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DARCY-TYPE LAW ASSOCIATED TO AN OPTIMAL CONTROL
PROBLEM

T. MUTHUKUMAR, A. K. NANDAKUMARAN

Abstract. The aim of this paper is to study the asymptotic behaviour (ho-

mogenization) of an optimal control problem in a periodically perforated do-

main with Dirichlet condition on the boundary of the holes. The optimal
control problem considered here is governed by the Stokes system. The holes

are assumed to be of the same order as that of the period. The homogenized
limit of the Stokes system as well as its adjoint system arising from the optimal

control problem is obtained. The convergence of the optimal control and cost

functional is obtained on some specific control sets.

1. Introduction

It is now well known that the fluid flow (governed by Stokes or Navier-Stokes
equations) in a periodically perforated domain (with a large number of small holes)
behaves differently according to the size of the holes (say radius) compared to the
period of the distribution. In fact, there is a critical size of the holes, where system
behaves like a ‘Brinkman-type’ flow. Further, when the holes are much smaller,
in order, than the critical one, the flow is the standard Stokes or Navier-Stokes.
Lastly, when the holes are comparable to the period, then the system tends to a
‘Darcy-type’ law situation (cf. [1, 2, 3, 17, 12]).

In this article, we consider the Stokes system (it can be carried to non-linear
Navier-Stokes system as well) when the holes and period are of the same order
with a control acting on the system and an associated cost functional. Some results
regarding the critical and subcritical case were proved in [15]. Substantial study
had been carried out for optimal control problems under various situation where the
state is determined by second order elliptic operators (cf . [6, 7, 8, 14, 10, 5, 11]).

We shall now give some preliminaries and set the environment of the paper.
Let n ≥ 2 and Ω be a bounded open set in Rn. Let {e1, e2, . . . , en} be the

canonical basis of Rn. Let Y = (−1, 1)n be the reference cell and S be an open
subset of Y , such that S is contained in an open ball of radius α (0 < α < 1)
centered at the origin. Let Y ′ = Y \ S̄ be the fluid part and S̄ be the solid (or
obstacle) part. If S +Zn = {x+k | x ∈ S and k ∈ Zn}, then, for a parameter ε > 0
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tending to zero, we set Sε = ε(S + Zn). We define

Ωε = Ω ∩ (Rn \ S̄ε).

Observe that Ωε is bounded and we assume that Ωε is connected and its boundary,
∂Ωε, is of Lipschitz type.

In a more general situation, if aε denotes the size (say, diameter) of the obstacle
Sε distributed periodically, then observe that under the above setting Sε is exactly
of order ε, i.e., limε→0(aε/ε) > 0. Following the convention of Allaire [3], we define
σε as the ratio between the actual size of the obstacles and the critical size:

σε =

ε
∣∣log

(
aε

ε

)∣∣1/2 for n = 2,(
εn

an−2
ε

)1/2

for n ≥ 3.

Then, in our setting, we have σε → 0.
The inner-product in (L2(Ω))n is given as:

〈u,v〉 =
∫

Ω

u.v dx =
n∑

i=1

∫
Ω

uivi dx, ∀u,v ∈ (L2(Ω))n.

We shall denote the norm in (L2(Ω))n by ‖ · ‖2 and the norm in (L2(Ωε))n by
‖ · ‖2,Ωε

. For a function g defined on Ωε, we shall denote by g̃ its extension by zero
on Ω∩Sε. The symbol C will always denote a generic positive constant independent
of ε.

Let a, b be given constants such that 0 < a ≤ b. Let B = B(y) be a n×n matrix
with entries from L∞(Y ), Y -periodic in y satisfying

a|ξ|2 ≤ B(y)ξ.ξ ≤ b|ξ|2 a.e. in y, ∀ξ = (ξi) ∈ Rn.

In addition, we assume that B is symmetric. The symmetry assumption will not
play any role in the homogenization process and is inherited from the optimal
control problem.

Let Uε be a closed convex subset of (L2(Ωε))n, called the admissible control set
and f ∈ (L2(Ω))n. Let ν > 0 be the cost of the control independent of ε. Given
θε ∈ Uε, let the cost functional Jε be defined as,

Jε(θε) =
1
2

∫
Ωε

B
(x

ε

)
∇uε.∇uε dx +

ν

2
‖θε‖2

2,Ωε
(1.1)

where uε = uε(θε) ∈ (H1
0 (Ωε))n is the state in the unique pair, (uε, pε), of solution

of the Stokes equation
∇pε −∆uε = f + θε in Ωε,

div(uε) = 0 in Ωε,

uε = 0 on ∂Ωε.

