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GLOBAL ATTRACTOR FOR A SEMILINEAR PARABOLIC
EQUATION INVOLVING GRUSHIN OPERATOR

CUNG THE ANH, PHAN QUOC HUNG, TRAN DINH KE, TRINH TUAN PHONG

Abstract. The aim of this paper is to prove the existence of a global attractor
for a semilinear degenerate parabolic equation involving the Grushin operator.

1. Introduction

In recent years, many works have been devoted to study the existence and nonex-
istence of solutions to a class of semilinear degenerate elliptic equations and systems
involving an operator of Grushin type

Gku = ∆xu + |x|2k∆yu, (x, y) ∈ Ω ⊂ RN1 × RN2 , k > 0.

The Grushin operator Gk was first introduced in [6]. If k > 0 then Gk is not elliptic
in domains in RN1 × RN2 which contain the origin of RN1 . The local properties
of Gk were investigated in [1, 6]. The existence and nonexistence results for the
elliptic equation

Gku + f(u) = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.

was obtained in [5, 11, 12]. Especially, in [11] the authors prove the Sobolev embed-
ding theorem and show that the critical exponent of the embedding S1

0(Ω) ↪→ Lp(Ω)
is 2∗k = 2N(k)

N(k)−2 , where N(k) = N1 +(k +1)N2. Furthermore, the semilinear elliptic
systems with Grushin type operator, which are in the Hamilton form and potential
form, were also studied in [3, 4, 9].

In this paper we are interested in the global existence and the long-time behavior
of solutions to the following problem

ut −Gku + f(u) + g(x) = 0, x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω, t > 0

u(x, 0) = u0(x), x ∈ Ω,

(1.1)
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where Ω is a bounded domain in RN1 × RN2 (N1, N2 ≥ 1), with smooth boundary
∂Ω, u0 ∈ S1

0(Ω) given, g ∈ L2(Ω), and f : R → R satisfies

|f(u)− f(v)| 6 C0|u− v|(1 + |u|ρ + |v|ρ) ,
2

N(k)− 2
< ρ <

4
N(k)− 2

, (1.2)

F (u) ≥ −µ

2
u2 − C1, (1.3)

f(u)u ≥ −µu2 − C2, (1.4)

where C0, C1, C2 > 0, F is the primitive F (y) =
∫ y

0
f(s)ds of f , µ < λ1, λ1 is the

first eigenvalue of the operator −Gk in Ω with homogeneous Dirichlet condition.
Denote A = −Gk, the positive and self-adjoint operator with domain of the

definition
D(A) = {u ∈ S1

0(Ω) : Au ∈ L2(Ω)},
(see Sec. 2.1) and define the corresponding Nemytski map f by

f(u)(x) = f(u(x)), u ∈ S1
0(Ω).

Then, (1.1) can be formulated as an abstract evolutionary equation

du

dt
+ Au + f(u) + g = 0, u(0) = u0. (1.5)

The main purpose of this paper is to study the existence of a global solution and
of a global attractor for the dynamic system generated by (1.5).

Note that when the exponent ρ in (1.2) satisfies 0 6 ρ 6 2
N(k)−2 , the Nemytski

f is a locally Lipschitzian map from S1
0(Ω) to L2(Ω). This combining with the fact

that A is a sectorial operator in L2(Ω) ensures the existence of a unique classical
solution u ∈ C([0, T ), S1

0(Ω)) ∩ C((0, T ), D(A)) ∩ C1((0, T ), L2(Ω)). By computing
directly we see that the solution u satisfies

d

dt
Φ(u(t)) = −‖ut(t)‖2, (1.6)

where

Φ(u) =
1
2
‖u‖2S1

0
+

∫
Ω

(F (u) + gu) dx dy. (1.7)

The equality (1.6) implies that Φ is a strict Lyapunov functional. Then the proof of
existence of a global solution is quite straightforward by using the strictly Lyapunov
functional Φ. Therefore, in this paper we will focus on the case of 2

N(k)−2 < ρ <
4

N(k)−2 . Firstly, under the assumption (1.3), one can check that the Nemytski f

is a locally Lipschitzian map from S1
0(Ω) to Lq(Ω), q = 2∗k

ρ+1 . Secondly, by the
fixed point method, we prove the existence of a unique local mild solution u, i.e.
u ∈ C([0, T ), S1

0(Ω)) is the solution of the following integral equation

u(t) = e−Atu0 −
∫ T

0

e−A(t−s)(f(u(s) + g)ds.

