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NON-MONOTONE PERIOD FUNCTIONS FOR IMPACT
OSCILLATORS

CARMEN CHICONE, KENNY FELTS

Abstract. The existence of non-monotone period functions for differential

equations of the form

ẍ + f(x) + γH(x)g(x) = 0

is proved for large γ, where H is the Heaviside function and the functions
f and g satisfy certain generic conditions. This result is precipitated by an

analysis of the system

ẍ + sin x + γH(x)x3/2 = 0,

which models the conservative dimensionless impact pendulum utilizing Hertzian
contact during impact with a barrier at the downward vertical position.

1. Introduction

The study of period functions is important in applied mathematics; especially,
to determine the range of resonances with respect to periodic forcing and for the
solution of boundary value problems. Most often, as in the free-swinging pendulum,
the period function is monotone. Techniques for detecting monotonicity are the
subject of much current research (see, for example, [4, 5, 6, 7, 11, 12]). On the
other hand, we know of only one example in the literature where a non-monotone
period function occurs for a model equation in applied mathematics (see [9]). While
the arguments in this paper are elementary, its main purpose is to report on a new
physical model with a non-monotone period function.

Our study began after observing, via numerical simulation, a non-monotone
period function for the (conservative) dimensionless impact pendulum model

ẍ + sinx + γH(x)x3/2 = 0, (1.1)

where γ is a positive parameter and H, here and hereafter, denotes the Heaviside
function (see Appendix A or [3] for a derivation of this model). We will prove
the existence of non-monotone period functions for the more general differential
equation

ẍ + f(x) + γH(x)g(x) = 0. (1.2)
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In section 2, we state the precise conditions that we require on the functions
f and g for equation (1.2) to have a non-monotone period function. Under these
assumptions, we prove in section 3 that the period function is decreasing near the
rest point at the downward vertical and, as a corollary, the period function is non-
monotone. In section 4, our non-monotonicity result is illustrated by numerical
integration of the impact pendulum model (1.1).

2. The Model Equation

For the entirety of this paper, we will assume

(H1) there exist positive constants K1 and K2 such that f, g : R −→ R, f ∈
C4((−K1,K2)) ∩ C1(R) and g ∈ C1(R);

(H2) f(0) = f ′′(0) = 0, f ′′′(0) < 0, f(−K1) = 0, f ′(−K1) < 0 and xf(x) > 0 on
(−K1, 0) ∪ (0,K2);

(H3) g′(x) > 0 on (0,K2) and g(0) = g′(0) = 0; and
(H4) for G such that G′(x) = g(x) and G(0) = 0, there exists a positive constant

M such that the inequality

R(x) :=
G′(x)2 − 2G(x)G′′(x)

G′(x)3
≤ −M

is satisfied for 0 < x < K2.

We note that (H1) and (H2) imply f ′(0) > 0, and we define F such that F ′(x) =
f(x) and F (0) = 0.

The differential equation (1.2) is equivalent to the first-order system

ẋ = y,

ẏ = −f(x)− γH(x)g(x),
(2.1)

which is in Hamiltonian form with Hamiltonian

E(x, y) :=
1
2
y2 + U(x, γ) =

1
2
y2 + F (x) + γH(x)G(x). (2.2)

Moreover, it has rest points in the phase plane at (x, y) = (0, 0) and (−K1, 0). We
note that for there to be a rest point at (−K1, 0) no additional requirement on the
function g is necessary because the Heaviside function vanishes for negative values
of its argument.

System (2.1) has a hyperbolic saddle point at (−K1, 0); and, there is some num-
ber γ1 > 0 such that, for γ > γ1, this saddle point has a corresponding homoclinic
orbit surrounding the rest point at the origin and a period annulus containing all
other interior orbits. A sample phase portrait for the impact pendulum (1.1) is
shown in Fig. 2. In general, the energies of the energy level sets surrounded by the
homoclinic loop increase from 0 at the origin to F (−K1) at the homoclinic orbit.

We will prove that if γ > 0 is sufficiently large, then there is an open interval
of energy levels, bounded below by the energy of the origin, for which the period
function is decreasing. Since the period function increases near the homoclinic
orbit and is C1 in the punctured region surrounded by the homoclinic orbit, the
period function is non-monotone for sufficiently large γ > 0. We opt for a simple
self-contained proof of this result, which can also be obtained using more general
results on the first derivatives of period functions (see, for example, [7]).
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Figure 1. Phase portrait for the impact pendulum (1.1) for γ = 5000.