(1.2)

The pressure pε is unique up to an additive constant and thus belongs to L2(Ωε)/R.
It is a classical result from the calculus of variations that there exists a unique
θ∗ε ∈ Uε such that

Jε(θ∗ε) = min
θε∈Uε

Jε(θε). (1.3)

The system (1.1)–(1.2) was considered by Saint Jean Paulin and Zoubairi (cf.
[15]) in the abstract framework introduced by Allaire in [2, 3]. They had considered
the admissible control sets Uε to be of obstacle-type. They studied the cases when
limε→0 σε > 0 and limε→0 σε = ∞. This, precisely, represents the critical and
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subcritical case, where the holes are much smaller. However, they were unable to
conclude concerning the case limε→0 σε = 0. We remark that the homogenization
in the comparable case is always different even in Dirichlet problem of Laplacian.

In this article, we study the asymptotic behaviour of the optimal control problem
(1.1)–(1.2), when limε→0 σε = 0. Our method is based on two-scale convergence.
We end this section by recalling the notion of two-scale convergence. We refer to
[13, 4, 12, 9] for a detailed study of the same and certain applications.

Definition 1.1. A sequence of functions {vε} in L2(Ω) is said to two-scale converge
to a limit v ∈ L2(Ω× Y ) (denoted as vε

2s
⇀ v) if∫

Ω

vεφ
(
x,

x

ε

)
dx →

∫
Ω

∫
Y

v(x, y)φ(x, y) dy dx, ∀φ ∈ L2[Ω;Cper(Y )].

The most interesting property of two-scale convergence is the following compact-
ness result.

Theorem 1.2. For any bounded sequence vε in L2(Ω), there exists a subsequence
and v ∈ L2(Ω× Y ) such that, vε two-scale converges to v along the subsequence.

The approach of the article is as follows: In the next section, we introduce the
adjoint problem associated to the optimal control problem (1.1)–(1.2) and homog-
enize the state-adjoint system. This yields a Darcy-type result for the adjoint state
as well. Finally, we consider special situations where the optimal control problem
can be homogenized.

2. Homogenization Process

We begin by stating a lemma on the Poincaré inequality proved by Tartar (cf.
[17]) when the size of the obstacles aε are exactly of the order of ε.

Lemma 2.1. There exists a positive constant C, independent of ε, such that

‖v‖2,Ωε
≤ Cε‖∇v‖2,Ωε

, ∀v ∈ H1
0 (Ωε).

Let θ∗ε be the unique optimal control of the system (1.1)–(1.2). Let (u∗ε, p
∗
ε) ∈

(H1
0 (Ωε))n ×L2(Ωε)/R be the state and pressure corresponding to θ∗ε given by the

system of equations:
∇p∗ε −∆u∗ε = f + θ∗ε in Ωε,

div(u∗ε) = 0 in Ωε,

u∗ε = 0 on ∂Ωε.

(2.1)

We introduce the adjoint optimal state associated to the optimal control problem.
Let (v∗ε, q

∗
ε ) ∈ (H1

0 (Ωε))n × L2(Ωε)/R be the solution of

∇q∗ε −∆v∗ε = −div
(
B

(x

ε

)
∇u∗ε

)
in Ωε,

div(v∗ε) = 0 in Ωε,

v∗ε = 0 on ∂Ωε.

(2.2)

Then the optimality condition, in terms of the adjoint optimal state, is∫
Ωε

(v∗ε + νθ∗ε).(θε − θ∗ε) dx ≥ 0 ∀θε ∈ Uε. (2.3)

Note that the symmetry hypothesis on B comes in hand to derive the optimality
condition (2.3).
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Lemma 2.2. Let 0 ∈ Uε for all ε, then {ε−1θ̃∗ε}, {ε−2ũ∗ε}, {ε−2ṽ∗ε}, {ε−1∇ũ∗ε} and
{ε−1∇ṽ∗ε} are bounded in (L2(Ω))n.

