
Electronic Journal of Differential Equations, Vol. 2008(2008), No. 36, pp. 1–7.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

EXISTENCE OF SOLUTIONS FOR IMPULSIVE NEUTRAL
FUNCTIONAL DIFFERENTIAL EQUATIONS

WITH MULTIPLE DELAYS

MUSTAPHA LAKRIB

Abstract. In this paper an existence result for initial value problems for first
order impulsive neutral functional differential equations with multiple delay is

proved under weak conditions.

1. Introduction

Impulsive differential equations have become more important in recent years in
some mathematical models of processes and phenomena studied in physics, opti-
mal control, chemotherapy, biotechnology, population dynamics and ecology. The
reader is referred to monographs [1, 2, 3] and references therein.

In this paper we study the existence of solutions for initial value problems for
first order neutral functional differential equations, with multiple delays and with
impulsive effects, of the form

d

dt
[x(t)− f(t, xt)] = g(t, xt) +

p∑
i=1

x(t− τi),

a.e. t ∈ J = [0, 1], t 6= tk, k = 1, . . . ,m,

(1.1)

∆x|t=tk
= Ik(x(t−k )), k = 1, . . . ,m, (1.2)

x0 = φ, (1.3)

where f, g : J × D → Rn are given functions, D consists of functions ψ : J0 → Rn

such that ψ is continuous everywhere except for a finite number of points s at which
ψ(s−) and ψ(s+) exist with ψ(s−) = ψ(s), J0 = [−r, 0], r = max{τi : i = 1, . . . , p},
φ ∈ D, 0 = t0 < t1 < · · · < tm < tm+1 = 1, Ik : Rn → Rn and ∆x|t=tk

=
x(t+k )− x(t−k ), k = 1, 2, . . . ,m.

Our method of study is to convert the initial value problem (1.1)-(1.3) into
equivalent integral equation and apply the Schaefer’s fixed point theorem.

In the literature the existence of solutions for impulsive differential equations
is studied under restrictive conditions on the impulses Ik, k = 1, . . . ,m. In many
results, in addition to continuity, boundedness condition is often assumed, which
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is not fulfilled in some important cases such as for linear impulses. Here, the only
condition on the Ik, k = 1, . . . ,m, is continuity.

Throughout this paper, the terminology and notation are those used in functional
analysis.

By L1(J,Rn) we denote the Banach space of measurable functions x : J → Rn

which are Lebesgue integrable, normed by

‖x‖L1 =
∫ 1

0

|x(t)|dt.

For ψ ∈ D, the norm of ψ is defined by

‖ψ‖D = sup{|ψ(θ)| : θ ∈ J0}.

In order to define the solution of problem (1.1)-(1.3), we introduce the space
PC(J,Rn) consisting of functions x : J → Rn such that x is continuous everywhere
except for t = tk at which x(t−k ) and x(t+k ) exist and x(t−k ) = x(tk), k = 1, . . . ,m.
If we set Ω = {x : J1 → Rn / x ∈ D ∩ PC(J,Rn)}, where J1 = [−r, 1], then Ω is a
Banach space normed by

‖x‖ = sup{|x(t)| : t ∈ J1}, x ∈ Ω.

Obviously, for any x ∈ Ω and any t ∈ J , the history function xt defined by xt(θ) =
x(t+ θ), for θ ∈ J0, belongs to D.

Also we denote by AC((tk, tk+1),Rn) the space of all absolutely continuous func-
tions x : (tk, tk+1) → Rn, k = 0, . . . ,m.

A function x ∈ Ω ∩ AC((tk, tk+1),Rn), k = 0, . . . ,m, is said to be a solution of
problem (1.1)-(1.3) if x − f(·, x.) is absolutely continuous on J \ {t1, . . . , tm} and
x satisfies the differential equation (1.1) a.e. on J \ {t1, . . . , tm} and the conditions
(1.2)-(1.3).

Our main result will be proved using the following fixed point theorem due to
Schaefer [4] (see also [5, page 29]).

Theorem 1.1. Let X be a normed space and let Γ : X → X be a completely
continuous map, that is, it is a continuous mapping which is compact on each
bounded subset of X. If the set E = {x ∈ X : λx = Γx for some λ > 1} is bounded,
then Γ has a fixed point.