In this case, however, it is not easy to show that Φ(u) is a strict Lyapunov functional.
Indeed, the equality (1.6) is obtained, at least formally, by taking the scalar product
of the equation with ut. Note that we only have ut ∈ S−1(Ω), the dual space of
S1

0(Ω), and so one cannot multiply the equation by ut. Hence we have to study
the regularity of ut. We show that, in particular, ut ∈ S1

0(Ω). This enables us to
use the natural Lyapunov functional Φ(u) and condition (1.3) to prove that the



EJDE-2008/32 GLOBAL ATTRACTOR 3

solution exists globally in time. Besides that, we also show that orbits of bounded
sets are bounded. Finally, by proving the asymptotically compact property of the
semigroup S(t) generated by (1.5) and using the dissipativeness condition (1.4) for
proving the boundedness of the set E of equilibrium points, we obtain the existence
of a global attractor A in S1

0(Ω). Furthermore, we show that every solution tends to
the set of equiblirium points as t → +∞. We state our main result in the following
theorem.

Theorem 1.1. Under the assumptions (1.2)-(1.4), problem (1.5) defines a semi-
group S(t) : S1

0(Ω) → S1
0(Ω), which possesses a compact connected global attractor

A = Wu(E) in the space S1
0(Ω). Furthermore, for each u0 ∈ S1

0(Ω), the correspond-
ing solution u(t) tends to the set E of equiblirium points in S1

0(Ω) as t → +∞.

This result can be extended to some more generalized systems with the slight
modifications on hypotheses and functional spaces, which are described in Remark
3.1. The rest of the paper is organized as follows. The next section recalls some
notations and results related to Grushin operator and semigroup. Section 3 is
devoted to deal with problem (1.1), for which the existence of the global solution
and the global attractor is proved.

2. Preliminary Results

2.1. Functional Spaces and Operators. We begin by recall some results in [11].
Denote by S1(Ω) the set of all functions u ∈ L2(Ω) such that ∂u

∂xi
, |x|k ∂u

∂yj
∈ L2(Ω),

i = 1, . . . , N1, j = 1, . . . , N2, with the norm

‖u‖S1(Ω) =
( ∫

Ω

(
|u|2 + |∇xu|2 + |x|2k|∇yu|2

)
dx dy

)1/2

,

where ∇xu = ( ∂u
∂x1

, . . . , ∂u
∂xN1

),∇yu = ( ∂u
∂y1

, . . . , ∂u
∂yN2

). The S1
0(Ω) is defined as the

closure of C1
0 (Ω) in S1(Ω).

The following embedding inequality was proved in [11]( ∫
Ω

|u|p dx dy
)1/p

6 C
( ∫

Ω

(
|u|2 + |∇xu|2 + |x|2k|∇yu|2) dx dy

)1/2

,

where 2 6 p 6 2N(k)
N(k)−2 − τ , C > 0, k > 0, provided small number τ . Moreover, the

number 2∗k = 2N(k)
N(k)−2 is the critical Sobolev exponent of the embedding S1

0(Ω) ↪→
Lp(Ω) and when 2 6 p < 2∗k, the embedding is compact.

Denote X = L2(Ω) and (., .) be the scalar product in X, the operator A = −Gk

is positive and self-adjoint, with domain defined by

D(A) = {u ∈ S1
0(Ω) : Au ∈ X}.