Proof. Let wε be the state corresponding to the control θε = 0 in (1.2). Then it is
easy to observe, using Lemma 2.1, that

‖∇wε‖2,Ωε
≤ Cε‖f‖2.

Since Jε(θ∗ε) ≤ Jε(0), we deduce that

‖ε−1θ̃∗ε‖2
2 ≤ C‖f‖2

2

and similarly, we also deduce that

‖ε−1∇ũ∗ε‖2
2 ≤ C‖f‖2

2.

Now using, Lemma 2.1, we get ‖ε−2ũ∗ε‖2
2 is bounded. Hence, using ε−2v∗ε as a test

function in the adjoint state (2.2), we deduce the respective bounds of the adjoint
state. �

It follows from the above lemma that the optimal controls θ∗ε converge to zero
strongly in (L2(Ω))n, u∗ε converge to zero strongly in (H1

0 (Ω))n and the cost func-
tional Jε(θ∗ε) → 0. Our interest is to get information on the further terms on the
asymptotic expansion of these quantities. In fact, there exists θ∗ ∈ (L2(Ω))n such
that ε−1θ̃∗ε ⇀ θ∗ weakly in (L2(Ω))n. More precisely, our objective is to identify
the role of θ∗ in the non-zero homogenized limit of the system (1.1)–(1.2).

We now state a lemma proved in [17, 1].

Lemma 2.3. There exists a restriction operator Rε : (H1
0 (Ω))n → (H1

0 (Ωε))n such
that

(i) u ∈ (H1
0 (Ωε))n ⇒ Rεũ = u in Ωε

(ii) div(u) = 0 ⇒ div(Rεu) = 0 in Ωε

(iii) ‖∇(Rεu)‖2,Ωε
≤ C

[
1
ε‖u‖2 + ‖∇u‖2

]
.

The above lemma is used to prove the following result (cf. [17, 3]).

Lemma 2.4. Let 0 ∈ Uε. Then there exists P ∗
ε and Q∗

ε in L2(Ω)/R such that
P ∗

ε = p∗ε and Q∗
ε = q∗ε in Ωε, and both P ∗

ε and Q∗
ε are bounded in L2(Ω)/R.

We deduce from the a priori estimates obtained in above lemmas that there
exists u∗0(x, y),v∗0(x, y) in (L2(Ω × Y ))n, ξ∗0(x, y), ζ∗0(x, y) in (L2(Ω × Y ))n×n and
p∗0(x, y), q∗0(x, y) in L2(Ω×Y )/R such that, up to a subsequence (cf. Theorem 1.2),

ε−2ũ∗ε
2s
⇀ u∗0(x, y), ε−2ṽ∗ε

2s
⇀ v∗0(x, y),

ε−1∇ũ∗ε
2s
⇀ ξ∗0(x, y), ε−1∇ṽ∗ε

2s
⇀ ζ∗0(x, y),

P ∗
ε

2s
⇀ p∗0(x, y), Q∗

ε
2s
⇀ q∗0(x, y).

Let u∗(x) = 1
|Y |

∫
Y

u∗0(x, y) dy and v∗(x) = 1
|Y |

∫
Y

v∗0(x, y) dy. It is a known fact
from the two-scale convergence theory that, for the same subsequence,

ε−2ũ∗ε ⇀ u∗ weakly in (L2(Ω))n,

ε−2ṽ∗ε ⇀ v∗ weakly in (L2(Ω))n.



EJDE-2008/16 DARCY-TYPE LAW 5

The extension of the pressures are not the trivial extension by zero and it was
observed in [17, 3] that, for the same subsequence, P ∗

ε , Q∗
ε converges strongly in

L2(Ω)/R and, in fact, we get those limits as

P ∗
ε → 1

|Y |

∫
Y

p∗0(x, y) dy strongly in L2(Ω)/R,

Q∗
ε →

1
|Y |

∫
Y

q∗0(x, y) dy strongly in L2(Ω)/R.

Remark 2.5. Given div(u∗ε) = 0 in Ωε implies that div(ũ∗ε) = 0 in Ω, and hence
div(u∗) = 0 in Ω and u∗ · n = 0 in ∂Ω, where n is the unit outward normal.
Similarly, div(v∗) = 0 in Ω and v∗ · n = 0 in ∂Ω (cf. [16, 1]).