3. The Period Function Near the Origin

By our hypotheses, F is invertible on the interval (−K1, 0] and F +γG is invert-
ible on [0,K2). For each energy level E in the range (0, F (−K1)), let x−(E) := x ∈
(−K1, 0) such that E = F (x) and x+(E, γ) := x ∈ (0,K2) such that E = F (x) +
γG(x). Because F−1(0) = 0 and x−(E) = F−1(E), it follows that limE→0 x−(E) =
0.

Lemma 3.1. There exists γ2 > γ1 and a positive constant M such that for U as
defined in formula (2.2), we have

W (x, γ) := γ
(Ux(x, γ))2 − 2U(x, γ)Uxx(x, γ)

(Ux(x, γ))3
≤ −M

2

for all γ > γ2 and 0 ≤ x ≤ K2.

Proof. We have that W (x, γ) → R(x) as γ → ∞ and, by hypothesis H4, R(x) ≤
−M on (0,K2). �

Lemma 3.2. The function Q given by

Q(s) :=
2F ′′(s)F (s)− (F ′(s))2

(F ′(s))3
,

for s 6= 0 and Q(0) = 0 is class C1. Moreover, there exist positive constants E2

and C such that Q′(s) < 0 for all x−(E) ≤ s < 0 and 0 < Q(x−(E)) ≤ C
√

E for
all E < E2.

Proof. The Taylor expansion of the function F at the origin has the form

F (s) =
λ2

2
s2 − µ2

24
s4 + O(s5),

where λ and µ are positive constants. By substituting this series into the formula
for Q and simplifying the resulting expression, we see that Q has a removable
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singularity at s = 0. The regularized Taylor series of Q at s = 0 has the form

Q(s) = −c2s + O(s3),

where c is a positive constant. In particular, Q′(0) = −c2. Thus, there exists δ > 0
such that −2c2 ≤ Q′(s) ≤ −c2/2 for all s ∈ (−δ, 0). Also, since x−(E) → 0− as
E → 0+, there exists E1 such that −δ < x−(E) ≤ 0 for all E < E1. So, for all
E < E1 and x−(E) < s < 0, we have Q′(s) < 0.

By the Mean Value Theorem, there is some ξ ∈ (0, s) and a positive constant c
such that

Q(s) = Q(s)−Q(0) = |Q′(ξ)|| s| ≤ 2c2| s|
for all s ∈ (−δ, 0). So, Q(x−(E)) ≤ 2c2|x−(E)| for E < E1.

Using the Taylor expansion of F , we also have

lim
E→0+

|x−(E)|√
E

= lim
E→0+

−x−(E)√
F (x−(E))

= lim
s→0−

−s√
λ2

2 s2 + O(s4)
=

√
2
λ2

.

Hence, there exists E2 < E1 such that |x−(E)| ≤ 2
√

E/
√

λ2 for all E < E2.
Combining our results, we have that

Q(x−(E)) ≤ 2c2|x−(E)| ≤ 2c√
λ2

√
E = C

√
E

for all E < E2, where we have consolidated constants. �

Let P be the period function on the period annulus surrounded by the homoclinic
loop for system (1.2). The period for the orbit at energy level E is given by P (E, γ),
and the derivative of P with respect to E is denoted P ′(E, γ).

The next theorem is our main result.

Theorem 3.3. Let γ2 be the number in Lemma 3.1. There exists a positive number
E∗ such that P ′(E, γ) < 0 for all γ > γ2 and 0 < E < E∗.

Proof. Fix γ > γ2. For simplicity, we will suppress γ in the expressions U(x, γ), x+(e, γ)
and P (E, γ).

Using the Hamiltonian (2.2) and integrating along orbits, we arrive at the familiar
formula for the period of the orbit at energy level E (see [2]):

P (E) =
2√
2

∫ x+(E)

x−(E)

dx√
E − U(x)

.

The change of variables s = h(x), where h(x) = sgn(x)
√

2U(x), transforms the
integral into

P (E) =
2√
2

∫ √
2E

−
√

2E

s

U ′(h−1(s))
√

E − s2

2

ds .

After another change of variables, s =
√

2E sin θ, the period function is represented
by

P (E) = 2
∫ π

2

−π
2

dθ

h′(h−1(
√

2E sin θ))
= 2

∫ π
2

−π
2

(h−1)′(
√

2E sin θ) dθ. (3.1)
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By differentiating and splitting the integral in two pieces, we have

P ′(E) =

√
2
E

∫ 0

−π
2

(h−1)′′(
√

2E sin θ) sin θ dθ

+

√
2
E

∫ π
2

0

(h−1)′′(
√

2E sin θ) sin θ dθ

= I + II.