The space D(A) is a Hilbert space endowed with the usual graph scalar product.
Moreover, there exists a complete system of eigensolutions (ej , λj) such that

(ej , ek) = δjk, −Gkej = λjej , j = 1, 2, . . .

0 < λ1 6 λ2 6 . . . ., λj →∞, as j →∞.

For any θ ∈ R, denote Xθ as the space of formal series
∑∞

k=1 ckek such that
∞∑

k=1

c2
kλ2θ

k < ∞.
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Xθ

}
θ∈R is called the family of fractional power spaces of A.

Let θ ∈ R, we define the operator Aθ as following

Aθ(
∞∑

k=1

ckek) =
∞∑

k=1

ckλθ
kek

for any formal series
∑∞

k=1 ckek. Hence we can consider Aθ as the operator from
Xη to Xη−θ, and we have

Aθ(Xη) = Xη−θ, Aθ1+θ2 = Aθ1Aθ2 .

From the above definition, one can see that

X1 = {u ∈ S1
0(Ω) : Au ∈ X = L2(Ω)},

X1/2 = S1
0(Ω), X0 = X = L2(Ω),

and for any θ ∈ R, Xθ is a separable Hilbert space endowed with the inner scalar
product

(u, v)Xθ = (Aθu, Aθv), ‖u‖Xθ = ‖Aθu‖X .

One can see that Xθ is continuously imbedded into Xη if θ ≥ η, moreover, this
imbedding is compact if θ > η.

Note that, for every θ > 0, operator A−θ : X → Xθ defined above can be
represented as following

A−θu =
1

Γ(θ)

∫ ∞

0

tθ−1e−Atu dt, u ∈ X.

Thus, Aθ : Xθ → X is the inverse of A−θ : X → Xθ, Xθ is also the dual space of
X−θ.

We have the following basic result [8, Theorem 1.4.3].

Theorem 2.1. Suppose that A is sectorial and Re σ(A) > δ > 0. For θ ≥ 0, there
exists a positive number Cθ < ∞ such that

‖Aθe−At‖ 6 Cθt
−θe−δt for all t > 0,

and if 0 < θ 6 1, x ∈ Xθ,

‖(e−At − I)x‖ 6
1
θ
C1−θt

θ‖Aθx‖.

From this theorem, in particular, we have some results which we will use in the
next section

‖e−At‖ 6 Me−δt, for all t ≥ 0.

‖(e−At − I)x‖ 6 Ct‖Ax‖ for any x ∈ X1, t ≥ 0.

e−tAx ∈
⋂
θ∈R

Xθ, for any x ∈ Xη, t > 0.

‖e−tAx‖X1/2 6 Cγt−1/2−γ‖x‖X−γ , for any x ∈ X−γ , t > 0, γ ∈ (0, 1/2).
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2.2. Existence of Global Attractors. For convenience of the readers, we sum-
marize some definitions and results of theory of infinite dimensional dynamical
dissipative systems in [2, 7, 10] which we will use.

Let X be a metric space (not necessarily complete) with metric d. If C ⊂ X and
b ∈ X we set ρ(b, C) := infc∈C d(b, c), and if B ⊂ X, C ⊂ X we set dist(B,C) :=
supb∈B ρ(b, C). Let S(t) be a continuous semigroup on the metric space X.

A set A ⊂ X is invariant if S(t)A = A, for any t > 0.
The positive orbit of x ∈ X is the set γ+(x) = {S(t)x|t > 0}. If B ⊂ X, the

positive orbit of B is the set

γ+(B) = ∪t>0S(t)B = ∪z∈Bγ+(z).

More generally, for τ > 0, we define the orbit after the time τ of B by

γ+
τ (B) = γ+(S(τ)B).