We shall now define some cell problems which will be used in the sequel to
identify the limit problem. For 1 ≤ i ≤ n, let the function (µi, ρi) ∈ (H1

per(Y
′))n ×

L2
per(Y

′)/R be the solution of the cell problem

∇yρi −∆yµi = ei in Y ′

divy(µi) = 0 in Y ′

µi = 0 on ∂Y ′ \ ∂Y

µi and ρi are Y -periodic.

(2.4)

Let (χi, λi) ∈ (H1
per(Y

′))n ×L2
per(Y

′)/R be the solution of the adjoint cell prob-
lem

∇yλi −∆yχi = −divy (B(y)∇yµi) in Y ′

divy(χi) = 0 in Y ′

χi = 0 on ∂Y ′ \ ∂Y

χi and λi are Y -periodic.

(2.5)

We extend µi and χi by zero to Y \ Y ′ and use the same notation for the
extension. Let M and N be the n× n matrices defined as follows:

Mei =
1
|Y |

∫
Y

µi(y) dy,

Nei =
1
|Y |

∫
Y

χi(y) dy.

The matrix M is standard in the homogenization of Stokes system in perforated
domain and it is known that M is both symmetric and positive definite (cf. [16]).
We have to establish similar results for N .

Lemma 2.6. If B is symmetric, then the matrix N is symmetric.

Proof. Using χj as a test function in (2.4), we get∫
Y

∇yµi · ∇yχj dy =
∫

Y

ei.χj dy = |Y |〈ei, Nej〉.

Now, using µi as a test function in (2.5) corresponding to the index j, we get∫
Y

∇yµi.∇yχj dy =
∫

Y

B(y)∇yµj .∇yµi dy.

Thus,

|Y |〈ei, Nej〉 =
∫

Y

B(y)∇yµj .∇yµi dy.
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Similarly, interchanging the role of i and j in the above argument and using the
fact that scalar product commutes, we deduce

|Y |〈ej , Nei〉 =
∫

Y

B(y)∇yµi.∇yµj dy.

Hence, if B is symmetric, then N is symmetric. �

Lemma 2.7. If B is positive definite, then N is positive definite.

Proof. Let ξ ∈ Rn. Define (αξ, γ1) ∈ (H1
per(Y

′))n × L2
per(Y

′)/R as the solution of
the problem

∇yγ1 −∆yαξ = ξ in Y ′

divy(αξ) = 0 in Y ′

αξ = 0 on ∂Y ′ \ ∂Y

αξ and γ1 are Y -periodic.

(2.6)

Also, let (βξ, γ2) ∈ (H1
per(Y

′))n × L2
per(Y

′)/R be the solution of the corresponding
adjoint problem

∇yγ2 −∆yβξ = −divy (B(y)∇yαξ) in Y ′

divy(βξ) = 0 in Y ′

βξ = 0 on ∂Y ′ \ ∂Y

βξ and γ2 are Y -periodic.

(2.7)

We extend αξ and βξ by zero to Y \ Y ′ and use the same notation for the exten-
sion. Observe that αξ =

∑n
i=1 ξiµi and βξ =

∑n
i=1 ξiχi. Therefore, 〈Nξ, ξ〉 =

1
|Y |

∫
Y

βξ(y).ξ dy. Using βξ as a test function in (2.6) and αξ as a test function in
(2.7), we deduce,

〈Nξ, ξ〉 =
1
|Y |

∫
Y

βξ(y).ξ dy

=
1
|Y |

∫
Y

∇yβξ(y).∇yαξ(y) dy

=
1
|Y |

∫
Y

B(y)∇yαξ(y).∇yαξ(y) dy

≥ a

|Y |
‖∇yαξ(y)‖2

2 ≥ 0.

Thus, we have shown that N is positive. It now remains to show the positive
definiteness of N . Suppose that 〈Nξ, ξ〉 = 0. Hence, ‖∇yαξ(y)‖2

2 = 0 and conse-
quently αξ(y) = 0. This implies that ∇yγ1 = ξ, but since γ1 is Y -periodic, we have
ξ = 0. �

We now provide the homogenization theorem for the state and adjoint-state
equations. Before doing so, we pause to remark that divy will denote the divergence
w.r.t the y variable and a ‘div’ without subscript will denote the divergence w.r.t
the x variable.



