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ON THE OSCILLATION OF THE SOLUTIONS TO LINEAR
DIFFERENCE EQUATIONS WITH VARIABLE DELAY

GEORGE E. CHATZARAKIS, CHRISTOS G. PHILOS, IOANNIS P. STAVROULAKIS

Abstract. A new criterion for the oscillation of the solutions to linear differ-
ence equations with variable delay is established. This criterion is based on a

new fundamental lemma, which provides a useful inequality for the nonoscil-

latory solutions of the delay difference equations considered.

1. Introduction

In the previous two decades, the study of difference equations has attracted
significant interest by many researchers. This is due, in a large part, to the rapidly
increasing number of applications of the theory of difference equations to various
fields of applied sciences and technology. In particular, the oscillation theory of
difference equations has been extensively developed. See [1]–[27] and the references
cited therein. The present paper deals with the oscillation of linear difference
equations with variable delay.

Consider the delay difference equation

∆x(n) + p(n)x(τ(n)) = 0, (1.1)

where (p(n))n≥0 is a sequence of nonnegative real numbers, and (τ(n))n≥0 is a
sequence of integers such that

τ(n) ≤ n− 1 for all n ≥ 0, and lim
n→∞

τ(n) = ∞.

Here, ∆ stands for the usual forward difference operator defined by

∆h(n) = h(n + 1)− h(n), n ≥ 0,

for any sequence of real numbers (h(n))n≥0. Set

k = −min
n≥0

τ(n).

(Clearly, k is a positive integer.)
By a solution of the delay difference equation (1.1), we mean a sequence of

real numbers (x(n))n≥−k which satisfies (1.1) for all n ≥ 0. It is clear that, for
each choice of real numbers c−k, c−k+1, . . . , c−1, c0, there exists a unique solution
(x(n))n≥−k of (1.1) which satisfies the initial conditions x(−k) = c−k, x(−k +1) =
c−k+1, . . . , x(−1) = c−1, x(0) = c0.
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As usual, a solution (x(n))n≥−k of the delay difference equation (1.1) is called
oscillatory if the terms x(n) of the sequence are neither eventually positive nor
eventually negative, and otherwise the solution is said to be nonoscillatory.

In the special case where the delay (n−τ(n))n≥0 is a constant, the delay difference
equation (1.1) becomes

∆x(n) + p(n)x(n− k) = 0, (1.2)

where k is a positive integer.
In 1989, Erbe and Zhang [8] established that all solutions of (1.2) are oscillatory

if

lim inf
n→∞

p(n) >
kk

(k + 1)k+1
(1.3)

or

lim sup
n→∞

n∑
j=n−k

p(j) > 1. (1.4)

In the same year, 1989, Ladas, Philos and Sficas [13] proved that a sufficient con-
dition for all solutions of (1.2) to be oscillatory is that

lim inf
n→∞

[1
k

n−1∑
j=n−k

p(j)
]

>
kk

(k + 1)k+1
. (1.5)

Clearly, this condition improves (1.3). A substantial improvement of this oscillation
criterion has been presented, in 2004, by Philos, Purnaras and Stavroulakis [19].

Since 1989, a large number of related papers have been published. See [2]–[7],
[10]–[12], [14]–[27] and the references cited therein. Most of these papers concern
the special case of the delay difference equation (1.2), while a small number of these
papers are dealing with the general case of the delay difference equation (1.1), in
which the delay (n− τ(n))n≥0 is variable.

It is interesting to establish sufficient oscillation conditions for the equation (1.2),
in the case where neither (1.4) not (1.5) is satisfied. This question has been inves-
tigated by several authors. See, for example, Chatzarakis and Stavroulakis [3] and
the references cited therein.

Assuming that the sequence (τ(n))n≥0 is increasing, from Chatzarakis, Ko-
platadze and Stavroulakis [2], it follows that all solutions of (1.1) are oscillatory if

lim sup
n→∞

n∑
j=τ(n)

p(j) > 1. (1.6)

This result generalizes the oscillation criterion (1.4). In 1991, Philos [16] extended
the oscillation criterion (1.5) to the general case of the delay difference equation
(1.1). More precisely, it has been established in [16] that, if the sequence (τ(n))n≥0

is increasing, then the condition

lim inf
n→∞

[ 1
n− τ(n)

n−1∑
j=τ(n)

p(j)
]

