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PARABOLIC BOUNDARY-VALUE PROBLEMS WITH
EQUIVALUED SURFACE ON THE DOMAIN
WITH A THIN LAYER

MEIHUA DU, FENGQUAN LI

ABSTRACT. We study the existence, uniqueness and limit behavior of solutions
to parabolic boundary-value problems with equivalued surface on a domain
with a thin layer.

1. INTRODUCTION

Motivated by the study of resistivity well-logging in petroleum exploitation, the
boundary value problem with equivalued surface, a new kind of boundary value
problem for partial differential equations was proposed in 1970’s. It is a kind of
non-local boundary value problem, which can also be used to give mathematical
descriptions for other problems in physics and mechanics (see [7, 8, 10, 12]).

In single-well system of heterogeneous synthetic reservoirs, for the cause of mud
contamination in the process of well drilling and well completion, a polluted zone
is formed. However, this zone is a thin layer compared with the whole heteroge-
neous reservoirs (see [2 5, 6]). In practical calculation, the variation of solution
near the thin layer should be quite large, and then in finite element procedure, it
is necessary to have a refined partition of elements near the thin layer. This causes
a complexity in computation. To get rid of this difficulty, when the thin layer is
rather thin, the thin layer can be approximately regarded as an interface and cor-
responding the boundary value problem with equivalued surface on the thin layer
can be approximately replaced by the boundary value problem with equivalued in-
terface. To prove the above conclusion, we need to study existence, uniqueness and
limit behavior of solutions for parabolic boundary value problems with equivalued
surface on a domain with thin layer. Similar problem for elliptic equation has been
studied in [9].
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Here we consider the following parabolic boundary value problems with equival-
ued surface on the domain with thin layer:

N

ou 0 ou .=
ot~ 2 o, (e ) = Flat) i Q.
=1 [ J
u=0 on2,
w=0C() on S, (1.1)
ou ou
f, o, 3= /fz p At) ae t €(0,7),

u(z,0) = @o(z) in 0 UQ,,

v~vhere~Q = (Q} UQy) x (0,T), 2 =T x (0,T), C(t) is a function to be determined,
¥ = (ThUQUT'2) % (0,T), T is a fixed positive constant, and the conormal derivative
is

N

ou _ ou
% = ijZ::L Q5 (Qf, t)ai‘rjnl . (12)

0 Q Qo Ty I, T

FI1GURE 1. The compostion of Q with thin layer Q

Let Q € RY(N > 2) be a bounded domain with smooth outside boundary I'
(see Fig.1). Suppose that Q is composed of three non-overlapping subdomains 0,
Q and Q, and ['; and 'y are the interfaces of Q with €y and Qs respectively. The
unit normal 7 = (n1,ng,...,ny) takes the inward and outward directions (or vice
versa) for the domain Q on f‘1 and f‘g.

This paper is organized as follows: In section 2, we will prove the existence
and uniqueness of weak solution to problem . In section 3, we will discuss
parabolic boundary value problem with equivalued interface. In section 4, the
limit behavior of solutions to problems will be studied.

2. EXISTENCE AND UNIQUENESS OF WEAK SOLUTION TO PROBLEM (1.1J

In this section, we discuss the existence and uniqueness of weak solution to
problem (1.1]). We first state the following assumption:
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(HO) The functions a;; are piecewise smooth in ) and a;; = a;;; there exist two
constants a, 8 > 0 such that
N

ale? < > (e 068 < BIEP, VE=(G,6,... &) RN, (21)

i,j=1
a.e. (z,t) € Q, where Q@ = Q x (0,7). We also assume F € L*(Q),
A€ L*(0,T), g € L*(2).
Let
V={ve HyQ): vl uaur, = constant},
U={veW,"(Q):v(z,T) = 0,05 = C(1)},
where C(t) is arbitrary function of t.