EJDE-2008/16 DARCY-TYPE LAW 7

Theorem 2.8. Let 0 ∈ Uε. If (u∗ε, p
∗
ε) and (v∗ε, q

∗
ε ) are the solution of (2.1) and

(2.2), respectively, then there exists p∗ and q∗ in L2(Ω)/R such that

u∗ = M(f −∇p∗) in Ω,

div(u∗) = 0 in Ω,

u∗ · n = 0 on ∂Ω
(2.8)

and
v∗ = N t(f −∇p∗)−M∇q∗ in Ω,

div(v∗) = 0 in Ω,

v∗ · n = 0 on ∂Ω,

(2.9)

where N t denotes the transpose of N . Further, the following convergence hold for
the entire sequence:

ε−2ũ∗ε ⇀ u∗ weakly in (L2(Ω))n,

ε−2ṽ∗ε ⇀ v∗ weakly in (L2(Ω))n,

P ∗
ε → p∗ strongly in L2(Ω)/R,

Q∗
ε → q∗ strongly in L2(Ω)/R

(2.10)

and

ε−2

∫
Ω

B
(x

ε

)
∇ũ∗ε · ∇ũ∗ε dx →

∫
Ω

N
(
M−1u∗

)
·M−1u∗ dx (2.11)

Proof. Let Φ(x, y) ∈ [D(Ω; C∞
per(Y ))]n×n be such that Φ(·, y) = 0 for all y ∈ Y \Y ′.

Then integration by parts will yield,∫
Ω

∇ũ∗ε · Φ
(
x,

x

ε

)
dx = −

∫
Ω

ũ∗ε

[
div Φ

(
x,

x

ε

)
+

1
ε
divyΦ(x,

x

ε
)
]
dx.

Multiplying by ε−1 on both sides of the equality and then passing to the limit, as
ε → 0, we get,∫

Ω

∫
Y

ξ∗0(x, y) · Φ(x, y) dx dy = −
∫

Ω

∫
Y

u∗0(x, y) divyΦ(x, y) dx dy.

Since Φ is arbitrary, we have ξ∗0(x, y) = ∇yu∗0(x, y). A similar argument for the
adjoint-state v∗ε will yield ζ∗0(x, y) = ∇yv∗0(x, y).

Let φ1,φ2 ∈ [D(Ω;D(Y ′))]n×n be such that divy(φ2) = 0. Using εφ1(x, x
ε ) +

φ2(x, x
ε ) as a two-scale test function in (2.1), we get,

−
∫

Ω

∫
Y

p∗0(x, y)
[
div(φ2(x, y)) + divy(φ1(x, y))

]
dx dy

+
∫

Ω

∫
Y

ξ∗0(x, y)∇yφ2(x, y) dx dy

=
∫

Ω

∫
Y

fφ2(x, y) dx dy.

By putting, φ2 ≡ 0, we get

−
∫

Ω

∫
Y

p∗0(x, y)divy(φ1(x, y)) dx dy = 0.

Hence, ∇yp∗0(x, y) = 0 a.e. and thus there exists a p∗ ∈ L2(Ω)/R such that
p∗0(x, y) = p∗(x) in Ω× Y .
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By putting, φ1 ≡ 0, we get

−
∫

Ω

∫
Y

p∗(x) div(φ2(x, y)) dx dy

+
∫

Ω

∫
Y

∇yu∗0(x, y)∇yφ2(x, y) dx dy

=
∫

Ω

∫
Y

fφ2(x, y) dx dy.

Since φ2 is such that divy(φ2) = 0, there exists p∗1(x, y) ∈ L2(Ω× Y )/R such that

−∇yp∗1(x, y)−∆yu∗0(x, y) = f −∇p∗ in Ω× Y.

By using the cell problem (2.4) and from the uniqueness of solution for the Stokes
system, we derive

∂p∗1
∂yi

= ∇yρi · (f −∇p∗) in Ω× Y.

and u∗ = M t(f − ∇p∗) in Ω, where M t is the transpose of M . But since M is
symmetric, we have

u∗ = M(f −∇p∗) in Ω,

This combined with the facts mentioned in Remark 2.5 gives (2.8).
Now, using εφ1(x, x

ε )+φ2(x, x
ε ) as a two-scale test function in (2.2) and following

a similar analysis as before, we deduce that there exists a q∗ ∈ L2(Ω)/R such that
q∗0(x, y) = q∗(x) in Ω× Y and there exists q∗1(x, y) ∈ L2(Ω× Y )/R such that

−∇yq∗1(x, y)−∆yv∗0(x, y) = −divy (B(y)∇yu∗0(x, y))−∇q∗ in Ω× Y.