> lim sup
n→∞

(n− τ(n))n−τ(n)

(n− τ(n) + 1)n−τ(n)+1
(1.7)

suffices for the oscillation of all solutions of (1.1).
As it has been mentioned above, it is an interesting problem to find new sufficient

conditions for the oscillation of all solutions of the delay difference equation (1.1),
in the case where neither (1.6) nor (1.7) is satisfied. Very recently, Chatzarakis,
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Koplatadze and Stavroulakis [2] investigated for the first time this question for
the delay difference equation (1.1) in the case of a general delay argument τ(n)
and derived a lemma and a theorem which, in the special case where the sequence
(τ(n))n≥0 is increasing, can be formulated as follows:

Lemma 1.1 ([2]). Assume that the sequence (τ(n))n≥0 is increasing, and set

α = lim inf
n→∞

n−1∑
j=τ(n)

p(j). (1.8)

Let (x(n))n≥−k be a nonoscillatory solution of the delay difference equation (1.1).
Then we have:

(i) If 0 < α ≤ 1, then

lim inf
n→∞

x(n + 1)
x(τ(n))

≥ (1−
√

1− α)2. (1.9)

(ii) If 0 < α < 1 and, in addition,

p(n) ≥ 1−
√

1− α for all large n, (1.10)

then

lim inf
n→∞

x(n + 1)
x(τ(n))

≥ α
1−

√
1− α√

1− α
. (1.11)

Theorem 1.2 ([2]). Assume that the sequence (τ(n))n≥0 is increasing, and that α
is defined by (1.8). Then we have:

(I) If 0 < α ≤ 1, then the condition

lim sup
n→∞

n∑
j=τ(n)

p(j) > 1−
(
1−

√
1− α

)2
(1.12)

is sufficient for all solutions of the delay difference equation (1.1) to be
oscillatory.

(II) If 0 < α < 1 and, in addition, (1.10) holds, then the condition

lim sup
n→∞

n∑
j=τ(n)

p(j) > 1− α
1−

√
1− α√

1− α
(1.13)

is sufficient for all solutions of (1.1) to be oscillatory.

In this paper, new oscillation criteria for the solutions of (1.1) are established,
which substantially improve the corresponding criteria in [2], as well as all the
known corresponding criteria concerning the special case of the equation (1.2).

Our main result will be stated and proved in Section 3. Section 2 is devoted to
establishing a basic lemma, which plays a crucial role in proving our main result.

2. A basic lemma

The proof of our main result (i.e., of Theorem 3.1 given in the next section) is
essentially based on the following lemma.
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Lemma 2.1. Assume that the sequence (τ(n))n≥0 is increasing, and set

α = lim inf
n→∞

n−1∑
j=τ(n)

p(j). (2.1)

Let (x(n))n≥−k be a nonoscillatory solution of the delay difference equation (1.1).
Then we have:

(i) If 0 < α ≤ 1
2 , then

lim inf
n→∞

x(n + 1)
x(τ(n))

≥ 1
2

(
1− α−

√
1− 2α

)
. (2.2)

(ii) If 0 < α ≤ 6− 4
√

2 and, in addition,

p(n) ≥ α

2
for all large n, (2.3)

then

lim inf
n→∞

x(n + 1)
x(τ(n))

≥ 1
4

(
2− 3α−

√
4− 12α + α2

)
. (2.4)

Note that, if 0 < α ≤ 1
2 , then 1− 2α ≥ 0 and

0 <
1
2

(
1− α−

√
1− 2α

)
<

1
2
.

Also, when 0 < α ≤ 6− 4
√

2 (clearly, 6− 4
√

2 < 1
2 ), we have 4− 12α + α2 ≥ 0 and

0 <
1
4

(
2− 3α−

√
4− 12α + α2

)
<

1
2
.

Moreover, provided that 0 < α ≤ 6− 4
√

2, we also have

1
4

(
2− 3α−

√
4− 12α + α2

)
>

1
2

(
1− α−

√
1− 2α

)
. (2.5)

Therefore, in the case where 0 < α ≤ 6 − 4
√

2 and (2.3) holds, inequality (2.5)
guarantees that (2.4) is an improvement of (2.2).