Definition 2.1. A measurable function u € L?*(0,T;V) is called a weak solution
to problem (|1.1]), if for any ¢ € U,

T T
oY / /~ ou O

— u—dxdt + Aji —— dxdt
/0 /ﬁluﬁz ot o Ja jaﬁﬂj ox;

T T
- / /  Fodedt + /  Gol@)d(e, 0)de + / A(t)]sdt.
0 Q1UQ Q1UQ 0

Now we can state the existence and uniqueness of weak solutions to (1.1)).

Theorem 2.2. Assume (H0), ¢o € L*(Q), F € L*(Q), A € L*(0,T). Then (1.1)
admits a unique solution u € L*(0,T;V) in the sense of Definition (2.1)).

Proof. (1) Existence: We will first consider the problem:

(2.2)

i = O di -
a; a. Ni' yU)a——) — r ) i ’
ot = 8.’1;7; (a’](z t)axj) ('1: t) m Q
u=0 on X,
a=C(t) on(I'1UTL) x (0,T), (2.3)
o1 ot
—ds = —ds+ A(t et 0, T
fl a,n’L ° 1:\2 anL 8 + ( ) e < ( ’ )’
a(z,0) = @o(z) in O UQs.
Let ~ ~
Vi={ve  H(QUQy) :v|r =0, vlg uf, = constant}. (2.4)

Here we will use the Galerkin method (cf [ [13]). Taking a basis {wy}32,
of Vi that is complete and orthonormal in L2(Q; U Q). For any fixed m, let
Sm = span{w,wa, ..., wmn}.

We set u,, = Z;nzl CkmWi, then Galerkin equations read as follows:

i N Oy O
—mwkdw—&—/ di»——mdx:/ Fopdx + A(H)we|s 5.,
/5:21UQQ ot 0, U0, i,jZ:I J 6351 6Ij U8, ( ) ‘F1UF2

(2.5)

Um(z,0) = Z(@o,wk)wk = chowk = Gom(x). (2.6)

k=1 k=1
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Namely, for almost all ¢t € (0,7),

N

d / _ Ow; Owy, /
—cCpm () + Cim (T ;i — ——dx = Fuwpdz + A(t)wk|=. 5.,
im0+ am® D Giige 5o, fon, Tl T A,
(2.7)
ckm(0) = (@0, wk) = cro- (2.8)

By the theory of system of ordinary differential equations, problem ([2.7)—(2.8)
has a unique solution vector (Cim,Com, - - - s Cmm ). Multiplying (2.7)) by cgm(t) and
summing over k, we obtain

N ~ ~
m\’" ~i-7 d
2 dt” ( )”L2 (1) /Qluflz i,j2:1a ’ Oz; Oz; ’

:[ _ Figdr + A(t)tm|p, of, -
Q1UQ

Integrating over (0, 7) with respect to ¢, we have

1 ~’ITL ~m
/ (x,7 d$+/ / aijaLau daxdt
Qluﬂz QlLJQQZ Ox; Ox;

1
/ / Fum dIdt + / A(t)ﬂm|f1uf2 dt + . / (IOOTYL dl‘
QlLJQZ 2 Qluﬁz

Let Q, = (Q; UQy) x (0,7), by (HO), Holder’s inequality and the trace theorem,
we have

1/ ~2 ~ 2
= u,, (z,7)dx + o|| D, ~
o ) dr el Dl
Y 1/2
< 1Fl o @il 2,y + 51603200 o WQ | 14 / i2,ds) i

SFl L2 grylltmll L2,y + 5”9270”%2(9 =5 1A 2201y (il 25,

T, |1/2
+ [1Dtmll2g,))