The subset A ⊂ X attracts a set B if dist(S(t)B,A) → 0 as t →∞.
The subset A is a global attractor if A is closed, bounded, invariant, and attracts

all bounded sets.
The semigroup S(t) is asymptotically compact if, for any bounded subset B of X

such that γ+
τ (B) is bounded for some τ > 0, every set of the form {S(tn)zn}, with

zn ∈ B and tn > τ, tn → +∞ as n →∞, is relatively compact.
A continuous semigroup S(t) is a continuous gradient system if there exists a

function Φ ∈ C0(X, R) such that Φ(S(t)u) 6 Φ(u), for all t > 0, for all u ∈ X, and
the relation Φ(S(t)u) = Φ(u), for all t > 0 implies that u is an equilibrium point,
i.e. S(t)u = u for all t > 0. The function Φ is called a strict Lyapunov functional.

Let E be the set of equilibrium points for the semigroup S(t). We give the
definition of the unstable set of E by

Wu(E) = {y ∈ X : S(−t)y is defined for t > 0 and S(−t)y → E as t →∞}.
From [10, Proposition 2.19 and Theorem 4.6], we have the following result.

Theorem 2.2. Let S(t), t > 0, be an asymptotically compact gradient system,
which has the property that, for any bounded set B ⊂ X, there exist τ > 0 such
that γ+

τ (B) is bounded. If the set of equilibrium points E is bounded, then S(t) has
a compact global attractor A and A = Wu(E). Moreover, if X is a Banach space,
then A is connected.

If the global attractor A exists, then (see cite[page 21]Chu) it contains a global
minimal attractor M which is defined as a minimal closed positively invariant set
possessing the property

lim
t→+∞

dist(S(t)y,M) = 0 for every y ∈ X.

Moreover, if M is compact then it is invariant and M = ∪z∈V ω(z).

2.3. Singular Gronwall Inequality. To prove the existence of a local solution
and the asymptotic compactness of the semigroup generated by (1.5), we need the
following lemma ( see [7, Chapter 7]).

Lemma 2.1. Assume that ϕ(t) is a continuous nonnegative function on the interval
(0, T ) such that

ϕ(t) 6 c0t
−γ0 + c1

∫ t

0

(t− s)−γ1ϕ(s)ds, t ∈ (0, T ),
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where c0, c1 > 0 and 0 6 γ0, γ1 < 1. Then there exists a constant K = K(γ1, c1, T )
such that

ϕ(t) 6
c0

1− γ0
t−γ0K(γ1, c1, T ), t ∈ (0, T ).

3. Main Results

3.1. Global solution.

Lemma 3.1. For every p ∈ (2, 2∗k), there is a positive real γ ∈ [0, 1/2) such that
Xγ is continuously embedded in Lp(Ω).

Proof. Using Holder inequality we have

‖u‖Lp 6 ‖u‖δ
X0‖u‖1−δ

L2∗
k
, where δ =

2(2∗k − p)
p(2∗k − 2)

.

Hence
‖u‖Lp 6 C‖u‖δ

X‖u‖1−δ
X1/2 . (3.1)

By the interpolation of fractional power spaces

‖u‖X1/2 6 ‖u‖1/2
X ‖u‖1/2

X1 , ∀u ∈ X1. (3.2)

Let B be the inclusion map from X1/2 to Y = Lp(Ω), it follows from (3.1) and
(3.2) that

‖Bu‖Y 6 ‖u‖δ
X

(
C‖u‖1/2

X ‖u‖1/2
X1

)1−δ = C1‖u‖δ
X1‖u‖1−δ

X = C1‖Au‖δ
X‖u‖1−δ

X ,

where δ = 1
2 (1− δ) < 1

2 . By [8, page 28] we obtain that B has a unique extension
to a continuous linear operator from Xγ to Y for every γ satisfying δ < γ < 1

2 .
Lemma 3.1 is proved. �

Putting q = 2∗k
ρ+1 , p = q

q−1 . Since 2
N(k)−2 < ρ < 4

N(k)−2 then 1 < q < 2. Thus,

p =
q

q − 1
=

2∗k
2∗k − 1

∈ (2, 2∗k).