Proof of Lemma 2.1. Since the solution (x(n))n≥−k of the delay difference equation
(1.1) is nonoscillatory, it is either eventually positive or eventually negative. As
(−x(n))n≥−k is also a solution of (1.1), we may (and do) restrict ourselves only
to the case where x(n) > 0 for all large n. Let ρ ≥ −k be an integer such that
x(n) > 0 for all n ≥ ρ, and consider an integer r ≥ 0 so that τ(n) ≥ ρ for n ≥ r
(clearly, r > ρ). Then it follows immediately from (1.1) that ∆x(n) ≤ 0 for every
n ≥ r, which means that the sequence (x(n))n≥r is decreasing.

Assume that 0 < α ≤ 1
2 , where α is defined by (2.1). Consider an arbitrary real

number ε with 0 < ε < α. Then we can choose an integer n0 > r such that τ(n) ≥ r
for n ≥ n0, and

n−1∑
j=τ(n)

p(j) ≥ α− ε for all n ≥ n0. (2.6)

Furthermore, let us consider an arbitrary real number ω with 0 < ω < α − ε. We
will establish the following claim.
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Claim. For each n ≥ n0, there exists an integer n∗ ≥ n such that τ(n∗) ≤ n− 1,
and

n∗∑
j=n

p(j) ≥ ω, (2.7)

n−1∑
j=τ(n∗)

p(j) > (α− ε)− ω. (2.8)

To prove this claim, let us consider an arbitrary integer n ≥ n0. Assume, first,
that p(n) ≥ ω, and choose n∗ = n. Then τ(n∗) = τ(n) ≤ n− 1. Moreover, we have

n∗∑
j=n

p(j) =
n∑

j=n

p(j) = p(n) ≥ ω

and, by (2.6),
n−1∑

j=τ(n∗)

p(j) =
n−1∑

j=τ(n)

p(j) ≥ a− ε > (a− ε)− ω.

So, (2.7) and (2.8) are fulfilled. Next, we suppose that p(n) < ω. It is not difficult
to see that (2.6) guarantees that

∑∞
j=0 p(j) = ∞. In particular, it holds
∞∑

j=n

p(j) = ∞.

Thus, as p(n) < ω, there always exists an integer n∗ > n so that
n∗−1∑
j=n

p(j) < ω (2.9)

and (2.7) holds. We assert that τ(n∗) ≤ n−1. Otherwise, τ(n∗) ≥ n. We also have
τ(n∗) ≤ n∗ − 1. Hence, in view of (2.9), we get

n∗−1∑
j=τ(n∗)

p(j) ≤
n∗−1∑
j=n

p(j) < ω.

On the other hand, (2.6) gives
n∗−1∑

j=τ(n∗)

p(j) ≥ α− ε > ω.

We have arrived at a contradiction, which shows our assertion. Furthermore, by
using (2.6) (for the integer n∗) as well as (2.9), we obtain

n−1∑
j=τ(n∗)

p(j) =
n∗−1∑

j=τ(n∗)

p(j)−
n∗−1∑
j=n

p(j) > (a− ε)− ω

and consequently (2.8) holds true. Our claim has been proved.
Next, we choose an integer N > n0 such that τ(n) ≥ n0 for n ≥ N . Let us

consider an arbitrary integer n ≥ N . By our claim, there exists an integer n∗ ≥ n
such that τ(n∗) ≤ n − 1, and (2.7) and (2.8) hold. By taking into account the
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facts that the sequence (τ(s))s≥0 is increasing and that the sequence (x(t))t≥r is
decreasing and by using (2.7), from (1.1), we obtain

x(n)− x(n∗ + 1) =
n∗∑

j=n

p(j)x(τ(j)) ≥
[ n∗∑

j=n

p(j)
]
x(τ(n∗)) ≥ ωx(τ(n∗))

and consequently
x(n) ≥ x(n∗ + 1) + ωx(τ(n∗)). (2.10)

Furthermore, by taking again into account the facts that (τ(s))s≥0 is increasing
and that (x(t))t≥r is decreasing and by using (2.8), from (1.1), we derive

x(τ(n∗))− x(n) =
n−1∑

j=τ(n∗)

p(j)x(τ(j))

≥
[ n−1∑

j=τ(n∗)

p(j)
]
x(τ(n− 1))

> [(α− ε)− ω]x(τ(n− 1))

and so
x(τ(n∗)) > x(n) + [(α− ε)− ω]x(τ(n− 1)). (2.11)

By (2.10) and (2.11), we get

x(n) ≥ x(n∗ + 1) + ωx(τ(n∗)) > ωx(τ(n∗)) > ω{x(n) + [(α− ε)− ω]x(τ(n− 1))}

and hence

x(n) > ω
(α− ε)− ω

1− ω
x(τ(n− 1)).