C N 1, .
< (1P 2y + TATELG zzom ) limll 2, + 310l

+ =715 TRE [A® | L20,7) 1Dl || 126, -

By Young’s inequality and Gronwall’s inequality, we obtain

l@mllr2(0,mv1) < C, (2.9)
||ﬁm||Loo(o,T;L2(Qlug§2)) <C, (2.10)

where C' is a positive constant independent of m.
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Integrating (2.5) over (¢,t + At), we get

tHat N Oty Ow
Ciom (t + At) — cpm(t) + / / a; [m TR Qedr
t Ql UQ2 ZJZII ! 8&:] 8'TZ

t+At T
— / / Fuwy dzedr + / A(T)Wk|f1uf2 dr.
t Q1UQ, 0

Condition (HO), (2.9) and trace theorem imply
[ (£ + At) = e (B)] < C(L+ || Fllz2(@) + [[All20.m) llwnl i [AL 2, (2.11)

where C' is a positive constant independent of m, k. From the above inequality, we
can deduce that for any fixed positive integer k, ci,, is equicontinuous with respect
to m in [0,7]. Thus by Ascoli-Arzela theorem, we can extract a subsequence of
{ckm} (still denoted by {ck.m,}) such that as m — oo,

Ckm — ¢ uniformly in [0, T (2.12)
For any positive integer r < m, (2.10)) yields

Y .t <, Ve (0,7), (2.13)
k=1

where C' is a positive constant independent of m, k,t. Let m — oo in (2.13), then
for any positive integer r we have

i ci(t) < C. (2.14)
k=1

Let a(x,t) = Yoo, cx(t)wr(z), (2.14) imply that @(z,t) € L*(Q; U Q) for all
t € [0,T]. For any fixed positive integer k, from (2.12)) it follows that

(U (-5 t) — (-, 1), wk) = Ckm — ¢ — 0, uniformly in [0, T7. (2.15)
Noting {wy}?2, is a complete orthonormal basis in L?(Q; U Qy), we deduce
tyy — @ weakly in C([0,T]; L2(Q; UQy)). (2.16)
Thus and imply that
U — @ weakly in L?(0,T; V7). (2.17)
Convergence yields
u, (-,0) — a(-,0) weakly in L?(Q; U Qo). (2.18)

Consequently @(0) = @g.

For any given a sequence of smooth function {i(¢)}72, defined in [0, T] with
Yi(T) = 0, multiplying the Galerkin equation by ¥ (t) and using integration
by parts, we obtain

T T N ~
~ 87/% / / - &Uk 8um
— Wy, —— wirdxdt + ;jj—— ——Ypdadt
/0 /fhufzz ot " 0 Ja,u, 1]2::1 T ox; dx; "

T T
:/ ﬁ ~ kawkdxdt—i—/ Awwk‘flqudt—f'/ _ SZ’Om(x)@/J(O)wkdx.
0 Q1UQo 0 Q1UQ2
(2.19)
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According to (2.17)-(2.18), let m — oo in (2.19)), it is easy to prove that

N OJwy Ot
/ / u—wkdxdt—&- / / yj = ydadt
Qluﬂz QlLJQQZ a a

(2.20)
/ / Fg/}kwkdxdt+/ AYwils o, dt+/ @o(z)(0)wrdz.
Qluﬂz QIUQZ
For any positive integer r, let
Pla,t) = i(twr(z). (2.21)
k=1
Replacing 1y (t)wi (z) by the above ¢(z,t) in (2.20)), we have
N
/ / u—dxdt + / / 3 (;% g‘u dadt

Qluﬂg Qluﬂg ij=1 (222)

:/ [ i Fwdxdt—i—/ Aw\fluf2dt+/ ~ @o(x)Y(x,0)dx.
0 Q,UQ5 0 QUQ5

Since the set composed of functions such as (2.21)) is dense in the space U, then for
any ¥ € U (2.22)) holds. Thus we obtain @ is the weak solution to problem ({2.3]).

Let
_Ju in Q,
v {é(t) in 5. (2.23)

It is easy to verify that u € L?(0,T; V) and satisfy (2.2). Thus we obtain u is the
weak solution to problem ([1.1J).