2. Existence result

In this section we state and prove our existence result for problem (1.1)-(1.3),
using the following conditions:

(H1) The function f : J ×D → Rn is such that

|f(t, x)| ≤ c1‖x‖D + c2 for all t ∈ J and all x ∈ D

where 0 ≤ c1 < 1 and c2 ≥ 0 are some constants.
(H2) The function g : J ×D → Rn is Carathéodory, that is,

(i) t 7→ g(t, x) is measurable for each x ∈ D,
(ii) x 7→ g(t, x) is continuous for a.e. t ∈ J .

(H3) There exist a function q ∈ L1(J,R) with q(t) > 0 for a.e. t ∈ J and a
continuous and nondecreasing function ψ : [0,∞) → [0,∞) such that

|g(t, x)| ≤ q(t)ψ(‖x‖D) for a.e. t ∈ J and each x ∈ D
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with ∫ ∞

C

ds

s+ ψ(s)
= ∞ (2.1)

where

C =
1

1− c1

[
‖φ‖D

(
1 + c1 +

p∑
i=1

τi

)
+ 2c2

]
.

(H4) The functions Ik : Rn → Rn, k = 1, . . . ,m, are continuous.

Theorem 2.1. Under assumptions (H1)–(H4), the initial value problem (1.1)–(1.3)
has a solution on J1.

Proof. Transform the problem (1.1)-(1.3) into a fixed point problem. Consider the
operator Γ : Ω → Ω defined by

Γx(t) =


φ(t) for t ∈ J0,

φ(0)− f(0, φ(0)) + f(t, xt) +
∫ t

0
g(s, xs)ds

+
∑p

i=1

∫ 0

−τi
φ(s)ds+

∑p
i=1

∫ t−τi

0
x(s)ds

+
∑

0<tk<t Ik(x(t−k )) for t ∈ J.

We shall show that the operator Γ satisfies the conditions of Theorem 1.1 with
X = Ω. For better readability, we break the proof into a sequence of steps.
Step 1. We show that Γ has bounded values for bounded sets in Ω. To show this,
let B be a bounded set in Ω. Then there exists a real number ρ > 0 such that
‖x‖ ≤ ρ, for all x ∈ B.

Let x ∈ B and t ∈ J . After some standard calculations we get

|Γx(t)| ≤ ‖φ‖D
(
1 + c1 +

p∑
i=1

τi

)
+ 2c2 + c1‖xt‖D +

∫ 1

0

q(s)ψ(‖xs‖D)ds

+ p

∫ 1

0

|x(s)|ds+
m∑

k=1

|Ik(x(t−k ))|

≤ ‖φ‖D
(
1 + c1 +

p∑
i=1

τi

)
+ 2c2 + (c1 + p)ρ

+ ψ(ρ)‖q‖L1 +
m∑

k=1

sup{|Ik(u)| : |u| ≤ ρ} =: η.

If t ∈ J0, then |Γx(t)| ≤ ‖φ‖D and the previous inequality holds. Hence

‖Γx‖ ≤ η, for all x ∈ B,

that is, Γ is bounded on bounded subsets of Ω.
Step 2. Next we show that Γ maps bounded sets into equicontinuous sets. Let
B be, as in Step 1, a bounded set and x ∈ B. Let t and h 6= 0 be such that
t, t+ h ∈ J\{t1, . . . , tm}. It is not difficult to get

|Γx(t+ h)− Γx(t)|

≤ |f(t+ h, xt+h)− f(t, xt)|+ ψ(ρ)
∫ t+h

t

q(s)ds+ pρh+
∑

t<tk<t+h

|Ik(x(t−k ))|.
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As h → 0 the right-hand side of the above inequality tends to zero. This proves
the equicontinuity on J\{t1, . . . , tm}.

It remains to examine the equicontinuity at t = ti, i = 1, . . . ,m. Let t = ti for
some i ∈ {1, . . . ,m} and let h 6= 0 be such that {tk : k 6= i} ∩ [ti − |h|, ti + |h|] = ∅.
Then we have

|Γx(ti + h)− Γx(ti)| ≤ |f(ti + h, xti+h)− f(ti, xti)|+ ψ(ρ)
∫ ti+h

ti

q(s)ds+ pρh.

The right-hand side of the above inequality tends to zero as h → 0. The equicon-
tinuity on J0 follows from the uniform continuity of φ on this interval.
Step 3. Now we show that Γ is continuous. Let {xn} ⊂ Ω be a sequence such that
xn → x. We will show that Γxn → Γx. For t ∈ J , we obtain

|Γxn(t)− Γx(t)| ≤ |f(t, xnt)− f(t, xt)|+
∫ 1

0

|g(s, xns)− g(s, xs)|ds

+ p

∫ 1

0

|xn(s))− x(s)|ds+
m∑

k=1

|Ik(xn(t−k ))− Ik(x(t−k ))|.
(2.2)

Using (H3) it can easily shown that the function t 7→ g(t, xnt)−g(t, xt) is Lebesgue
integrable. By the continuity of f and Ik, k = 1, . . . ,m, and the dominated con-
vergence theorem, the right-hand side of inequality (2.2) tends to zero as n → ∞;
which completes the proof that Γ is continuous.

