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DISPERSIVE ESTIMATES FOR A LINEAR WAVE EQUATION
WITH ELECTROMAGNETIC POTENTIAL

DAVIDE CATANIA

Abstract. We consider radial solutions to the Cauchy problem for a linear
wave equation with a small short-range electromagnetic potential (depending

on space and time) and zero initial data. We present two dispersive estimates

that provide, in particular, an optimal decay rate in time t−1 for the solution.
Also, we apply these estimates to obtain similar results for the linear massless

Dirac equation perturbed by a potential.

1. Introduction and Main Results

In this paper, we investigate the dispersive properties of the linear wave equation
with an electromagnetic potential

(�A −B)u = F (t, x) ∈ [0,∞[×R3, (1.1)

where x = (x1, x2, x3) and

�A = ∂µ∂µ,A .

Here and in the following, sum over repeated up-down indices is assumed (according
to the Einstein’s convention), the covariant derivatives ∂µ and ∂µ,A are defined by

∂µ = ∂µ − iAµ , ∂µ,A = ∂µ − iAµ µ = 0, 1, 2, 3 ,
∂0 = ∂t , ∂k = ∂xk

k = 1, 2, 3 ,

where “i” is the imaginary unit, and we rise and lower indices according to

Xµ = ηµνXν , Xµ = ηµνX
ν ,

where the 4× 4 matrix

(ηµν)0≤µ,ν≤3 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


represents the standard Minkowski metric in Rt × R3

x and

(ηµν) = (ηµν)−1 = (ηµν) .
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The fact that the potential A = A(t, x), depending on space and time, is elec-
tromagnetic means that the components Aµ of A = (A0, A1, A2, A3) assume real
values. This will play a crucial role in the development of the proof, since electro-
magnetic potentials make the operator �A gauge invariant (see what follows).

We assume further that the potential decreases sufficiently fast when

r = |x| =
√
x2

1 + x2
2 + x2

3

approaches infinity; more precisely, we suppose that∑
j∈Z

2−j〈2−j〉ε0‖φjA‖L∞t,x
≤ δ0 (1.2)

(that is, A is a short-range potential), where ε0 and δ0 are positive constants in-
dependent of r (see Section 2) and the sequence (φj)j∈Z is a Paley-Littlewood
partition of unity, which means that φj(r) = φ(2jr) and φ : R+ → R+ (R+ is the
set of all nonnegative real numbers) is a function such that

(a) suppφ = {r ∈ R : 2−1 ≤ r ≤ 2};
(b) φ(r) > 0 for 2−1 < r < 2;
(c)

∑
j∈Z φ(2jr) = 1 for each r ∈ R+.

In other words,
∑

j∈Z φj(r) = 1 for all r ∈ R+ and

suppφj = {r ∈ R : 2−j−1 ≤ r ≤ 2−j+1} .

Roughly speaking, condition (1.2) means that the potential A decays at least like
r−(1+ε0) as r tends to infinity, while a singularity as r tends to 0 is allowed.

Additionally, we assume that the jacobian matrix ∇A = (∂νAµ)0≤µ,ν≤3 is well-
defined, and that ∇A and the potential term B = B(t, x) satisfy the smallness
hypothesis ∑

j∈Z
2−2j〈2−j〉ε0(‖φjB‖L∞t,x

+ ‖φj∇A‖L∞t,x
) ≤ δ0 . (1.3)

Essentially, ∇A and B decay at least like r−(2+ε0) as r tends to infinity.
The possible values for δ0 and ε0 will be made precise in the statement of the

main result.
Moreover, we shall restrict ourselves to radial solutions u = u(t, r). Since the

Cauchy problem
(�A −B)u = F (t, x) ∈ [0,∞[×R3,

u(0, x) = ∂tu(0, x) = 0 x ∈ R3
(1.4)

is linear, its solution exists globally in time; in particular, this fact holds for the
smaller class of radial solutions, that is to say for the problem

(�A −B)u = F (t, r) ∈ [0,∞[×R+,

u(0, r) = ∂tu(0, r) = 0 r ∈ R+.
(1.5)

Let us introduce the change of coordinates

τ± :=
t± r

2

and the standard notation 〈s〉 :=
√

1 + s2 ; our main result can be expressed as
follows.
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Theorem 1.1. Let u be a radial solution to (1.4); i.e., a solution to (1.5), where
A and B satisfy (1.2) and (1.3) for some δ0 > 0 and ε0 > 0. Then, for every
ε ∈]0, ε0], there exist two positive constants δ and C (depending on ε) such that, for
each δ0 ∈]0, δ], one has

‖τ+u‖L∞t,x
≤ C‖τ+r2〈r〉εF‖L∞t,x

.