(2) Proof of uniqueness: If u; and us are two weak solutions to problem (1.1)), by
Definition 2.1 we get

g N r du; O
- ui—dxdt—i—/ / ] : dx dt
/0 /Ql UQs ot o Jao /5= J 6 8

T T
:/ / ) Fwdxdwr/~ ) gbo(:v)w(x,O)dx—f—/ Alt)ledt, i=1,2.
0 Q1UQ Q1UQ, 0

Let up = u1 — uo, then the above equality yields

T T N

oY / / _ Oug OY
— ug——dadt + Qi —— dzdt = 0. 2.24
/0 /leu()g ot 0o Ja 121 T 0x; Oz, (2.24)

For a given 0 < h < T, let
1 [t uop, 0 <t < (T—h)
=7 d = . ’ 2.25
Uop, h/t ug(z,7)d7, {O (T—h)y<t<T, (2.25)
0 t>(T'—h) L gt

=40 0<t<(T—h), Séh:ﬁ/ (e 7)dr (2.26)

t—h

0 t<0,
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It is easy to prove that ¢, € U. Taking ¢ = ¢, in (2.24)), we have

// uoa(phdxdt

QlLJQz

// z,t) —plat =), o
QlLJQg h

/ uoPp(x, t)dxdt — / / uoP(x,t — h)dxdt}
1UQQ QlUQQ

T—h
uoPp(x, t)dxdt —/ / (z,t + h)p(x, t)dxdt
QQ QlUQQ

"
T—h
/ wop(x, t)dzdt —/ / (z,t+ h)p(z, t)da:dt]
UQQ QlUQg

[uo(x,t + h) — u(x,t)]
Qluﬁg h’

T h
/ / 8u0h p(z,t)dzdt.
Q1 UQQ

Similarly to the above equality, we can get

dug 0P,
/ / Z % 5 dtdz

i,7=1

/ / Z Guo / DO T) 4
et 833] —n 0%,
_ Oug /t 0p(x,T)
a; ————=drdtdx
/A - jaxj —n Oz,
1 T=h 9¢ 8u0
_h/ / 3%/ Zama dtdr -‘r/o 5391/ Zaw
auo
i dtd
+/T n 0T / Z i j }
1 T=h Op(z, 1) THh N OJug
-2 /Q /O o / iy oo
T—h
8<p x,t) _ Ouyg
/Q/ h »Z e ) dtdz.
ij=
By (2.24), (2.27) and (2.28)), we deduce

T—h T—h N
Ouop, _ Oug\ Op(x,t)
© dzdt + / / Qij=— daxdt =0.
/o /Qlufzz ot 0 aQ (i;I J Ox; ) R Ox;

o(z, t)dxdt

(2.27)

(2.28)
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Taking ¢ defined in (2.25)), we get

T—h T—h N
auOh / / - 6’&0 GUQ}L
Uoh, dzdt + Aji —— dedt =0.
/o /f'zlufzg "ot 0 Q (”z_:l ! 3%)’1 Oz;

Letting h — 0 in in the above equation, we have

1 v T X Gued
o [ e+ [ [ G S e —o,
2 QU0 0 0 Q =1 al‘l 8xj

T
/ /|Du0|2dxdt:0.
0 Q

Thus we can prove ug = 0 a.e. in §2. Thus the proof of uniqueness is completed. [

Hence

3. PARABOLIC BOUNDARY VALUE PROBLEM WITH EQUIVALUED INTERFACE

To study the limit behavior of solutions to problem , we need to study the
following equivalued interface problem . Here we give another division of € as
shown in Fig.2. € is composed of two non-overlapping subdomains 1 and 2, and
[ is the interface of Q; and Q. Denote Qp = (2, U Q) x (0,T),%0 =T x (0,T).