As a consequence of Steps 1 to 3, together with the Arzelá-Ascoli theorem, we
conclude that Γ is completely continuous.
Step 4. Finally we show that the set E = {x ∈ Ω : λx = Γx for some λ > 1} is
bounded. Let x ∈ E and let λ > 1 be such that λx = Γx. Then x|[−r,t1] satisfies,
for each t ∈ [0, t1],

x(t) = λ−1
[
φ(0)− f(0, φ(0)) + f(t, xt) +

∫ t

0

g(s, xs)ds

+
p∑

i=1

∫ 0

−τi

φ(s)ds+
p∑

i=1

∫ t−τi

0

x(s)ds
]
.

It is straightforward to verify that

|x(t)| ≤ ‖φ‖D
(
1 + c1 +

p∑
i=1

τi

)
+ 2c2 + c1‖xt‖D

+
∫ t

0

[q(s)ψ(‖xs‖D)ds+ p|x(s)|]ds.

(2.3)

Introduce the function v1(t) = max{|x(s)| : s ∈ [−r, t]}, for t ∈ [0, t1]. We
have |x(t)|, ‖xt‖D ≤ v1(t) for all t ∈ [0, t1] and there is t∗ ∈ [−r, t] such that
v1(t) = |x(t∗)|. If t∗ < 0, we have v1(t) ≤ ‖φ‖D for all t ∈ [0, t1]. Now, if t∗ ≥ 0,
from (2.3) it follows that, for t ∈ [0, t1],

v1(t) ≤ ‖φ‖D
(
1 + c1 +

p∑
i=1

τi

)
+ 2c2 + c1v1(t) +

∫ t

0

[q(s)ψ(v1(s)) + pv1(s)]ds

and hence

v1(t) ≤ C1
1 + C2

1

∫ t

0

Q(s)[ψ(v1(s)) + v1(s)]ds
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where

C1
1 = C2

1

[
‖φ‖D

(
1 + c1 +

p∑
i=1

τi

)
+ 2c2

]
, C2

1 =
1

1− c1

and Q(t) = max{q(t), p}, for t ∈ [0, t1]. Set

w1(t) = C1
1 + C2

1

∫ t

0

Q(s)[ψ(v1(s)) + v1(s)]ds, for t ∈ [0, t1].

Then we have v1(t) ≤ w1(t) for all t ∈ [0, t1]. A direct differentiation of w1 yields

w′1(t) ≤ Q(t)[ψ(w1(t)) + w1(t)], a.e. t ∈ [0, t1]

w1(0) = C
(1)
1 .

By integration, this gives∫ t

0

w′1(s)
ψ(w1(s)) + w1(s)

ds ≤
∫ t

0

Q(s)ds ≤ ‖Q‖L1 , t ∈ [0, t1]. (2.4)

By a change of variables, inequality (2.4) implies∫ w1(t)

C1
1

ds

ψ(s) + s
≤ ‖Q‖L1 , t ∈ [0, t1].

By (2.1) and the mean value theorem, there is a constant M1 = M1(t1) > 0 such
that w1(t) ≤ M1 for all t ∈ [0, t1], and therefore v1(t) ≤ M1, for all t ∈ [0, t1]. At
last, we choose M1 such that ‖φ‖D ≤M1 to get

max{|x(t)| : t ∈ [−r, t1]} = v1(t1) ≤M1.

Now, consider x|[−r,t2]. It satisfies, for each t ∈ [0, t2],

x(t) = λ−1
[
φ(0)− f(0, φ(0)) + f(t, xt) +

∫ t

0

g(s, xs)ds

+
p∑

i=1

∫ 0

−τi

φ(s)ds+
p∑

i=1

∫ t−τi

0

x(s)ds+ I1(x(t1))
]
.

Therefore,

|x(t)| ≤ ‖φ‖D
(
1 + c1 +

p∑
i=1

τi

)
+ 2c2 + c1‖xt‖D

+
∫ t

0

[q(s)ψ(‖xs‖D) + p|x(s)|]ds+ sup{|I1(u)| : |u| ≤M1}.