We have thus proved that

x(n) > ωλ1x(τ(n− 1)) for all n ≥ N, (2.12)

where

λ1 =
(α− ε)− ω

1− ω
.

Now, let n be an arbitrary integer with n ≥ N . By using our claim, we conclude
that there exists an integer n∗ ≥ n such that τ(n∗) ≤ n− 1, and (2.7) and (2.8) are
satisfied. Then (2.10) and (2.11) are also fulfilled. Moreover, in view of (2.12) (for
the integer n∗ + 1), we have

x(n∗ + 1) > ωλ1x(τ(n∗)). (2.13)

Using (2.10), (2.13) and (2.11), we obtain

x(n) ≥ x(n∗ + 1) + ωx(τ(n∗)) > ωλ1x(τ(n∗)) + ωx(τ(n∗))

= ω(λ1 + 1)x(τ(n∗)) > ω(λ1 + 1) {x(n) + [(α− ε)− ω]x(τ(n− 1))} ,

which gives

[1− ω(λ1 + 1)]x(n) > ω(λ1 + 1)[(α− ε)− ω]x(τ(n− 1)).

In particular, this implies 1− ω(λ1 + 1) > 0. Consequently,

x(n) > ω
(λ1 + 1)[(α− ε)− ω]

1− ω(λ1 + 1)
x(τ(n− 1)).
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Thus, it has been shown that

x(n) > ωλ2x(τ(n− 1)) for all n ≥ N,

where

λ2 =
(λ1 + 1)[(α− ε)− ω]

1− ω(λ1 + 1)
.

Following the above procedure, we can inductively construct a sequence of pos-
itive real numbers (λν)ν≥1 with 1− ω(λν + 1) > 0 (ν = 1, 2, . . . ) and

λν+1 =
(λν + 1)[(α− ε)− ω]

1− ω(λν + 1)
(ν = 1, 2, . . . )

such that

x(n) > ωλνx(τ(n− 1)) for all n ≥ N (ν = 1, 2, . . . ). (2.14)

Since λ1 > 0, we obtain

λ2 =
(λ1 + 1)[(α− ε)− ω]

1− ω(λ1 + 1)
>

(α− ε)− ω

1− ω
= λ1;

i.e., λ2 > λ1. By an easy induction, one can see that the sequence (λν)ν≥1 is
strictly increasing. Furthermore, by taking into account the fact that the sequence
(x(t))t≥r is decreasing and by using (2.14) (for n = N), we get

x(τ(N − 1)) ≥ x(N) > ωλνx(τ(N − 1)) (ν = 1, 2, . . . ).

Therefore, for each ν ≥ 1, we have ωλν < 1, i.e., λν < 1
ω . This ensures that the

sequence (λν)ν≥1 is bounded. Since (λν)ν≥1 is a strictly increasing and bounded
sequence of positive real numbers, it follows that limν→∞ λν exists as a positive
real number. Set

Λ = lim
ν→∞

λν .

Then (2.14) gives

x(n) ≥ ωΛx(τ(n− 1)) for all n ≥ N. (2.15)

By the definition of (λν)ν≥1, we have

Λ =
(Λ + 1)[(α− ε)− ω]

1− ω(Λ + 1)
;

i.e., ωΛ2 − [1− (α− ε)]Λ + [(α− ε)− ω] = 0. Hence, either

Λ =
1
2ω

{
1− (α− ε)−

√
1− 2(α− ε) + [(α− ε)− 2ω]2

}
or

Λ =
1
2ω

{
1− (α− ε) +

√
1− 2(α− ε) + [(α− ε)− 2ω]2

}
.

In both cases, it holds

Λ ≥ 1
2ω

{
1− (α− ε)−

√
1− 2(α− ε) + [(α− ε)− 2ω]2

}
.