Note that ε0 > 0 can be chosen freely. Let us introduce the differential operators

∇± := ∂t ± ∂r .

The proof of the previous a priori estimate follows easily from the following estimate.

Lemma 1.1. Under the conditions of Theorem 1.1, for every ε ∈]0, ε0] there exist
two positive constants δ and C (depending on ε) such that, for each δ0 ∈]0, δ], one
has

‖τ+r∇−u‖L∞t,x
≤ C‖τ+r2〈r〉εF‖L∞t,x

. (1.6)

An immediate consequence of Theorem 1.1 is the following dispersive estimate.

Corollary 1.1. Under the same conditions of Theorem 1.1, for every ε ∈]0, ε0]
there exist two positive constants δ and C (depending on ε) such that, for each
δ0 ∈]0, δ], one has

|u(t, r)| ≤ C

t
‖τ+r2〈r〉εF‖L∞t,x

for every t > 0.

The strategy for proving the lemma is the following. First of all, the potential
terms in (1.5) can be thought as part of the forcing term, that is, (�A −B)u = F
can be viewed as

�u = F1 := F +Bu+ i(∂µAµ)u+AµAµu+ 2iAµ∂µu , (1.7)

where
� = ∂2

t −∆ = ∂2
t − (∂2

x1
+ ∂2

x2
+ ∂2

x3
)

is the standard d’Alembert operator. Moreover, if we introduce the gradient oper-
ators ∇t,x = (∂t, ∂x1 , ∂x2 , ∂x3) and ∇t,r = (∂t, ∂r), setting

Ã = (Ã0, Ã1) , Ã0 = A0 , Ã1 =
A1x1 +A2x2 +A3x3

r
,

one has
Aµ∂µ = (A0, A1, A2, A3) · ∇t,x = Ã · ∇t,r

and
F1 = F +Bu+ i(∂µAµ)u+AµAµu+ 2iÃ · ∇t,ru . (1.8)

Then we can rewrite (1.7) in terms of τ± and ∇± (see Section 2), obtaining

∇+∇−v = G ,

where
v(t, r) := ru(t, r) and G(t, r) := rF1(t, r) . (1.9)

This last equation can be easily integrated to obtain a relatively simple explicit
representation of (∇−v)(τ+, τ−) in terms of G.

Another fundamental step consists in taking advantage of the gauge invariance
property of the operator �A, which means that, if we consider the potential Ȧ of
components

Ȧµ = Aµ + ∂µφ , φ ∈ R ,
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we have
�Ȧ(eiφu) = eiφ�Au

(see [2, p. 34]). Because of this property, which can be easily verified, since |eiφ| = 1,
we can modify through φ the potential A and get dispersive estimates for the
solution to �Ȧ that extend to the solution to �A.

More precisely, set

A± :=
Ã0 ± Ã1

2
,

we can assume, without loss of generality, that A+ ≡ 0. Indeed, it is sufficient to
choose φ such that

Ȧ0 = Ã0 + ∂tφ = Ã0 + ∂tφ and Ȧ1 = Ã1 + ∂rφ = Ã1 − ∂rφ

are opposite; i.e.,
∇−φ = −(Ã0 + Ã1) .

Hence we can take any φ of the form

φ(τ+, τ−) = φ0 −
∫ τ−

τ0

(Ã0 + Ã1)(τ+, s) ds ,

where φ0 and τ0 are real numbers. This implies

Ã · ∇t,ru = A−∇−u+A+∇+u = A−∇−u ,
and hence

F1 = F +Bu+ i(∂µAµ)u+AµAµu+ 2iA−∇−u , (1.10)
thus

G = rF1 = rF +Bv + i(∂µAµ)v +AµAµv + 2iA−∇−v +
2i
r
A−v . (1.11)

Obviously, one still has ∑
j∈Z

2−j〈2−j〉ε0‖φjA−‖L∞t,x
≤ δ0 . (1.12)

These simplifications, combined with the technical Lemma 2.1 and the estimate of
Lemma 2.2, allow us easily to obtain Lemma 1.1 and Theorem 1.1.