(2.5)

Denote v2(t) = max{|x(s)| : s ∈ [−r, t]}, for t ∈ [0, t2]. Then, for each t ∈ [0, t2],
we have |x(t)|, ‖xt‖D ≤ v2(t). Let t∗ ∈ [−r, t] be such that v2(t) = |x(t∗)|. In the
case t∗ < 0, we have v2(t) ≤ ‖φ‖D for all t ∈ [0, t2]. Now, if t∗ ≥ 0, then by (2.5)
we have, for t ∈ [0, t2],

v2(t) ≤ ‖φ‖D
(
1 + c1 +

p∑
i=1

τi

)
+ 2c2 + c1v2(t) +

∫ t

0

[q(s)ψ(v2(s)) + pv2(s)]ds

+ sup{|I1(u)| : |u| ≤M1};
that is,

v2(t) ≤ C1
2 + C2

2

∫ t

0

Q(s)[ψ(v2(s)) + v2(s)]ds
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where

C1
2 = C2

2

[
‖φ‖D

(
1 + c1 +

p∑
i=1

τi

)
+ 2c2 + sup{|I1(u)| : |u| ≤M1}

]
,

C2
2 = 1/(1− c1), and Q(t) = max{q(t), p}, for t ∈ [0, t2].
If we set

w2(t) = C1
2 + C2

2

∫ t

0

Q(s)[ψ(v2(s)) + v2(s)]ds, for t ∈ [0, t2],

then v2(t) ≤ w2(t) for all t ∈ [0, t2] and

w′2(t) ≤ Q(t)[ψ(w2(t)) + w2(t)], a.e. t ∈ [0, t2]

w2(0) = C1
2 .

This yields ∫ t

0

w′2(s)
ψ(w2(s)) + w2(s)

ds ≤
∫ t

0

Q(s)ds ≤ ‖Q‖L1 , t ∈ [0, t2]

which implies ∫ w2(t)

C1
2

ds

ψ(s) + s
≤ ‖Q‖L1 , t ∈ [0, t2].

Again, by (2.1) and the mean value theorem, there is a constantM2 = M2(t1, t2) > 0
such that w2(t) ≤ M2 for all t ∈ [0, t2], and then v2(t) ≤ M2, for all t ∈ [0, t2].
Finally, if we choose M2 such that ‖φ‖D ≤M2, we get

max{|x(t)| : t ∈ [−r, t2]} = v2(t2) ≤M2.

Continue this process for x|[−r,t3], . . . , x|J1 , we obtain that there exists a constant
M = M(t1, . . . , tm) > 0 such that

‖x‖ ≤M.

This finish to show that the set E is bounded in Ω.
As a result the conclusion of Theorem 1.1 holds and consequently the initial

value problem (1.1)-(1.3) has a solution x on J1. This completes the proof. �

We conclude this paper with a discussion on two special cases. In each one, some
of the conditions in Theorem 2.1 can be either removed or weakened.

Case 1: Consider the initial value problem for first order impulsive functional
differential equations with multiple delays

x′(t) = g(t, xt) +
p∑

i=1

x(t− τi), a.e. t ∈ J = [0, 1], t 6= tk, k = 1, . . . ,m, (2.6)

∆x|t=tk
= Ik(x(t−k )), k = 1, . . . ,m, (2.7)

x0 = φ, (2.8)

derived from problem (1.1)-(1.3) when f ≡ 0. In this case one obtains the next
existence result which is an immediate corollary of Theorem 2.1.
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Theorem 2.2. Under conditions (H2)–(H4), the initial value problem (2.6)–(2.8)
has a solution on J1 if constant C in (H3) is replaced by

C = ‖φ‖D
(
1 +

p∑
i=1

τi

)
.

Case 2: Without the second term in the right hand side of (2.6), problem (2.6)-(2.8)
is an initial value problem for first order impulsive functional differential equations

x′(t) = g(t, xt), a.e. t ∈ J = [0, 1], t 6= tk, k = 1, . . . ,m, (2.9)

∆x|t=tk
= Ik(x(t−k )), k = 1, . . . ,m, (2.10)

x0 = φ. (2.11)

The corresponding existence result is as bellow. Its proof is omitted because it is
the same as the proof of Theorem 2.1.

Theorem 2.3. Under conditions (H2)–(H4), the initial value problem (2.9)–(2.11)
has a solution on J1 if relation (2.1) in (H3) is replaced by∫ ∞

‖φ‖D

ds

ψ(s)
= ∞.
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