It is inferred from Lemma 3.1 that there exists γ ∈ (0, 1/2) such that Xγ is contin-
uously embedded in Lp(Ω). Hence Lq(Ω) = (Lp(Ω))′ is continuously embedded in
X−γ .

Lemma 3.2. Assume that f satisfies the condition (1.2), then f : X1/2 −→ Lq(Ω)
is Lipschitzian on every bounded subset of X1/2.

Proof. Let u ∈ X1/2, it follows from (1.2) that |f(u)| 6 C(1 + |u|ρ+1). Hence∫
Ω

|f(u)|q dx dy 6 C

∫
Ω

(
1 + |u|q(ρ+1)

)
dx dy

= C

∫
Ω

(
1 + |u|2

∗
k

)
dx dy < +∞

since X1/2 is continuously embedded into L2∗k(Ω). This shows that f is a map from
X1/2 to Lq(Ω).
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Let u, v ∈ X1/2 and ‖u‖X1/2 6 r, ‖v‖X1/2 6 r, we have∫
Ω

|f(u)− f(v)|q dx dy 6 C

∫
Ω

|u− v|q
(
1 + |u|qρ + |v|qρ

)
dx dy

6 C

∫
Ω

|u− v|q dx dy + C

∫
Ω

|u|qρ|u− v|q dx dy + C

∫
Ω

|v|qρ|u− v|q dx dy.

Applying Holder’s inequality, we have∫
Ω

|u|qρ|u− v|q dx dy 6 ‖u‖qρ
2∗k
‖u− v‖q

2∗k
,∫

Ω

|v|qρ|u− v|q dx dy 6 ‖v‖qρ
2∗k
‖u− v‖q

2∗k
.

Since S1
0(Ω) is continuously embedded into L2∗k(Ω) and 1 < q < 2∗k, there exists a

positive number M1(r) such that

‖f(u)− f(v)‖Lq 6 M1(r)‖u− v‖X1/2 .

This completes the proof. �

Since Lq(Ω) is continuously embedded in X−γ , we can consider that f , as a map
from X1/2 to X−γ , is Lipschitzian continuous on every bounded subset of X1/2.
¿From this property of f and properties of the semigroup e−tA generated by the
operator −A (see Sec. 2.1), using the arguments as in [8, Chapter 3], we obtain
the following proposition on the existence and the smoothness of the local mild
solution.

Proposition 3.1. Assume that f satisfies the condition (1.2). Then for any R >
0 and u0 ∈ X1/2 such that ‖u0‖X1/2 6 R, there exists T = T (R) > 0 small
enough such that the problem (1.5) has a unique mild solution u ∈ C([0, T );X1/2).
Moreover, u is differentiable on (0, T ) and ut(t) ∈ Xδ for any δ ∈ (1/2, 1− γ), and
for all t ∈ (0, T ).

Denote by
〈
,
〉

the pairing between X−1/2 and X1/2. From (1.5) we have〈
ut, ut

〉
+

〈
Au, ut

〉
+

〈
f(u), ut

〉
+

〈
g, ut

〉
= 0.

Hence

‖ut‖2X +
1
2

d

dt
‖u‖2X1/2 +

d

dt

∫
Ω

(F (u) + gu)dx = 0.

Putting

Φ(u) =
1
2
‖u‖2X1/2 +

∫
Ω

(F (u) + gu)dx (3.3)

we obtain
d

dt
Φ(u(t)) = −‖ut(t)‖2X , t ∈ (0, T ). (3.4)

Theorem 3.2. Assume that f satisfies conditions (1.2), (1.3). Then for any u0 ∈
X1/2, the problem (1.5) has a unique global solution u ∈ C([0,∞), X1/2).