Application: The Dirac Equation. As an application, we use Theorem 1.1 to
obtain a similar result for radial solutions to the massless Dirac equation with a
suitable potential. Let us introduce some notations. First of all, the Dirac matrices
are defined by

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,

γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 , γ3 =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 .

The relativistic invariant form of the nonperturbed massless Dirac operator, applied
to a vector function ψ : R1+3 → C4 (generally called spinor), is

D = γµ∂µ
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while, for the perturbed case, we consider the operator

DA = γµ∂µ,A

(with the notations introduced for the wave equation).
We consider radial solutions u : R1+3 → C4 to the Cauchy problem

DAu = F (t, x) ∈ [0,∞[×R3 ,

u(0, x) = 0 x ∈ R3 ,
(1.13)

assuming that each potential matrix Aµ ∈ R4×4 (i.e., it is real), µ = 0, 1, 2, 3, ∇Aµ

is well-defined and the following smallness hypotheses are satisfied for suitable δ0
and ε0 > 0: ∑

j∈Z
2−j〈2−j〉ε0‖φjAµ‖L∞t,x

≤ δ0 , (1.14)

∑
j∈Z

2−2j〈2−j〉ε0‖φj∇Aµ‖L∞t,x
≤ δ0 , (1.15)

where the sequence (φj)j∈Z is the Paley–Littlewood partition of unity previously
defined.

Under these hypotheses, we have the following result.

Theorem 1.2. Let u be a radial solution to (1.13), where, for each µ = 0, 1, 2, 3,
Aµ is real and satisfies (1.14) and (1.15) for some δ0 > 0 and ε0 > 0. Then, for
every ε ∈]0, ε0], there exist two positive constants δ and C (depending on ε) such
that, for each δ0 ∈]0, δ], one has

‖τ+u‖L∞t,x
≤ C‖τ+r2〈r〉εDAF‖L∞t,x

.

In particular, one has

|u(t, r)| ≤ C

t
‖τ+r2〈r〉εDAF‖L∞t,x

for every t > 0. Moreover, if ‖A‖L∞t,x
<∞, one has

‖τ+u‖L∞t,x
≤ C(‖τ+r2〈r〉εF‖L∞t,x

+ ‖τ+r2〈r〉ε∇F‖L∞t,x
) . (1.16)

To prove these estimates, we observe that the solution u to the Cauchy problem
(1.13) is a solution to

D2
Au = DAF ,

u(0, r) = ∂tu(0, r) = 0 ,

and this problem can be recast in the form

(�A −B)u = DAF ,

u(0, r) = ∂tu(0, r) = 0 ,

for A = (A0, A1, A2, A3) and B suitably chosen, where in this case Aµ and B are
complex 4 × 4 matrices such that we can apply a slight variation of Theorem 1.1.
In other words, the operator DA can be viewed as the square root of the operator
�A −B, where

B = −γ
µγν

2i
(
(∂µAν)− (∂νAµ)

)
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(for further details, see Section 3). In this sense, the massless Dirac equation (with
potential) can be viewed as the square root of the wave equation (with potential);
i.e., D2 = �.

Motivation. The dispersive properties of evolution equations are important for
their physical meaning and, consequently, they have been deeply studied, though
the problem in its generality is still open. The dispersive estimate obtained in
Corollary 1.1 provides the natural decay rate, that is the same rate that one has
for the nonperturbed wave equation (see [11, 13]); i.e., a t−(n−1)/2 decay in time,
where n is the space dimension (in our case, n = 3). The generalization to the case
of a potential-like perturbation has been considered widely (see [1, 3, 4, 5, 7, 10, 14,
17, 18, 19, 20]), also for the Schrödinger equation (see [8, 9, 12, 15, 16]). Recently,
D’Ancona and Fanelli have considered in [6] the case

∂2
t u(t, x) +Hu = 0 , (t, x) ∈ R× R3,

u(0, x) = 0 , ∂tu(0, x) = g(x) ,

where

H := −(∇+ iA(x))2 +B(x) ,

A : R3 → R3, B : R3 → R .

Under suitable conditions on A, ∇A and B, in particular

|A(x)| ≤ C0

r〈r〉(1 + | lg r|)β
,

3∑
j=1

|∂jAj(x)|+ |B(x)| ≤ C0

r2(1 + | lg r|)β
, (1.17)

with C0 > 0 sufficiently small, β > 1 and r = |x|, they have obtained the dispersive
estimate

|u(t, x)| ≤ C

t

∑
j≥0

22j‖〈r〉w1/2
β φj(

√
H)g‖L2 , (1.18)

where wβ := r(1 + | log r|)β and (φj)j≥0 is a nonhomogeneous Paley-Littlewood
partition of unity on R3.

