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EXISTENCE OF SOLUTIONS FOR A FOURTH-ORDER
BOUNDARY-VALUE PROBLEM

YANG LIU

ABSTRACT. In this paper, we use the lower and upper solution method to
obtain an existence theorem for the fourth-order boundary-value problem

u® () = ft u®), u/(t)vu”(t)v um(t))v 0<t<l,

1
w(0) = /(1) = u(0) = 0, (1) = g(/0 W (£)d6 (1)),

where f : [0,1] x R* — R, g : R — R are continuous and may be nonlinear,
and fol u’’(t)df(t) denotes the Riemann-Stieltjes integral.

1. INTRODUCTION

It is well known that the bending of an elastic beam can be described with
fourth-order boundary-value problems. Recently, many authors have investigated
the existence of solutions for fourth-order boundary-value problems subject to a
variety of boundary-value conditions, see for example [T, B}, @, 6] [7].

Very recently, Bai [2] used the lower and upper solution method to obtain the
existence of solutions for the problem

u® () = ftult), ' (b),u" ), (), 0<t<1,
u(0) = u'(1) =" (0) = v (1) = 0,

where f: [0,1] x R* — R is increasing.

Motivated by the above-mentioned papers and the main ideas in [5], in this
paper, we use the lower and upper solution method to establish the existence of
solutions for the fourth-order boundary-value problem

W (8) = flt,ult), o (O), 0" ()" (1), 0<t<L,

1 (1.1)
w(0) = w/(1) = u"(0) = 0, (1) = g(/ W (8)d0(1)),
0
where f : [0,1] x R* — R, g : R — R are continuous and may be nonlinear.
6 :[0,1] — R is increasing nonconstant function defined on [0,1] and 6(0) = 0.
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If g(z) = x, € R, then the problem (L.1)) educes a three-point boundary-value
problem by applying the following property of the Riemann-Stieltjes integral.
Lemma 1.1. Assume that

(1) u(t) is a bounded function value on C?[a,b], i.e., there exist c, C € R such
that ¢ < u”(t) < C, Vt € [a, b];
(2) 6(¢) is increasing on |[a, b];
(3) the Riemann-Stieltjes integral f; u”(t)dO(t) exists.
Then there is a number v € R with ¢ < v < C such that

/u%mmﬂzuwm—m@y

For any continuous solution u(t) of (1.1)), by Lemma there exists n € (0,1)
such that

b
/ u”(£)df(t) = u"(n)(0(1) — 6(0)) = u"(n)6(1).
Let 0 = 6(1) and g(z) = =, x € R. Then problem (1.1) can be rewritten as the
three-point boundary-value problem
u® () = ft,u(t), o (t),u" (), u™(t), 0<t<1,
u(0) = u'(1) =u"(0) =0, u"(1) =ou"(n),

The paper is organized as follows. In the next section, we present some prelimi-
naries and lemmas. Section 3 is devote to our main results.

(1.2)

2. PRELIMINARIES

Definition 2.1. Let o € C?[0,1] N C*(0,1). We say « is a lower solution of (1.1
if

oW () < f(t,a(t), o (t),a” (1), a" (1), 0<t<1,
a(0) <0, o'(1) <0,

a”(0) >0, a"(1)> g(/1 o (t)do(t)).
0
Similarly, 8 € C®[0,1] N C*(0,1) is an upper solution of (L)), if 3 satisfies similar
inequalities in the reverse order.
If we denote by k(t,s) the Green’s function of
—u"(t)=0, 0<t<1,
u(0) = u/(1) =0,

k(t, 5) t, 0<t<s<l1,
7s:
s, 0<s<t<1.

then

Setting —u” = v, by standard calculation, we get

u(t) :/0 k(t, s)v(s)ds =: (Av)(¢),
1
u'(t) :/t v(s)ds =: (Bv)(t).
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Obviously, A, B are monotone increasing operators.
We assume that ¢ is an odd function on R. Then problem (1.1)) is equivalent to
the following integral-differential boundary-value problem

—0"(t) = f(t, (Av)(D), (Bo)(t), —v(t), —0'(1), 0<t<1,

1 2.2
o0 =0, V(1) =gl [ ole)dbe) 22
For v € C[0, 1], we define the operator f by
Fw(®),0' () = f(t, (Av)(2), (Bo)(t), —v(t), ' (1))
Then is equivalent to
—0"(t) = f(u(t),v'(t)), 0<t<1,
(2.3)

1
v(0) =0, v’(l):g(/o o(£)dO(E)).