Lemma 3.4. Let E2 be as in Lemma 3.2. If 0 < E < E2, then 0 < I < C.

Proof. Rewrite I as

I =

√
2
E

∫ 0

−π
2

(h−1)′′(h(τ(θ))) sin θ dθ,

where τ(θ) := F−1(E sin2 θ), which is a well-defined function because F is restricted
to (−K1, 0]. Using the formula (h−1)′′(h(s)) = −h′′(s)/(h′(s))3 and making the
change of variables s = τ(θ), we have

I =

√
2
E

∫ 0

x−(E)

−h′′(s) sin(τ−1(s))
(h′(s))3τ ′(τ−1(s))

ds .

Substituting in the formula

τ−1(s) = sin−1(−
√

F (s)/E )

and using the definitions of h and τ , the last expression for I simplifies to

I =
1√
2E

∫ 0

x−(E)

Q(s)
−F ′(s)√
E − F (s)

ds .

By Lemma 3.2 and the inequalities Q(s) > 0 and F ′(s) < 0 on (x−(E), 0), it follows
that I is positive and

I ≤ Q(x−(E))√
2E

∫ 0

x−(E)

−F ′(s)√
E − F (s)

ds =
√

2Q(x−(E))√
E

≤
√

2 C
√

E√
E

= C ,

where we have consolidated constants. �

Lemma 3.5. Integral II is negative and | II| > C/(γ
√

E ).

Proof. By defining τ(θ) := U−1(E sin2 θ) and proceeding as in Lemma 3.4, we
express II in the form

II =
1√
2E

∫ x+(E)

0

(U ′(s))2 − 2U(s)U ′′(s)
(U ′(s))3

U ′(s)√
E − U(s)

ds .

By Lemma 3.1 and the inequality U ′(s) ≥ 0 on (0, x+(E)), the integrand is always
negative. Thus, II < 0 and

| II| > M

2
√

2Eγ

∫ x+(E)

0

U ′(s)√
E − U(s)

ds =
2M

√
E

2
√

2Eγ
=

C

γ
√

E
,

where we have consolidated constants. �

To complete the proof of the theorem, we choose E∗ = min(E2, C
2
2/(γ2C2

1 )) so
that P ′(E, γ) = I + II < 0 whenever 0 < E < E∗ and γ < γ2. �
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Corollary 3.6. Let γ2 be as in Theorem 3.3. If γ > γ2, then the period function
for system (1.2) is non-monotone and has at least one critical point in the interval
[E∗, F (−K1)).

Corollary 3.7. Let γ2 be as in Theorem 3.3. If γ > γ2 and xc > 0 is sufficiently
small, then the period function for the system

ẍ + f(x) + γH(x− xc)g(x− xc) = 0 (3.2)

is non-monotone and has at least two critical points.

Proof. Let T (x0, xc) be the period of the orbit with initial conditions x(0) = x0

and ẋ(0) = 0 for equation (3.2) and define

T (0, xc) = lim
x0→0

T (x0, xc).

Since T is continuous and the function x0 7→ T (x0, 0) is decreasing near the origin,
there exists x̄0 near 0 such that T (x̄0, 0) < T (0, 0). Hence, T (x̄0, x̄c) < T (0, 0) for
x̄c sufficiently small.

Alternatively, in a neighborhood of the origin, for xc > 0, the period function
T (x0, x̄c) must coincide with the period function of ẍ+f(x) = 0, which is increasing
near the origin.

Because the periods of periodic orbits are unbounded in a neighborhood of the
homoclinic loop boundary of the period annulus under consideration, we have the
desired result. �

4. The Impact Pendulum

The non-dimensional system ẍ + sinx + γH(x)x
3
2 = 0 is a Hertzian contact

model (see [8]) for an undamped unforced pendulum striking an elastic barrier at
its downward vertical position. The constant γ corresponds to the elastic modulus
of the barrier (see [10]).

The functions f(x) = sinx and g(x) = x3/2 satisfy the assumptions in section 2
for Theorem 3.3, which states that there exists a region near the rest point at
the barrier where the period function is decreasing. Using numerical integration
techniques with γ = 3.57 × 108 (an approximate value for an aluminum barrier),
we are able to integrate the system numerically and graph its period function.

A plot of the period function near E = 0 is given in Fig. 2, which confirms that
the period function is decreasing near E = 0. The interval of decrease is small in
this case because γ is large.