Proof. Suppose that the solution u is defined on the maximal interval [0, tmax).
Using hypothesis (1.3) and Cauchy inequality we get

Φ(u(t)) ≥ 1
2
‖u(t)‖2X1/2 −

µ

2
‖u(t)‖2 − C(Ω)− ε‖u(t)‖2 − 1

4ε
‖g‖2.
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By choosing ε small enough such that µ + 2ε < λ1 we obtain

Φ(u(0)) ≥ Φ(u(t)) ≥ 1
2
(1− µ + 2ε

λ1
)‖u‖2X1/2 − C.

Hence
‖u(t)‖X1/2 6 M, ∀t ∈ [0, tmax).

This implies tmax = +∞. Indeed, let tmax < +∞ and lim supt→t−max
‖u(t)‖X1/2 <

+∞. Then there exists a sequence (tn)n>1 and a constant K such that tn → t−max,
as n → +∞ and ‖u(tn)‖X1/2 < K, n = 1, 2, . . . . As we have already shown above,
for each n ∈ N there exists a unique solution of the problem (1.5) with initial data
u(tn) on [tn, tn + T ∗], where T ∗ > 0 depending on K and independent of n ∈ N.
Thus, we can get tmax < tn + T ∗, for n ∈ N large enough. This contradicts the
maximality of tmax and the proof of Theorem 3.2 is completed. �

3.2. Global attractor. Using the arguments as in proof of Theorem 3.2, we see
that, for all R, u0 with ‖u0‖X1/2 6 R, there exists a number M > 0 only depending
on R such that ‖u(t)‖X1/2 6 M for all t > 0. In other words, the orbits of bounded
sets are bounded.

Theorem 3.3. Under conditions (1.2)-(1.4), the semigroup S(t) generated by (1.5)
has a compact connected global attractor A = Wu(E) in X1/2.

Proof. Firstly, from (3.4) and the proof of Theorem 3.2 we see that γ+(B) is
bounded for any bounded subset B of X1/2 and the function Φ defined by (3.3) is
a strict Lyapunov functional.

Notice that the set of equilibrium points

E = {z ∈ X1/2 |Az + f(z) + g = 0}.
Let z ∈ E, we have

0 = ‖z‖2X1/2 +
∫

Ω

(f(z)z + gz)dx.

Using hypothesis (1.4) and Cauchy inequality we obtain that

‖z‖X1/2 6 M, for all z ∈ E,

i.e. E is bounded in X1/2. Thus, in order to prove the existence of the global
attractor, we only need to prove that S(t) is asymptotically compact in X1/2.

Let (un)n≥1 be a bounded sequence in X1/2 and tn → +∞. Fix T > 0, since
{un} is bounded and orbits of bounded sets are bounded, {S(tn−T )un} is bounded
in X1/2. Since X1/2 is compactly embedded in X, there is subsequence {S(tnk

−
T )unk

} and v ∈ X1/2 such that vk = S(tnk
− T )unk

⇀ v weakly in X1/2 and
vk → v strongly in X as k →∞. We will prove that S(tnk

)unk
= S(T )vk converges

strongly to S(T )v in X1/2, and thus S(t) is asymptotically compact.
Denote vk(t) = S(t)vk, v(t) = S(t)v, we have

vk(t) = e−Atvk −
∫ t

0

e−A(t−s)(f(vk(s)) + g)ds,

v(t) = e−Atv −
∫ t

0

e−A(t−s)(f(v(s)) + g)ds.

Hence

‖vk(t)− v(t)‖X1/2 6 C1t
−1/2‖vk − v‖+ C2

∫ t

0

(t− s)−1/2−γ‖vk(s)− v(s)‖X1/2ds.
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By the singular Gronwall inequality (see Lemma 2.1), there is a constant C such
that, for t ∈ (0, T ],

‖vk(t)− v(t)‖X1/2 6 Ct−1/2‖vk − v‖,

in particular,
‖vk(T )− v(T )‖X1/2 6 CT−1/2‖vk − v‖.