In this paper, restricting ourselves to radial solutions, we are able to obtain the
result in Corollary 1.1, which is optimal from the point of view of the estimate
decay rate t−1 and improve essentially the assumptions on the potential, assuming
the weaker conditions (1.2) and (1.3) instead of (1.17) and allowing that it could
depend on time.

This article is structured as follows: In Section 2 we prove the main results
(concerning the wave equation), while Section 3 is devoted to the proof of Theorem
1.2 (the application to the Dirac equation).

2. Proof of the Main Results

First of all, we reformulate our problem taking advantage of the radiality of the
solution u to (1.5). Indeed, since ∆S2u(t, r) = 0 and v = ru, we have

�u(t, r) = (∂2
t −∆x)u =

(
∂2

t − ∂2
r −

2
r
∂r −

1
r2

∆S2

)
u(t, r)

=
1
r
∂2

t v(t, r)−
1
r
∂2

rv(t, r)

=
1
r
∇+∇−v(t, r) =

1
r
∇−∇+v(t, r) .
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Recalling (1.7), (1.9) and (1.10), we get that the (1.5) is equivalent to

∇+∇−v = G .

Note that the support of u(t, r) is contained in the domain {(t, r) ∈ R2 : r > 0, t >
r}, therefore we have

supp v(τ+, τ−) ⊆ {(τ+, τ−) ∈ R2 : τ− > 0, τ+ > τ−}. (2.1)

From this fact, we get

∇−v(τ+, τ−) = ∇−v(τ−, τ−) +
∫ τ+

τ−

G(s, τ−) ds =
∫ τ+

τ−

G(s, τ−) ds .

Note that G depends on (t, x) or, in spherical coordinates, on (t, r, θ1, θ2), or even on
(τ+, τ−, θ1, θ2); since the angular components are not relevant to our computations,
we shall write briefly G(τ+, τ−) and proceed similarly for other terms. However, it
is important to remember that u and v are effectively radial.

Let us observe that, for each s ∈ [τ−, τ+], we have

s ≤ τ+ , s− τ− ≤ τ+ − τ− = r ,

hence ∣∣ ∫ τ+

τ−

G(s, τ−) ds
∣∣ ≤ ∫ τ+

τ−

s〈s− τ−〉ε|G(s, τ−)|
〈s〉〈s− τ−〉ε

ds

≤ ‖τ+〈r〉εG‖L∞t,x

∫ τ+

τ−

〈s〉−1〈s− τ−〉−ε ds

for every ε > 0; applying Lemma 2.1 (see the end of this section), we conclude that

τ+|∇−v(τ+, τ−)| ≤ Cr‖τ+〈r〉εG‖L∞t,x
.

Now, we recall that G satisfies (1.11) and we note that, set

B̃ = B + i(∂µAµ) +AµAµ ,

we have ∑
j∈Z

2−2j〈2−j〉ε0‖φjB̃‖L∞t,x
≤ δ0 , (2.2)

as one easily deduces from (1.2) and (1.3). Hence we obtain

τ+|∇−v(τ+, τ−)| ≤ Cr
(
‖τ+〈r〉εA−∇−v‖L∞t,x

+ ‖τ+〈r〉εr−1A−v‖L∞t,x

+ ‖τ+〈r〉εB̃v‖L∞t,x
+ ‖τ+〈r〉εrF‖L∞t,x

)
.

(2.3)

Now, if we take ε ≤ ε0, we have

r〈r〉εφj(r)|A−(t, r)| ≤ C2−j〈2−j〉ε0‖φjA−‖L∞t,x
(2.4)

(here and in the following, we assume that C = C(ε) > 0 could change time by
time), thus

r‖τ+〈r〉εA−∇−v‖L∞t,x
≤ C‖τ+∇−v‖L∞t,x

∑
j∈Z

2−j〈2−j〉ε0‖φjA−‖L∞t,x

≤ Cδ0‖τ+∇−v‖L∞t,x
,

(2.5)

where we have used the fact that (φj)j∈Z is a Paley-Littlewood partition of unity
and property (1.12).
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Moreover, v(τ+, τ+) = 0 because of (2.1), whence

v(τ+, τ−) = −
∫ τ+

τ−

∇−v(τ+, s) ds

and, consequently,

|v(τ+, τ−)| ≤
∫ τ+

τ−

|∇−v(τ+, s)| ds ≤ r‖∇−v‖L∞t,x
. (2.6)