Thus, from (2.15), it follows that

x(n) ≥ 1
2

{
1− (α− ε)−

√
1− 2(α− ε) + [(α− ε)− 2ω]2

}
x(τ(n− 1)) (2.16)

for all n ≥ N . But, we can immediately see that the function

f(ω) =
1
2

{
1− (α− ε)−

√
1− 2(α− ε) + [(α− ε)− 2ω]2

}
for 0 < ω < α− ε
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attains its maximum at the point ω = α−ε
2 . So, by choosing ω = α−ε

2 , from (2.16)
we obtain

x(n) ≥ 1
2

[
1− (α− ε)−

√
1− 2(α− ε)

]
x(τ(n− 1)) for all n ≥ N. (2.17)

Inequality (2.17) gives

x(n + 1) ≥ 1
2

[
1− (α− ε)−

√
1− 2(α− ε)

]
x(τ(n)) for every n ≥ N − 1

or
x(n + 1)
x(τ(n))

≥ 1
2

[
1− (α− ε)−

√
1− 2(α− ε)

]
for all n ≥ N − 1.

Consequently,

lim inf
n→∞

x(n + 1)
x(τ(n))

≥ 1
2

[
1− (α− ε)−

√
1− 2(α− ε)

]
.

The above inequality holds for all real numbers ε with 0 < ε < α. Hence, we can
obtain (2.2). The proof of Part (i) of the lemma has been completed.

In the remainder of this proof, it will be assumed that 0 < α ≤ 6− 4
√

2 (which
implies that 0 < α < 1

2 ) and, in addition, that (2.3) holds. Because of (2.3), we
can consider an integer L ≥ N such that p(n) ≥ α

2 for every n ≥ L. Then

p(n) >
α− ε

2
for all n ≥ L. (2.18)

By (2.17), we have

x(n) ≥ θ1x(τ(n− 1)) for all n ≥ L, (2.19)

where
θ1 =

1
2

[
1− (α− ε)−

√
1− 2(α− ε)

]
.

Let us consider an arbitrary integer n ≥ L. By using (2.18) and (2.19) (for the
integer n + 1), from (1.1), we obtain

x(n) = x(n+1)+p(n)x(τ(n)) > x(n+1)+
α− ε

2
x(τ(n)) ≥ θ1x(τ(n))+

α− ε

2
x(τ(n))

and consequently

x(n) >
(
θ1 +

α− ε

2

)
x(τ(n)). (2.20)

Furthermore, by taking into account the facts that (τ(s))s≥0 is increasing and that
(x(t))t≥r is decreasing and by using (2.6), from (1.1), we derive

x(τ(n))−x(n) =
n−1∑

j=τ(n)

p(j)x(τ(j)) ≥
[ n−1∑

j=τ(n)

p(j)
]
x(τ(n−1)) ≥ (α− ε)x(τ(n−1))

and hence
x(τ(n)) ≥ x(n) + (α− ε)x(τ(n− 1)). (2.21)

A combination of (2.20) and (2.21) gives

x(n) >
(
θ1 +

α− ε

2

)
[x(n) + (α− ε)x(τ(n− 1))] ;

i.e., [
1−

(
θ1 +

α− ε

2

)]
x(n) >

(
θ1 +

α− ε

2

)
(α− ε)x(τ(n− 1)).



EJDE-2008/50 OSCILLATIONS IN DELAY DIFFERENCE EQUATIONS 9

This guarantees, in particular, that 1−
(
θ1 + α−ε

2

)
> 0. So,

x(n) >

(
θ1 + α−ε

2

)
(α− ε)

1−
(
θ1 + α−ε

2

) x(τ(n− 1)).

We have thus proved that

x(n) > θ2x(τ(n− 1)) for all n ≥ L,

where

θ2 =

(
θ1 + α−ε

2

)
(α− ε)

1−
(
θ1 + α−ε

2

) .

By the arguments applied previously, a sequence of positive real numbers (θν)ν≥1

can inductively constructed, which satisfies

1−
(
θν +

α− ε

2

)
> 0 (ν = 1, 2, . . . )

and

θν+1 =

(
θν + α−ε

2

)
(α− ε)

1−
(
θν + α−ε

2

) (ν = 1, 2, . . . );

this sequence is such that (2.19) holds, and

x(n) > θνx(τ(n− 1)) for all n ≥ L (ν = 2, 3, . . . ). (2.22)

By the use of the definitions of θ1 and θ2, it is a matter of elementary calculations
to find

θ2 = 1− (α− ε)−
√

1− 2(α− ε); i.e., θ2 = 2θ1.