Suppose «, 3 are the lower and upper solutions of BVP ([1.1)) such that o” > 3"
and let 1 = —3",¢ = —a/". Then we have

—¢"(t) < J(6(t),9'(1)),  #(0) <0, ¢'(1) Sg(/o ¢(t)do(t)),

1
) 2 0.0 0). 6020 )2 e[ ve)

0
Since A, B are monotone continuous operators, there exists M such that

M = sup {||AUH007 ||BU||<>0} > 0.
Pp<v<typ

Definition 2.2 ([2]). Let f € C([0,1] x RLR), ¢,v € C([0,1],R) and ¢(¢t) <
P(t),t € [0,1]. We say that f(t,x1,x2,23,24) satisfies a Nagumo-type condition
with respect to ¢, if there exists a positive continuous function h(s) on [0, 00)
satisfying

|f(t, x1, 22, 23, 24)| < h(|24]), (2.4)
for all (¢, 21,22, 73,14) € [0,1] x [-M, M]? x [¢(t),(t)] x R, and
oo g )
A %ds > max (t) — min 6(t), (2.5)

where A = max{|4(1) — #(0)],[12(0) — 6(1)]}.

Lemma 2.3. Suppose f satisfies the Nagumo-type condition with respect to ¢, €
C?[0,1] and ¢ <. If BVP has a solution v(t) such that ¢(t) < v(t) < P(t),
then there exists N > 0 such that |v'(t)] < N, fort € [0,1].

The proof of the above lemma is similar to that in [2], therefore, we omit it.

3. MAIN RESULTS

Theorem 3.1. Suppose «, 5 are lower and upper solutions to BVP (1.1) such that
o' (t) > B"(t) and [ satisfies a Nagumo-type condition with respect to o', 3". In
addition, we assume that g is odd, continuous and increasing on R, 6 is increasing
on [0,1] and 6(0) = 0. Then BVP has a solution u(t) such that

a(t) <u(t) < B(t), (1) = u"(t) = B"(1).
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Proof. Since f satisfies the Nagumo-type condition with respect to ¢ = —a//,¢) =
—f3", there exists a constant N > 0 depending on ¢, 1, h such that

N
S
lﬁﬁ@m>£%”@_£%d) (3.1)

Take C' > max{N, ||¢'|],||¥'||} and p(v') = max{—C,min{v’,C}}. By modifying
f and g with respect to ¢, 1, we aim at obtaining a second-order boundary-value
problem and reformulating the new problem as an integral equation. We show
that solutions of the modified problem lie in the region where f g are unmodi-
fied and hence are solutlons of problem Let € > 0 be a fixed small num-

ber and F( fo are the modifications of f(v(t),v'(t)) and
fo as follows
F(u(t), U'(t))
F®.(0) + 558, i 0(t) > U(0) + =,
F (), () + [F (), ¢/ (8) = F((8), p(v'(£)))
+ ] x L), if () < ot) < P(t) +¢,
= f(t),p(v' (1)), if (1) < v(t) < (),
Fo(), (' (1)) + [f(6(1). ¢/ (£) — F(&(1), p(v/ (1))
SToR ol i (1) — £ < vlt) < 9(0)
Fot), ¢ (1) + 2 i o(t) < 6(t) —
and
G( [ was)

9y HEB) + R ORI it (t) > (),
= 3 9(J, v(H)ao()) if 6(t) < v(t) < (1),

)do (1)),
U S(0aB(0) + OB g ) ),

~

Obviously, FF: R xR — R and G : R — R are continuous and bounded. Consider
the modified problem

=" (t) = F(v(t),v'(t)), 0<t<1,

1 3.2
v(0) = 0, duy:q/qﬁmwm. 3.2)
0
Then, the BVP is equivalent to the integral equation
1 1 /
v(t) = G(/O v(t)do(t))t +/O k(t,s)F(v(s),v'(s))ds. (3.3)

Since F' and G are continuous and bounded, there exist M > C, m > 0 such that
[F(v(t),v'(t))] <M on RxR,

|G(/O v(t)dé(t))] <m on R.
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Choose M > § +m + M and consider the open bounded and convex set
Q= {veC'[0,1] : o] < M, /|| < AT}
Define ' : C1[0,1] x R — C[0,1] and G : C[0,1] — C[0,1] by

/k:ts o (s))ds,
Glo)t =G</O o(t)dB(1))1.