Thus we have

〈r〉εφj(r)|A−(t, r)v(τ+, τ−)| ≤ C2−j〈2−j〉ε0‖φjA−‖L∞t,x
‖∇−v‖L∞t,x

,

which implies
r‖τ+〈r〉εr−1A−v‖L∞t,x

≤ Cδ0‖τ+∇−v‖L∞t,x
. (2.7)

Similarly, from (2.6) and (2.2), we get

r‖τ+〈r〉εB̃v‖L∞t,x
≤ C‖τ+∇−v‖L∞t,x

∑
j∈Z

2−2j〈2−j〉ε0‖φjB̃‖L∞t,x

≤ Cδ0‖τ+∇−v‖L∞t,x
.

Combining this estimate with (2.5) and (2.7) in (2.3), we deduce

‖τ+∇−v‖L∞t,x
≤ C‖τ+r2〈r〉εF‖L∞t,x

, (2.8)

provided δ0 is sufficiently small. For instance, one can take δ0 such that 4C2δ0 ≤ 1
(it is sufficient that 3C2δ0 < 1).

From the definition of v, we have

r∇−u = ∇−v + u (2.9)

and, hence,
|τ+r∇−u| ≤ |τ+∇−v|+ |τ+u|. (2.10)

Now, thanks to the inequality in Lemma 2.2, we have

‖τ+u‖L∞t,x
≤ C‖τ+r2〈r〉εF1‖L∞t,x

≤ C(‖τ+r2〈r〉εA−∇−u‖L∞t,x
+ ‖τ+r2〈r〉εB̃u‖L∞t,x

)

+ C‖τ+r2〈r〉εF‖L∞t,x

≤ C
∥∥∑

j∈Z
r〈r〉ε0φjA−

∥∥
L∞t,x

‖τ+r∇−u‖L∞t,x

+ C
∥∥∑

j∈Z
r2〈r〉ε0φjB̃

∥∥
L∞t,x

‖τ+u‖L∞t,x
+ C‖τ+r2〈r〉εF‖L∞t,x

≤ Cδ0(‖τ+r∇−u‖L∞t,x
+ ‖τ+u‖L∞t,x

) + C‖τ+r2〈r〉εF‖L∞t,x
,

and thus
‖τ+u‖L∞t,x

≤ C(δ0‖τ+r∇−u‖L∞t,x
+ ‖τ+r2〈r〉εF‖L∞t,x

) .

Combining this result with (2.8) in (2.10), we conclude

‖τ+r∇−u‖L∞t,x
≤ C‖τ+r2〈r〉εF‖L∞t,x

, (2.11)

provided δ0 > 0 small enough, that is, Lemma 1.1.
Now we use the fact that, because of (2.9), we have

|τ+u| ≤ |τ+r∇−u|+ |τ+∇−v|; (2.12)
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combining this estimate with (2.11) and (2.8), we finally conclude

‖τ+u‖L∞t,x
≤ C‖τ+r2〈r〉εF‖L∞t,x

, (2.13)

and also Theorem 1.1 is proven.
Now we prove the two lemmas that we have used previously in this section.

Lemma 2.1. For each ε > 0, there exists a positive constant C = C(ε) such that∫ τ+

τ−

〈s〉−1〈s− τ−〉−ε ds ≤ Cr

τ+
∀τ− > 0 .

Proof. We distinguish two cases.
case 1: τ+ ≥ 2τ−. Note that, since r = τ+ − τ− ≥ τ+/2, it is sufficient to prove
that ∫ τ+

τ−

〈s〉−1〈s− τ−〉−ε ds ≤ C0(ε).