So, θ2 > θ1. By induction, we can easily verify that the sequence (θν)ν≥1 is strictly
increasing. Furthermore, by taking into account the fact that (x(t))t≥r is decreasing
and by using (for n = L) inequality (2.22), we obtain

x(τ(L− 1)) ≥ x(L) > θνx(τ(L− 1)) (ν = 2, 3, . . . ).

Hence, θν < 1 for every ν ≥ 2, which guarantees the boundedness of the sequence
(θν)ν≥1. Thus, limν→∞ θν exists as a positive real number. Define

Θ = lim
ν→∞

θν .

Then it follows from (2.22) that

x(n) ≥ Θx(τ(n− 1)) for all n ≥ L. (2.23)

In view of the definition of (θν)ν≥1, the number Θ satisfies

Θ =

(
Θ + α−ε

2

)
(α− ε)

1−
(
Θ + α−ε

2

)
or, equivalently,

2Θ2 − [2− 3(α− ε)]Θ + (α− ε)2 = 0.
So, either

Θ =
1
4

[
2− 3(α− ε)−

√
4− 12(α− ε) + (α− ε)2

]
or

Θ =
1
4

[
2− 3(α− ε) +

√
4− 12(α− ε) + (α− ε)2

]
.

Note that, because of 0 < α− ε < 6− 4
√

2, it holds

4− 12(α− ε) + (α− ε)2 > 0.
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We always have

Θ ≥ 1
4

[
2− 3(α− ε)−

√
4− 12(α− ε) + (α− ε)2

]
and consequently (2.23) gives

x(n) ≥ 1
4

[
2− 3(α− ε)−

√
4− 12(α− ε) + (α− ε)2

]
x(τ(n− 1)) for all n ≥ L.

Finally, we see that the last inequality can equivalently be written as follows

x(n + 1) ≥ 1
4

[
2− 3(α− ε)−

√
4− 12(α− ε) + (α− ε)2

]
x(τ(n)) for n ≥ L− 1;

i.e.,
x(n + 1)
x(τ(n))

≥ 1
4

[
2− 3(α− ε)−

√
4− 12(α− ε) + (α− ε)2

]
for all n ≥ L− 1.

Therefore,

lim inf
n→∞

x(n + 1)
x(τ(n))

≥ 1
4

[
2− 3(α− ε)−

√
4− 12(α− ε) + (α− ε)2

]
.

As this inequality is satisfied for all real numbers ε with 0 < ε < α, we can conclude
that (2.4) holds true. So, Part (ii) of the lemma has been proved. The proof of the
lemma is complete. �

Remark 2.2. Observe the following:
(i) When 0 < α ≤ 1

2 , it is easy to verify that
1
2

(
1− α−

√
1− 2α

)
>

(
1−

√
1− α

)2
,

and therefore inequality (2.2) improves inequality (1.9).
(ii) When 0 < α ≤ 6− 4

√
2, because 1−

√
1− α > α

2 , we see that assumption
(2.3) is weaker than assumption (1.10), and, moreover, we can show that

1
4

(
2− 3α−

√
4− 12α + α2

)
> α

1−
√

1− α√
1− α

and so inequality (2.4) is an improvement of inequality (1.11).

Remark 2.3. It is an open question whether inequality (2.2) can be improved as
follows

lim inf
n→∞

x(n + 1)
x(τ(n))

≥ 1
2

(
1− α−

√
1− 2α− α2

)
, (2.24)

provided that 0 < α ≤ −1 +
√

2. This question arises from a lemma due to Chen
and Yu [4]; according to it, if 0 < α0 ≤ ( k

k+1 )k+1, where

α0 = lim inf
n→∞

n−1∑
j=n−k

p(j),

then every nonoscillatory solution of the delay difference equation (1.2) satisfies

lim inf
n→∞

x(n + 1)
x(n− k)

≥ 1
2

(
1− α0 −

√
1− 2α0 − α2

0

)
.

Observe, however, that when 0 < α ≤ 6− 4
√

2, it is easy to show that
1
4

(
2− 3α−

√
4− 12α + α2

)
>

1
2

(
1− α−

√
1− 2α− α2

)
,
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and therefore, in this case and when (2.3) holds, inequality (2.4) in Lemma 2.1
improves the inequality (2.24).

3. Main result

Our main result is the following theorem.