By using the cell problem (2.5) and from the uniqueness of solution for the Stokes
system, we derive

∂q∗1
∂yi

= ∇yλi · (f −∇p∗)−∇yρi · ∇q∗ in Ω× Y.

and
v∗ = N t(f −∇p∗)−M t∇q∗ in Ω,

where M t is the transpose of M . But since M is symmetric, we have,

v∗ = N t(f −∇p∗)−M∇q∗ in Ω .

This combined with the facts mentioned in Remark 2.5 gives (2.9). The uniqueness
of p∗ and q∗, up to additive constants, can be obtained by solving the Neumann
problem hidden in (2.8) and (2.9), respectively. Hence the uniqueness of u∗ and
v∗, and we deduce the convergence (2.10) for the entire sequence.

It now remains to prove (2.11). Using ε−2v∗ε as a test function in (2.1) and
ε−2u∗ε as a test function in (2.2), we deduce that

ε−2

∫
Ωε

B
(x

ε

)
∇u∗ε · ∇u∗ε dx =

∫
Ωε

(f + θ∗ε).(ε
−2v∗ε) dx.

Now, passing to the limit on the right-hand side of the above equality, we get

ε−2

∫
Ωε

B
(x

ε

)
∇u∗ε · ∇u∗ε dx →

∫
Ω

f .v∗ dx.
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We deduce from the equation of u∗ and v∗ in (2.8) and (2.9), respectively, that
f = M−1u∗ +∇p∗ and v∗ = N tM−1u∗ −M∇q∗. Thus,∫

Ω

fv∗ dx =
∫

Ω

M−1u∗ · v∗ dx−
∫

Ω

p∗ div(v∗) dx +
∫

∂Ω

p∗(v∗.n) dσ

=
∫

Ω

M−1u∗ ·N t(M−1u∗) dx− 〈M−1u∗,M∇q∗〉

=
∫

Ω

M−1u∗ ·N t(M−1u∗) dx +
∫

Ω

q∗ div(u∗) dx +
∫

∂Ω

q∗(u∗.n) dσ

=
∫

Ω

N(M−1u∗) ·M−1u∗ dx.

Thus, we have shown (2.11). �

We do not have the symmetry hypothesis on B for the above theorem. This
hypothesis will only affect the symmetry property of N in the above proof.

Remark 2.9. The limit pressure terms p∗ and q∗, in fact, are in H1(Ω)/R since
they solve the Neumann problem hidden in (2.8) and (2.9), respectively. Moreover,
in particular, if B is the identity matrix, then (2.11) gives back the usual energy
convergence. �

Remark 2.10. In the above theorem, we have concluded regarding the limit be-
haviour of the state-adjoint system. Equation (2.8) is called the Darcy law and,
along with convergences (2.10), is well-known in the literature. However, the above
theorem is original in the conclusion of (2.9) and the convergence (2.11) which gen-
eralises the notion of energy convergence. It is an easy exercise to note that when
B is the identity matrix, then M = N , u∗ε = v∗ε and u∗ = v∗. Also,

‖ε−1∇u∗ε‖2
2,Ωε

→
∫

Ω

u∗ ·M−1u∗ dx.

�

Recall that θ∗ is the weak limit of a subsequence of ε−1θ̃∗ε in (L2(Ω))n. We have
no means of concluding that θ∗ is the optimal control of an appropriate limit optimal
control problem. Moreover, we have no result on the convergence of

{
ε−2Jε(θ∗ε)

}
,

in the general case when 0 ∈ Uε. However, we do note that ε−1Jε(θ∗ε) → 0 and

lim inf
ε→0

ε−2Jε(θ∗ε) ≥
1
2

∫
Ω

N
(
M−1u∗

)
·M−1u∗ dx +

ν

2
‖θ∗‖2

2.

The main difficulty in concluding regarding the optimal control problem is the
disappearance of θ∗ in the limit state equation (2.8). We give two situations in
which the convergence of the optimal controls will be obtained due to extra regu-
larity available on the optimal controls.