We observe that s− τ− ≥ s/2 provided s ≥ 2τ−, so∫ τ+

τ−

〈s〉−1〈s− τ−〉−ε ds ≤
∫ 2τ−+1

τ−

〈s〉−1 ds+ 2ε

∫ τ++1

2τ−+1

s−(1+ε) ds

≤ τ− + 1
〈τ−〉

+ 2ε

∫ ∞

1

s−(1+ε) ds

≤ C1(ε).

case 2: τ+ < 2τ−. We use the estimates 〈s〉−1 < 2/τ+ and 〈s− τ−〉−ε ≤ 1 to get∫ τ+

τ−

〈s〉−1〈s− τ−〉−ε ds ≤ 2
τ+

(τ+ − τ−) =
2r
τ+
. (2.14)

This completes the proof. �

Let us note that, because of the property (2.1) about the support of the solution
v, we are interested only in the case τ− > 0.

In the case A ≡ B ≡ 0 (nonperturbed equation), we have the following version
of the estimate in Theorem 1.1. It consists in a slight modification of estimate (1.8)
shown in [7], p. 2269.

Lemma 2.2. Let u be the solution to

�u = F (t, r) ∈ [0,∞[×R+,

u(0, r) = ∂tu(0, r) = 0 r ∈ R+.

Then, for every ε > 0, there exists C > 0 such that

‖τ+u‖L∞t,x
≤ C‖τ+r2〈r〉εF‖L∞t,x

.

Proof. Note that u is the solution to (1.5) with A ≡ B ≡ 0. Then, from (2.3), we
have

τ+|∇−v(τ+, τ−)| ≤ C‖τ+r2〈r〉εF‖L∞t,x
, (2.15)

where v = ru. Using (2.6), we deduce

τ+|u| = τ+|v|r−1 ≤ ‖τ+∇−v‖L∞t,x

and hence the claim follows. �



10 D. CATANIA EJDE-2008/150

3. Proof for the Dirac Equation

First of all, let us observe that a radial solution u to the Cauchy problem (1.13)
is also a radial solution to the Cauchy problem

D2
Au = DAF ,

u(0, r) = ∂tu(0, r) = 0 ,
(3.1)

and that

D2
A = γµγν∂µ,A∂ν,A =

γµγν

2
(
{∂µ,A, ∂ν,A}+ [∂µ,A, ∂ν,A]

)
, (3.2)

where
{X,Y } = XY + Y X , [X,Y ] = XY − Y X

represent respectively the symmetric and the antisymmetric part of 2XY . On one
hand, we have

γµγν

2
{∂µ,A, ∂ν,A} =

{γµ, γν}
4

{∂µ,A, ∂ν,A}

=
ηµν

2
{∂µ,A, ∂ν,A}

=
∂ν

A∂ν,A + ∂µ∂µ,A

2
= �A .

On the other hand, since

[∂µ, ∂ν ] = [Aµ, Aν ] = 0 ,

we have also
γµγν

2
[∂µ,A, ∂ν,A] =

γµγν

2i
(
[∂µ, Aν ] + [Aµ, ∂ν ]

)
=
γµγν

2i
(
(∂µAν)− (∂νAµ)

)
.

Consequently, setting

B = −γ
µγν

2i
(
(∂µAν)− (∂νAµ)

)
,

the Cauchy problem (3.1) can be recast in the form

(�A −B)u = DAF ,

u(0, r) = ∂tu(0, r) = 0 ,

that is the form of (1.5), the one for which Theorem 1.1 holds.
To conclude, we need two remarks. First, Theorem 1.1 can be easily generalized

(with essentially the same proof) to the case of a system of wave equations where
u, F ∈ CN , while Aµ ∈ RN×N and B ∈ CN×N are matrices that satisfy the
hypotheses of the theorem. In particular, this holds for N = 4.

Second, thanks to the decay assumptions on A and ∇A, that is the conditions
(1.14) and (1.15), the smallness conditions on Aµ and B are satisfied, that is esti-
mates similar to (1.2) and (1.3) hold.

Hence we can apply the generalization of Theorem 1.1 and get, for every ε ∈]0, ε0],
the existence of two positive constants δ and C (depending on ε) such that, for each
δ0 ∈]0, δ], one has

‖τ+u‖L∞t,x
≤ C‖τ+r2〈r〉εDAF‖L∞t,x

, (3.3)
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where u is a radial solution to the Cauchy problem (1.13). Moreover, if A is
essentially bounded; i.e.,

‖A(t, x)‖L∞t,x
<∞ ,

we have immediately

‖τ+r2〈r〉εDAF‖L∞t,x
≤ C(‖τ+r2〈r〉εF‖L∞t,x

+ ‖τ+r2〈r〉ε∇F‖L∞t,x
) .

This concludes the proof of Theorem 1.2.
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