Numerical experiments suggest that a version of the decreasing period phenom-
enon persists in case the wall is positioned at some positive angle relative to the
downward vertical. The Hertzian contact model for the impact pendulum with wall
angle xc > 0 is

ẍ + sinx + γH(x− xc)(x− xc)3/2 = 0. (4.1)

Theorem 3.3 does not apply to the impact pendulum in this case because our
hypotheses are not satisfied. In fact, due to the smoothness of the period function
and its positive derivative in the region of small oscillation with no impacts, there
must exist an interval containing the contact point on which the period function
increases. Our numerical experiments verify this fact and suggest that the period
function will decrease for an interval corresponding to more energetic impacts, reach
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Figure 2. Period function for the impact pendulum (1.1) with
γ = 3.57× 108.
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Figure 3. Period function for the impact pendulum (4.1) with
xc = 0.281 and γ = 3.57× 108.

a minimum value, and then increase as the energies of the periodic orbits approach
the energy of the homoclinic loop. This scenario is illustrated in Fig. 3.

A natural prediction (cf. [1, Ch. 5]) is that harmonic motions of the periodically
forced and damped pendulum with impacts will correspond to low-order resonances
between the forcing period and the available periods of the conservative impact pen-
dulum studied in this paper. In experiments, where only relatively small oscillations
are feasible, the interval of available periods is the interval corresponding to the lo-
cal maximum and local minimum in Fig. 3. By approximating these values, the
range of (1 : 1)-period locking (harmonic motions) has been predicted and verified
by physical experiments (see [3]).
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Appendix A. Derivation of the Impact Pendulum Model

Consider a pendulum that encounters a barrier when the pendulum’s angular
position x (measured counterclockwise relative to the downward vertical) is xc.

The kinetic energy for the pendulum is

T =
1
2
m

[(
Lẋ cos x

)2

+
(
Lẋ sinx

)2]
,

where m is the pendulum mass and L is the pendulum effective length. Here, the
pendulum effective length refers to the distance between the pendulum pivot point
and the pendulum center of mass. Because the mass in this physical system is
distributed along the pendulum shaft and bob, the effective length differs from the
total length, l, which is the distance from the pivot to the sphere center of mass.
The pendulum’s potential energy when not in contact with the barrier is

V = mgL(1− cos x).

Using Lagrange’s equation

d

dt

(∂T

∂ẋ

)
− ∂T

∂x
+

∂V

∂x
= 0,

the equation of motion for the pendulum during the contact and non-contact
regimes is

ẍ + ω2 sinx +
l

mL2
H(x− xc)Fc(x− xc) = 0. (A.1)

where H is the Heaviside function, Fc is the contact force function that occurs
at distance l from the pendulum pivot point, and ω2 = g/L is the square of the
pendulum’s natural frequency.

The Hertzian contact force is given by

Fc(x) =
4
3
E
√

R(l sinx)3/2,

where E is the elastic modulus of the barrier and R is the radius of the sphere that
impacts the barrier (see [8]).

The equation of motion (A.1) is made non-dimensional by changing the time-
scale via t 7→ t/ω. After simplifying and replacing the sine function in the contact
term by the first term of its Taylor series centered at xc (which is justified by the
small penetration depth), we obtain the smooth dimensionless model equation

ẍ + sinx + γ(x− xc)3/2H(x− xc) = 0,

where

γ =
4l5/2ER1/2

3ω2mL2
.

While the equation of motion incorporates the discontinuous Heaviside function,
we note that the contact term is class C1 due to the presence of the Hertzian
penetration function given in the model equation (A.2) by (x− xc)3/2.

Acknowledgments. The authors thank the anonymous referee for carefully read-
ing this paper and making valuable suggestions for improvements.



EJDE-2008/44 NON-MONOTONE PERIOD FUNCTIONS 9

References

[1] C. Chicone, Ordinary Differential Equations with Applications, 2nd Ed. (New York: Springer-
Verlag), 2006.

[2] C. Chicone and M. Jacobs, Bifurcation of critical periods for plane vector fields, Transactions

of the American Mathematical Society, 312 (2) 1989, 433–486.
[3] C. Chicone, K. Felts and B.P. Mann, An Impact Oscillator with Hertzian Contact, In prepa-

ration.

[4] R. Chouikha and F. Cuvelier, Remarks on some monotonicity conditions for the period func-
tion, Appl. Math. (Warsaw), 26 (3) 1999, 243–252.

[5] S.-N. Chow and Duo Wang, On the monotonicity of the period function of some second order
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