Since vk → v in L2(Ω), vk(T ) → v(T ) in X1/2 as k → +∞. This implies that S(t)
is asymptotically compact. Applying Theorem 2.2, we obtain the conclusion of the
theorem. �

The following proposition describes the asymptotic behavior of solutions of (1.5)
as t → +∞.

Proposition 3.4. Under the conditions (1.2)–(1.4), the semigroup S(t), t > 0,
generated by (1.5) has a global minimal attractor M, given by M = E, in the space
X1/2. In particular, we have

lim
t→+∞

dist(S(t)y, E) = 0 for every y ∈ X1/2.

Proof. The existence of M follows directly from the fact that the semigroup S(t)
has a compact global attractor (see Sect. 2.2). To prove the second statement, we
will show that M = E.

It is obvious that E ⊂ M. We now prove that M ⊂ E. Indeed, since M =
∪

z∈X1/2
ω(z), it suffices to show that ω(z) ⊂ E, for all z ∈ X1/2. Taking a ∈ ω(z)

arbitrarily, by the definition of ω(z), there exists a real sequence {tn}, tn → +∞,
such that S(tn)z = u(tn) → a. Hence and since the Lyapunov functional Φ is
bounded below, it implies that

Φ(a) = lim
t→+∞

Φ(u(tn)) = inf{Φ(S(t)z) = Φ(u(t))|t > 0};

i.e. Φ is constant on ω(z). Therefore, by the nonincreasing property of Lyapunov
function along the orbit S(t)z and the positively invariant property of ω(z), we
conclude that a ∈ E. This completes the proof. �

Proof of Theorem 1.1. The conclusion follows from Theorems 3.2, 3.3 and Propo-
sition 3.4. �

3.3. Remarks. (1) One can extend the results of this paper to the equation in the
following form

ut −Gα1,...,αmu + f(u) + g(x) = 0, x ∈ Ω, t > 0,

where Ω is a bounded smooth domain in RN0×RN1×· · ·×RNm , (x0, x1, . . . , xm) ∈ Ω,
Gα1,...,αm

= ∆x0 + |x0|2α1∆x1 + · · · + |x0|2αm∆xm
. Note that in this case we

still are able to define the space S1
0(Ω) and have the embedding theorem which

are similar to those in Sec. 2.1 (for more details, see citeTh-T). Here N(k) =
N0 + (α1 + 1)N1 + . . . . + (αm + 1)Nm.

(2) One can extend the results of this paper to the case the system in the potential
form

Ut − Lα1,...,αm
U +∇F (U) + G(x) = 0,
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where Ω is a smooth bounded domain in RN1 × RN2 , U = (u1, . . . , um) is the
unknown function, Lα1,...,αm = diag(Gα1 , . . . , Gαm) G = (g1, . . . , gm) ∈ (L2(Ω))m

given and F : Rm → R satisfies the following conditions∣∣∣ ∂F

∂ui
(u)− ∂F

∂ui
(v)

∣∣∣ 6 c0

(
1 +

m∑
i=1

|ui|ρ +
m∑

i=1

|vi|ρ
) m∑

j=1

|uj − vj |,

F (u1, . . . , um) > −µ

2
(u2

1 + · · ·+ u2
m)− C1

U∇F (U) = u1
∂F

∂u1
+ · · ·+ um

∂F

∂um
> −µ(u2

1 + · · ·+ u2
m)− C2,

where 0 6 ρ < 4
N(α)−2 , N(α) = max{N(α1), . . . , N(αm)}, N(αi) = N1+(αi+1)N2;

µ < λ1, λ1 is the minimum of the set containing first eigenvalues of−Gα1 , . . . ,−Gαm

in Ω with homogeneous Dirichlet condition; C1 and C2 are the nonnegative con-
stants.

In the case α1 = · · · = αm = α, one can also extend these results to the more
general system

Ut −DLαU +∇F (U) + G(x) = 0,

where F,G as above; D is a positively definite, symmetric, m × m real matrix;
Lα = diag(Gα, . . . , Gα).
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