Theorem 3.1. Assume that the sequence (τ(n))n≥0 is increasing, and define α by
(2.1). Then we have:

(I) If 0 < α ≤ 1
2 , then the condition

lim sup
n→∞

n∑
j=τ(n)

p(j) > 1− 1
2

(
1− α−

√
1− 2α

)
(3.1)

is sufficient for all solutions of the delay difference equation (1.1) to be
oscillatory.

(II) If 0 < α ≤ 6− 4
√

2 and (2.3) holds, then the condition

lim sup
n→∞

n∑
j=τ(n)

p(j) > 1− 1
4

(
2− 3α−

√
4− 12α + α2

)
(3.2)

is sufficient for all solutions of (1.1) to be oscillatory.

Proof. Suppoce, for the sake of contradiction, that the delay difference equation
(1.1) admits a nonoscillatory solution (x(n))n≥−k. Since (−x(n))n≥−k is also a
solution of (1.1), we can confine our discussion only to the case where the solution
(x(n))n≥−k is eventually positive. Consider an integer ρ ≥ −k so that x(n) > 0
for every n ≥ ρ, and let r ≥ 0 be an integer such that τ(n) ≥ ρ for n ≥ r (clearly,
r > ρ). Then from (1.1) we immediately obtain ∆x(n) ≤ 0 for all n ≥ r, and
consequently the sequence (x(n))n≥r is decreasing.

Now, we consider an integer n0 > r such that τ(n) ≥ r for n ≥ n0. Furthermore,
we choose an integer N > n0 so that τ(n) ≥ n0 for n ≥ N . Then, by taking into
account the facts that the sequence (τ(s))s≥0 is increasing and that the sequence
(x(t))t≥r is decreasing, from (1.1) we obtain, for every n ≥ N ,

x(τ(n))− x(n + 1) =
n∑

j=τ(n)

p(j)x(τ(j)) ≥
[ n∑

j=τ(n)

p(j)
]
x(τ(n)).

Consequently,
n∑

j=τ(n)

p(j) ≤ 1− x(n + 1)
x(τ(n))

for all n ≥ N,

which gives

lim sup
n→∞

n∑
j=τ(n)

p(j) ≤ 1− lim inf
n→∞

x(n + 1)
x(τ(n))

. (3.3)

Assume, first, that 0 < α ≤ 1
2 . Then, by Lemma 2.1, inequality (2.2) is fulfilled,

and so (3.3) leads to

lim sup
n→∞

n∑
j=τ(n)

p(j) ≤ 1− 1
2

(
1− α−

√
1− 2α

)
,

which contradicts condition (3.1).
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Next, let us suppose that 0 < α ≤ 6 − 4
√

2 and that (2.3) holds. Then Lemma
2.1 ensures that (2.4) is satisfied. Thus, from (3.3), it follows that

lim sup
n→∞

n∑
j=τ(n)

p(j) ≤ 1− 1
4

(
2− 3α−

√
4− 12α + α2

)
,

which contradicts condition (3.2). The proof of the theorem is complete. �

As it has already been mentioned, Theorem 1.2 is presented in [2] in a more
general form. More precisely, it is not assumed that the sequence (τ(n))n≥0 is
increasing, but conditions (1.12) and (1.13) are replaced by the conditions

lim sup
n→∞

n∑
j=σ(n)

p(j) > 1−
(
1−

√
1− α

)2
,

lim sup
n→∞

n∑
j=σ(n)

p(j) > 1− α
1−

√
1− α√

1− α
,

respectively, where the sequence of integers (σ(n))n≥0 is defined by

σ(n) = max
0≤s≤n

τ(s) for n ≥ 0. (3.4)

Clearly, the sequence (σ(n))n≥0 is increasing. Moreover, as it has been shown in
[2], it holds

lim inf
n→∞

n−1∑
j=σ(n)

p(j) = lim inf
n→∞

n−1∑
j=τ(n)

p(j). (3.5)

Following [2], one can use (3.5) and apply [2, Lemma 2.1] (cf. Philos [16] and
Kordonis and Philos [10]) to establish the following generalization of Theorem 3.1.

Theorem 3.2. Let the sequence (σ(n))n≥0 be defined by (3.4), and α by (2.1).
Then we have:

(I) If 0 < α ≤ 1
2 , then the condition

lim sup
n→∞

n∑
j=σ(n)

p(j) > 1− 1
2

(
1− α−

√
1− 2α

)
is sufficient for all solutions of the delay difference equation (1.1) to be
oscillatory.