Theorem 2.11 (unconstrained case). Let Uε = (L2(Ωε))n and θ∗ε be the minimiser
of the optimal control problem (1.1)–(1.2) and (u∗ε, p

∗
ε) be the corresponding state

and pressure. Then (2.8), (2.9), (2.10) and (2.11) holds and, in addition, we have
for the entire sequence,

ε−1θ̃∗ε → 0 strongly in (L2(Ω))n,

ε−2θ̃∗ε ⇀
−v∗

ν
weakly in (L2(Ω))n,
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and
ε−2Jε(θ∗ε) →

1
2

∫
Ω

N
(
M−1u∗

)
·M−1u∗ dx.

Proof. Since 0 ∈ Uε, by Theorem 2.8, (2.8), (2.9), (2.10) and (2.11) holds. It follows
from (2.3) that θ∗ε is the projection of −v∗ε

ν in Uε. Therefore, θ∗ε = −v∗ε
ν . Hence,

from the bounds on v∗ε, we deduce that θ∗ = 0. Thus, using Lemma 2.2 (also the
arguments below it), we get for a subsequence,

ε−1θ̃∗ε ⇀ 0 weakly in (L2(Ω))n,

ε−2θ̃∗ε ⇀
−v∗

ν
weakly in (L2(Ω))n.

In fact, the first convergence is strong, since ε−1ṽ∗ε converge to zero strongly in
(L2(Ω))n. Moreover, from the uniqueness of (2.8) and (2.9), the convergences hold
for the entire sequence. The convergence of ε−2Jε(θ∗ε) follows from (2.11) and the
strong convergence of ε−1θ̃∗ε. �

Theorem 2.12 (Constrained case). Let Uε be the positive cone of (L2(Ωε))n, i.e.,
Uε =

{
θ ∈ (L2(Ωε))n | θ ≥ 0 a.e. in Ωε

}
and θ∗ε be the minimiser of the optimal

control problem (1.1)–(1.2) and (u∗ε, p
∗
ε) be the corresponding state and pressure.

Then (2.8), (2.9), (2.10) and (2.11) holds and, in addition, we have for the entire
sequence,

ε−1θ̃∗ε → 0 strongly in (L2(Ω))n,

ε−2θ̃∗ε ⇀
(v∗)−

ν
weakly in (L2(Ω))n, ε−2Jε(θ∗ε) →

1
2

∫
Ω

N
(
M−1u∗

)
·M−1u∗ dx

where (v∗)− is the negative part of v∗.

Proof. The proof is similar to that of Theorem 2.11, except that we now note that
θ∗ε = (v∗ε)−

ν where (v∗ε)
− is the negative part of v∗ε. �

Remark 2.13. When n = 2 or 3, the results of §2 easily carry forward to the
situation when the state variable in the cost functional is determined by the Navier-
Stokes equations:

∇p∗ε + u∗ε.∇u∗ε −∆u∗ε = f + θ∗ε in Ωε,

div(u∗ε) = 0 in Ωε,

u∗ε = 0 on ∂Ωε.

(2.12)

The existence of solution for the above system is known when n = 2 or 3. The a
priori bounds obtained in Lemma 2.2 remain valid, since∫

Ωε

[(u∗ε.∇)u∗ε].u
∗
ε dx = −1

2

3∑
i=1

∫
Ωε

(∇.u∗ε)(u
∗
ε)

2
i dx = 0.

The result of Theorem 2.8 also remains valid, since∫
Ω

[(ũ∗ε.∇)ũ∗ε].
(
εφ1

(
x,

x

ε

)
+ φ2

(
x,

x

ε

))
dx → 0

as ε → 0. However, we note that the matrices M and N are the same and are
defined as in (2.4) and (2.5), respectively. In other words, we do not have the
non-linear terms in the definition of the cell problems (2.4) and (2.5).
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Conclusion. We have studied the asymptotic behaviour of the optimal control
problem (1.1)–(1.2) when the holes are large, a situation left open in [15]. We
have employed the two-scale method to achieve our result. We are successful in
computing the limit of the state-adjoint pair (2.1)–(2.2), in the general case when
0 ∈ Uε. However, we are unable to conclude anything about the optimal control
problem in this generality. Nevertheless, the optimal control problem is completely
settled in the unconstrained case and the positive cone case. It would be interesting
to see other non-trivial admissible control sets in which the problem could be settled.
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