _ (52235)2) <Z¢ZHI)2 " %Q/R (Z@Hl){

IEN R lEN leN

and the chemical potential turns into
1 4
Nu=B@)+ 50 [ (L am) (51)
R
leN

By minimizing F, under the constraint ||¢[|7, = N, we look for local minima of

B(¢:2) = E(6) + A(N = Y 67

leN

which solve the system, with k € N,

2,02
(/\Kf>\)¢n+/R(V(;1;)f (52) >Hk(§¢l7'[l> +9/}RH’€(§¢1HZ)3O,
> ¢ =N

leN
We notice that, if ¢ is a solution of the above system, then it is immediately seen,
by multiplying times ¢, summing up over k and using , that the Lagrange
multiplier A equals the chemical potential . Next, we truncate the Hermite series
to degree L — 1 and introduce an additional parameter p = 1 in front of the first
integral (its usage will be clear later), to obtain a corresponding truncated energy
functional Ep(¢; A; p), whose local minima solve the system, with 0 < k < L — 1,

L-1 L-1
(Ax = A +P/R (V(ff) - W;)Z)Hk(g ¢lHl) + G/RHk< ; ¢lHl)3 =0,

L—-1
> 4 =N.
=0

To approximate the integrals, we used a Gauss—Hermite quadrature formula with

2L — 1 nodes relative to the weight e=28°¢*  The system is solved by a modified
Newton method with backtracking line-search, which guarantees global convergence
to the ground states. We refer to [3, [7] and, in particular, to [5] for the details.
Here we just mention that the initial guess for the Newton iteration is obtained
by a continuation technique over p and 6, starting from the ground state of the
Schrédinger equation with the standard harmonic potential, which corresponds to
p = 0 = 0. Using the tensor basis of the Hermite functions, the extension to the
two-dimensional case is straightforward.
In the following figures we show some typical spatial patters of the ground states

solution triplet with respect some relevant features as:

(1) the anisotropy of the trapping potentials (Figure [1));

(2) the phase separation via potential off-centering (Figure ;

(3) the phase separation via large inter-atomic interactions (Figure [3));

(4) the shape of supports with respect to the number of atoms N; (Figure [4));

(5) the shape of supports with respect to the size of the masses m; (Figure.
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FIGURE 1. (anisotropy) ground state (¢1,¢2,¢3) (left to right);
wy1 and wgo assume values 7w, 1.17, 1.57, 27, 107 (top to bottom),
other Wy = T, Weg = T, My = 1.44 - 10_25, Nz = 107, 011 = 022 =
033 = 10~% and 012 = 093 = 013 = 100;;.
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FIGURE 2. (off-centering) ground state (¢1, @2, ¢3) (left to right);
V2 with center (0,0); Vi with centers (—4,4), (=3,3), (-2,2)
(—1,1), (—0.4,0.4) and V3 with centers (4,4), (3,3), (2,2), (1,1)
(0.4,0.4) (up to 107°, top to bottom); wy; = wy = ™, m; =
1.44 - 10725, N; = 107, o171 = 033 = 2 - 1077, 092 = 100017 and
045 = 500’11.
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segregation) ground state (¢1, P2, P3) (left to
right); wy; = wy = 7, m; = 1441072, N; = 107, 017 = 092 =
033 = 10_6 and 012 = 0, 03, 08, 14, 2- 10_6, 023 = 0, 05, 1, ].8, 5-
107, 013 = 0,0.7,1.8,5,50 - 1075 (top to bottom).
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FIGURE 4. (numbers of atoms) ground state (¢1, ¢2, ¢3) (left to
right); wy; = wyi = 7, m; = 1.44-107%, 0y = 107, 045 = 4oy,
N; = 1,0.8,0.4,0.3,0.1 - 107 and N3 = 1,1.3,2,4,6 - 107 (top to
bottom).
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FIGURE 5. (atomic masses) ground state (¢1,¢2,¢3) (left to
right); wyi = we; = m, Ny = 107, 0 = 107%, 0y = 4oy,
my = 1.44,1,0.8,0.5,0.3 - 1025, my = 1.44 - 10~2% and my =
1.44,1.8,1.9,2,2.1- 10725 (top to bottom).
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