Q1 QQ T I

FIGURE 2. The compostion of © with thin interface r

In this section we consider the boundary value problem with equivalued interface:

N

ou 0 ou

o A Y F ;

ot mE:l oz, (ai;(z,t) &Ej) (z,t) in Qo,
u=0 onX,

uy =u_ =C(t) on X,
/(ﬂ) ds:/(i“) ds+ A(t) ae t €(0,T)
i ong’+ T onp’~ ’ ’
u(z.0) = po(x) i 9,

where the subscripts + and — denote the values on both sides of T, and the unit
normal vector i = (n1,...,ny) takes the same direction on both sides of T".
We state the following assumption to a;:
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(H1) The functions a;; are piecewise smooth in @, a;; = aj;, and there exist two
constants a, 8 > 0 such that

N
a‘§|2 < Z a’ij(‘rvt)fifj < ﬂ|£‘2a v£ = (617527~ <. 7£N) € RNv a.e. (Z‘,t) € Q
i,j=1
Let
Vo = {v € Hj(Q) : v|f = constant}, (3.2)
Uo = {ve W, (Q):vlg, = C(t), v(x,T) =0}. (3.3)

Definition 3.1. A measurable function u € L?(0,T;Vp) is called a weak solution
to problem (3.1)), if for any ¢ € U,

/ /u—dxdt—l—/ /Z ”g;/} aa; xdt
i O

_ / Fudzdi + [ polpbla,00de + / Altyls, dt.
o Ja Q 0

Now we state the main result of this section as follows:

Theorem 3.2. Suppose that ¢y € L*(Q), F € L*(Q), A € L*(0,T) and (H1) hold.
Then there exists a unique weak solution u € L?(0,T; Vo) to (3.1).

The proof of this theorem is similar to Theorem so we omit it.

4. LIMITING BEHAVIOR OF SOLUTIONS TO PROBLEM (|1.1])

Let £ > 0 be a small parameter and replace Oy, Qs, by 5, 5, ¢, also interface
I'y and I'; by the interface I'f and I'j, respectively as shown in Figure 3. Let
Q= QU5 x(0,7),2, =500 UTY) x (0,7).

F1GURE 3. The compostion of {2 described by parameter ¢
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Here we will discuss the problem

N
Oue > 0 (afj(x,t)a—us_) = F(z,t) inQ°

ot by o0x; Ox;
us =0 on X,
u. = C.(t) on X, (4.1)
Oug Oug
ds = ds+ A(t) ae. t €(0,7),
e Onpe s Onge ®) (0,7)

ue(2.0) = @oc(x) in Q7 UQS.
We state the following assumptions:
(H2) I c Qe for all e > 0; QF shrinks to I, as € — 0.
(H3) For any given domain 2 such that I' C ©Q C €, then for any € > 0 small
enough, we have Q. C Q.
(H4) af; are piecewise smooth functions in Q, af; = aj;,
constants «, 8 > 0 independent of € such that

and there exist two

N
alg? < e t)gE < BIEP, YV E=(&,&,...,En) ERY,

1,j=1

a.e. (z,t) € Q. ) o
(H5) For any given domain €2 such that I' C  C Q, then

az;(z,t) — aij(x,t) strongly in L>(0,T; L>®(Q\Q)).
Set
V. ={ve H}N): v|fiuﬁgufg = constant },
U = {U € WZIJ(Q) : U(ZaT) =0, U|f)5 = C(t)}a
where C(t) is arbitrary function of t.

Definition 4.1. A measurable function u. € L?(0,T;V.) is a weak solution to
problem (4.1)), if for any ¢ € U,

T T N
oY / / Oue OY
- e —dxdt + as; dzdt
/0 /TUQZ 8t 0 Q i,jZZI g ﬁxj 81’1

T T
_ / / Fydadt + / po () (x,0)dx + / A(t)ls, dt.
0 sUQg Q7003 0

Remark 4.2. For every fixed e > 0, if (H4) and ¢o. € L?(Q), F € L?(Q), A €
L?(0,T) hold, we can similarly prove that (4.1)) admits a unique weak solution
ue € L2(0,T; V) in the sense of Definition

(4.2)

To prove the main result in this section, we need the following Lemma.