It is obvious that F, G are compact. Let T = G + F, it is easy to see that (3.2) is
equivalent to the fixed point equation

Tv =w. (3.4)

Then, it follows from Schauder fixed point theorem that the integral equation (3.4
has a fixed point v,. In other words, the BVP (3.2)) has a solution v,. Also, from
the definitions of ¢, ), F' and G and the choice of C, we have

—¢"(t) < f((t), ¢/ (1)) = F(g(t), 4/ (), 0<t<1,
1
o0 <0, 50 <ol [ o0ase) =a([ owann)
and
—(t) > f((1), ¥ (1) = F((8), ¢/ (1), 0<t<1,
$(0) > 0, >g/¢ £)do /w )bt
That is, ¢ and 1 are the lower and upper solutions of .
We claim that the solution v, of satisfies (t) < v.(t) < ¢(¢) for ¢t € [0,1].

We only prove ¢(t) < v.(t), t € [0, 1], the other part is proved in a similar way. Let
w(t) = ¢(t) — v (t) for t € [0,1]. Assume that w(ty) = Olgtaglw(t) > 0. We divide

the proof into three cases.

Case 1. tg = 0. Then we have w(0) = ¢(0) — v,(0) = ¢(0) > 0. It contradict the
definition of ¢.

Case 2. tp = 1. Then w(1) > 0 and w’(1) > 0. The boundary value conditions of

imply
w'(1) = /(1) - 0.'(1) < g / o(1)do(1)) — G / 0. (£)d0(2)).

If v, (t) < ¢(t), then
1 i Sy S(0)d0(1) = Jo v.(t)db(2)
G( /0 vi (t)dO(t)) = g( /0 B(t)do(t)) + . +Of01 S —Ofol SO

o / H(1)d6 (1))
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which implies w'(1) < 0. It is a contradiction. If v, (t) > 9 (¢), then

[ v (t)dO(t) — [ w(t)do(t)
1+ [ . (8)dO(t) — [ (1)db(t)

1 1
el / 0. (£)d6(1)) = g / B(1)d(1)) +
> g / B(1)dO(1))
1
> g / H(1)d0(1)),

we can also get w’(1) < 0, which is a contradiction. Hence, ¢(t) < v.(t) < ¥(t). So

G / 0. (1)d0(2)) = o / 0. (D)d0()) > o / o(1)d8(1)).

which implies w’(1) < 0. If w’(1) < 0, it is a contradiction. So we have w’(1) = 0.
Since tg # 0, there exists t; € [0,1) such that w(¢t1) = 0 and w(t) > 0 on (¢1,1].
Then for each ¢ € [t1, 1], we have

w(t)
1+ w(t)
Thus, by w'(1) = 0, we get w’(t) <0 on [t1, 1], which implies that w is decreasing
on [t1,1] and hence w(1) <0, it is a contradiction.

Case 3. tp € (0,1). Then, we have w'(tg) = 0 and w”(ty) < 0. However, for
0 < w(tp) < &, we have

w”(to) = ¢" (to) —

—f(o(to)

_ wi(to)
(1+w(ty))e

a contradiction. For w(tg) > &, we obtain

W'(t) = ¢ (8) = v."(6) = = f(6(), ' () + [f(6(0). &'(8)) +

U*N(to)
¢/ (to)) + F(vi(to), vs' (t0))

v

>0,

to)
"(to) = & (to) — v (tg) > w(
w(o) ¢<0) v (0)—1+w(t0)
it is also a contradiction. Thus, ¢(t) < v.(t),t € [0,1]. By the similar discussion,
we can get v, (t) < ¥(t).

According to the Lemma and the choice of C, for the solution v, of (3.2)
with ¢(t) < wv.(t) <(t), t € [0,1], we have

v/ (t)| < N < C.

)

Thus,
F(v*(t)7v*/(t)) = f(v*(t),v*’(t)),
G( / 0. (1)d6(1)) = g / 0. (£)d6(1)).

Hence, the solution v, of (3.2) with ¢(¢) < v.(t) < 9(t), t € [0,1], is a solution of
(2.3). The proof is complete. |

Using the Theorem we can prove the following result.
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Corollory 3.2. Suppose «,f3 are lower and upper solutions to (1.2) such that
o’(t) > 0" (t) and f satisfies a Nagumo-type condition with respect to o', 3". Then
(1.2) has a solution u(t) such that

a(t) <u(t) < B@), o'(t) =u"(t) > B7(t).
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