(II) If 0 < α ≤ 6− 4
√

2 and (2.3) holds, then the condition

lim sup
n→∞

n∑
j=σ(n)

p(j) > 1− 1
4

(
2− 3α−

√
4− 12α + α2

)
is sufficient for all solutions of (1.1) to be oscillatory.

Remark 3.3. Observe the following (cf. Remark 2.2):

(i) When 0 < α ≤ 1
2 , the condition (3.1) is weaker than the condition (1.12).

(ii) When 0 < α ≤ 6− 4
√

2, the conditions (2.3) and (3.2) are weaker than the
conditions (1.10) and (1.13), respectively.
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Remark 3.4. On the basis of the lemma mentioned in Remark 2.3, Chen and
Yu [4] obtained the following oscillation criterion in the special case of the delay
difference equation (1.2): If 0 < α0 ≤ ( k

k+1 )k+1, where

α0 = lim inf
n→∞

n−1∑
j=n−k

p(j),

then the condition

lim sup
n→∞

n∑
j=n−k

p(j) > 1− 1
2

(
1− α0 −

√
1− 2α0 − α2

0

)
(3.6)

implies that all solutions of (1.2) oscillate. In view of (3.6), it is interesting to ask
if, provided that 0 < α ≤ −1 +

√
2, the condition

lim sup
n→∞

n∑
j=τ(n)

p(j) > 1− 1
2

(
1− α−

√
1− 2α− α2

)
(3.7)

(which is weaker than (3.1)) is sufficient for all solutions of the delay difference
equation (1.1) to be oscillatory. Nevertheless, it should be pointed out (cf. Remark
2.3) that, when 0 < α ≤ 6 − 4

√
2 and (2.3) holds, the condition (3.2) in Theorem

3.1 is weaker than the above condition (3.7) and especially, when α = 6 − 4
√

2 '
0.3431457, the lower bound in (3.7) is 0.8929094, while in (3.2) is 0.7573593.

We illustrate the significance of our results by the following example.

Example 3.5. Consider the equation

∆x(n) + p(n)x(n− 2) = 0,

where

p(3n) =
1474
10000

, p(3n + 1) =
1488
10000

, p(3n + 2) =
6715
10000

, n = 0, 1, 2, . . . .

Here k = 2 and it is easy to see that

α0 = lim inf
n→∞

n−1∑
j=n−2

p(j) =
1474
10000

+
1488
10000

= 0.2962 <

(
2
3

)3

' 0.2962963,

and

lim sup
n→∞

n∑
j=n−2

p(j) =
1474
10000

+
1488
10000

+
6715
10000

= 0.9677.

Observe that

0.9677 > 1− 1
2

(
1− α0 −

√
1− 2α0

)
' 0.967317794,

that is, condition (3.1) of Theorem 3.1 is satisfied and therefore all solutions oscil-
late. Also, condition (3.6) is satisfied. Observe, however, that

0.9677 < 1, α0 = 0.2962 <

(
2
3

)3

' 0.2962963,

0.9677 < 1−
(
1−

√
1− α0

)2 ' 0.974055774,

and therefore none of the conditions (1.4), (1.5) and (1.12) are satisfied.
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If, on the other hand, in the above equation

p(3n) = p(3n + 1) =
1481
10000

, p(3n + 2) =
6138
10000

, n = 0, 1, 2, . . . ,

it is easy to see that

α0 = lim inf
n→∞

n−1∑
j=n−2

p(j) =
1481
10000

+
1481
10000

= 0.2962 <

(
2
3

)3

' 0.2962963,

and

lim sup
n→∞

n∑
j=n−2

p(j) =
1481
10000

+
1481
10000

+
6138
10000

= 0.91.

Furthermore, it is clear that p(n) ≥ α0
2 for all large n. In this case

0.91 > 1− 1
4

(
2− 3α0 −

√
4− 12α0 + α2

0

)
' 0.904724375,

that is, condition (3.2) of Theorem 3.1 is satisfied and therefore all solutions oscil-
late. Observe, however, that

0.91 < 1, α0 = 0.2962 <

(
2
3

)3

' 0.2962963,

0.91 < 1−
(
1−

√
1− α0

)2 ' 0.974055774,

0.91 < 1− 1
2

(
1− α0 −

√
1− 2α0 − α2

0

)
' 0.930883291,

and therefore, none of the conditions (1.4), (1.5), (1.12) and (3.6) is satisfied.
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