Lemma 4.3. Under hypothesis (H2)—(H3), for any given ¢ € Uy, there exist ¢, €
U. such that as e — 0,

Y — 1 strongly in Uy, (4.3)
where Uy can be seen in (3.3)).
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Proof. For convenience, we assume the origin is the interior point of Qs (see Figure
2).

QO Q I's T IS T T

FIGURE 4. Scaling down or up the compostion of € in Figure 2

For fixed € > 0 small enough, let Q5 = {z(1 —¢)|z € Q}, Q) = {:%|z € Do},
Qs = O\, O° = 0\Q5. Defining I'* = {z(1 —¢)|z € I'} and assuming s, T are
the interfaces of Q° with Q5 and 5, we can write I'® x (0,T) = . (see Figure 4).
Let

we = '(/);_ - a_a
where
(@((1 =)z, t) — ¥ F(a,0)", (z,t) € Q5 x (0,7),
sup,
u]g_ - (w(xﬁt)‘fx(O,T) - Susz ¢+(Z‘,t))+, (l‘,t) € (f(i U QE U f%) X (OvT),
(¥(322, 1) — supy, ¥ (1)) ", (z,t) € Q5 x (0,7),
and

(¥((1 - )z, t) —infs, Y~ (2,1)) , (x,t) € Qf x (0,7),
b =9 (W@ )lp o — infu. o7 (2,1) 7, (z,8) € ([FUNFUTS) x (0,7),
(1/1(1‘””:,15) —infy_ ¥~ (2,1)) (z,t) € Q5 x (0,7).
Obviously, ¥ € U., - € U, so we have . € U.. It is easy to prove that ¥ and
17 converge strongly to 1 and ¢~ in Uy respectively. We omit the details. (]
Now we give the limit behavior of solutions to as follows.

Theorem 4.4. Suppose that (H1)-(H5) and F € L*(Q), A € L*(0,T) hold, if as
e —0,

©o- — o weakly in L*(£Y), (4.4)
then for every weak solution ue to (4.1) we have
u. —u  weakly in L*(0,T;Vp), (4.5)

where u is the weak solution to problem (1.1) and definition of Vi can be seen in
B:2).
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Proof. Let u. be the solution to problem (4.1)). For a given 0 < h < T, let up and
uop, be replaced by u. and uep, in (2.27)) respectively. Taking ¢ = ¢y, (see (2.26]) in

(4.2), we have
oo, aus Opn
dxdt dxdt
) g e [ /Z 92, 00; "

- / / Fendadt + / A(t)pn (. )5, dt.
0 cUQs 0 °
Similar to (2.27) and (2.28)), it is easy to prove that

T ~ T—h
—/ / uei&phdmdt:/ / Lushuahdxdt»
EUQ; 8t EUQE at
/ / Z e Ouc Opn \ o /T h/ Z 8u5h aus) dadt,
et iy Ox; Ox; 835z

T—h
/ / nghdxdt = / / 'U,EhthlL'dL
0 HUI 0 HUIPH
T 1 T 1 T—h
/ A(t)¢h|j dt = T/ / A(t)(ﬁhdsdt = T/ /(A(t))hughdsdt.
0 c T Jo Jr T Jo f

Thus we can write the above expression as

T—h T—h
Oue du, due
/ / ﬂushdxdt—l—/ Ueh (afj Y )hdxdt
0 HUH ot 0 [e) 6$Z 8501

T—h 1 T—h
:/ / Uep Frdxdt + T/ /(A(t))huahdsdt.
0 cUQS T} Jo f

Let h — 0 in the above expression, we have

1 e Oue
- / ugdx / / § j a“ e qzdt
2 Jasuag i O,

T
:/ / uaFdxdt—Ff/ /Auedsdt.
o Josuos IT| Jo Jr

Condition (H4), Holder’s inequality, the trace theorem, and Poincédre’s inequality
yield

(4.6)

al|Duc |72

1 TA 5 \ /2
< ~
< el Il + iy [ 141( [ wzas) e

¢ ’ 2 2. \/?
< 1wl @1 Fllisa) + 7z [ 141 [ e+ Ducfar)
|F| / Qo
< N Duell 2@ 1Fll2(@) + CllAl 20,1 1 Ducl 12(q)
< (CllAllz20,) + I Fll 2@l Duell L2 (@) -
where C' is a positive constant independent of €. By Young’s inequality we obtain

| Ducl|2(q) < C. (4.7)
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Hence we get
[uell2(0,m3v0) < C, (4.8)
where C' a positive constant independent of ¢.

From the above inequality, we can extract a subsequence of {u.} (still denoted
by {uc}) such that

u. — u  weakly in L2(0,T; Vp). (4.9)
By Lemma [£.3] for any given ¢ € Uy, there exists ¢. € U, such that
e — 1 strongly in Uy, as e — 0. (4.10)

Fixed ¢y > 0 and for any 0 < € < g9, we have Qf c Qco and Ve, € Ue, taking

¥ =1, in ([£.2), we have
87/)50 3u5 61/)50
/ /EUQE ddt+/ /Z (%czddt

T
= / / Fipo dadt + / ©oePe, (x,0)dzdt + / A(t)he, s dt
0 cUQs QsUns 0 o
By (4.4), (4.9) and the absolute continuity of Lebegue integral, it is easy to prove

(4.11)

that
r OPe / r / oY

U —2dxdt — u——=dzdt, 4.12
/0 /qug ot o Ja Ot (4.12)

T T
/ / Fi. dedt — / / Fip dzdt, (4.13)

o Jasuas 0o Ja

/ ©oe () e, (z,0)dz — / ©0(2)1he, (x,0)dz. (4.14)

QsUOS Q

Next we prove that
T N T N
o Jo 2 O0z; Oz; o Jo 2 83:] 0x;
For any given Q such that T' ¢ Q C ©, we have

//Z 8“€aaﬁiﬂd dtf//Za”auaweod dt

e ) 8“5 e, 8¢ao O(ue: —u)
/ /Q\Q Z @i — i) Ox; Ox; s dt+/ /Q\Q ! 0xi Oy ot

1]1 1,7=1

8u5 aszO Ou ango

=l + 114111 + IV.

(4.16)
For any given § > 0, by (H1), (H4), (4.9) and the absolute continuity of Lebegue
integral, we can take {2 so small that

5
1] + 1V < 3. (4.17)
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Following the above €0 is chosen, by (H5) and noting (.9) and (4.10), then there
exists 0 < g1 < gg such that for any € with 0 < € < €1,

b
[+ 1) < 5 (4.18)
From (A.16)-(@.18) we get [{.15). Let & — 0 in (£.11), (T.12)~[@.15) yield

/ / 81/’50 dwdt + / / Z aij 5 Ou az/’5001 dt

. (4.19)
- / / Fu., dedt + / ooy (,0)dz + / A5, dt
0o JQ Q 0
Using (4.10)), we get
Yo, — 1 strongly in C([0,T]; L*(Q)), as g — 0. (4.20)
Hence as ¢g — 0, we also have
Ve, (2,0) — 1h(x,0) strongly in L*(Q). (4.21)
By and trace theorem, we can deduce
e, — ¥ strongly in LQ(EO), as gg — 0. (4.22)
Hence
1/150|i£0 = 1/150|§0 — 1/1\20 strongly in L*(0,T). (4.23)

Let eg — 0in (4.19)), by (4.10)), (4.21)) and (4.23]) we can deduce u satisfies (3.4)). By
the uniqueness of weak solution to problem (3.1]), (4.9) holds for the whole sequence
{uc}. This completes the proof. O
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