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LARGE TIME BEHAVIOR FOR SOLUTIONS OF NONLINEAR
PARABOLIC PROBLEMS WITH SIGN-CHANGING

MEASURE DATA

FRANCESCO PETITTA

Abstract. Let Ω ⊆ RN a bounded open set, N ≥ 2, and let p > 1; in this
paper we study the asymptotic behavior with respect to the time variable t of

the entropy solution of nonlinear parabolic problems whose model is

ut(x, t)−∆pu(x, t) = µ in Ω× (0,∞),

u(x, 0) = u0(x) in Ω,

where u0 ∈ L1(Ω), and µ ∈M0(Q) is a measure with bounded variation over

Q = Ω × (0,∞) which does not charge the sets of zero p-capacity; moreover

we consider µ that does not depend on time. In particular, we prove that
solutions of such problems converge to stationary solutions.

1. Introduction

A large number of papers was devoted to the study of asymptotic behavior for
solution of parabolic problems under various assumptions and in different contexts:
for a review on classical results see [10, 1, 21], and references therein. More recently
in [11] the same problem was studied for bounded data and a class of operators
rather different to the one we will discuss.

Moreover, in [13] and [16] it was used an approach similar to our one, to face,
respectively, the quasilinear case with natural growth terms of the type g(u)|∇u|2
and the linear case with general measure data. While the same problem was studied
in [17] for nonnegative data. Here we want to generalize this result to changing sign
measure data.

Let a : Ω× RN → RN be a Carathéodory function (i.e. a(·, ξ) is measurable on
Ω, for all ξ ∈ RN , and a(x, ·) is continuous on RN for a.e. x ∈ Ω) such that the
following holds:

a(x, ξ) · ξ ≥ α|ξ|p, (1.1)

|a(x, ξ)| ≤ β[b(x) + |ξ|p−1], (1.2)

(a(x, ξ)− a(x, η)) · (ξ − η) > 0, (1.3)
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for almost every x ∈ Ω, for all ξ, η ∈ RN with ξ 6= η, where p > 1 and α, β are
positive constants and b is a nonnegative function in Lp′(Ω). For every u ∈ W 1,p

0 (Ω),
let us define the differential operator

A(u) = −div(a(x,∇u)),

that, thanks to the assumptions on a, turns out to be a coercive monotone operator
acting from the space W 1,p

0 (Ω) into its dual W−1,p′(Ω). We shall deal with the
solutions of the initial boundary-value problem

ut + A(u) = µ in Ω× (0,∞),

u(x, 0) = u0(x) in Ω,

u(x, t) = 0 on ∂Ω× (0,∞),
(1.4)

where µ is a measure with bounded variation over Q = Ω × (0,∞) that does not
depend on time, and u0 ∈ L1(Ω).

Let us fix T > 0. If µ ∈ Lp′(0, T ;W−1,p′(Ω)), it is well known that prob-
lem (1.4) has a unique variational solution in QT = Ω × (0, T ) such that u ∈
Lp(0, T ;W 1,p

0 (Ω)) ∩ C([0, T ];L2(Ω)) and ut ∈ Lp′(0, T ;W−1,p′(Ω)), that is∫ T

0

〈ut, ϕ〉W−1,p′ (Ω),W 1,p
0 (Ω) dt +

∫
QT

a(x,∇u) · ∇ϕ dx dt

=
∫ T

0

〈µ, ϕ〉W−1,p′ (Ω),W 1,p
0 (Ω) dt,

for all ϕ ∈ Lp(0, T ;W 1,p
0 (Ω)) (see [14] for the case p ≥ 2 and [12] for 1 < p < 2).

With the symbol M0(Q) we mean a measure with bounded variation over Q
which does not charge the sets of zero p-capacity. We refer the reader to [8] for fur-
ther specifications about parabolic p-capacity. Let us only mention that a measure
in M0(Q) which does not depend on time is in some sense a measure in M0(Ω),
the set of all Radon bounded measures absolutely continuous with respect to the
elliptic p-capacity. In fact, if µ does not depend on the time variable t, then there
exists a bounded Radon measure ν on Ω such that, for any Borel set B ⊆ Ω, and
0 < t0 < t1 < ∞, we have µ(B × (t0, t1)) = (t1 − t0)ν(B). In [17] it was proved
that actually ν is absolutely continuous with respect to the elliptic p-capacity, and
so, thanks to a result of [6], we deduce that ν can be decomposed as ν = f−div(g),
where f ∈ L1(Ω) and g ∈ (Lp′(Ω))N .

In [3] (for more details see also [6]) the concept of entropy solution of the elliptic
boundary-value problem associated to (1.4) was introduced: let µ ∈ M0(Ω) be
a measure with bounded variation over Ω which does not charge the sets of zero
elliptic p-capacity; we call v an entropy solution for the boundary-value problem

A(v) = µ in Ω,

v = 0 on ∂Ω,
(1.5)

if v is finite a.e. and its truncated function Tk(v) ∈ W 1,p
0 (Ω) (recall that Tk(s) =

max(−k,min(k, s)), for all k > 0, and it holds∫
Ω

a(x,∇v) · ∇Tk(v − ϕ) dx ≤
∫

Ω

Tk(v − ϕ) dµ, (1.6)

for all ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω), for all k > 0
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An analogous definition will be given in the parabolic case following [20]. To
our aim, it suffices to give the definition in the the case of measures which do not
depend on time.

Definition 1.1. Let k > 0 and define

Θk(z) =
∫ z

0

Tk(s) ds,

as the primitive function of the truncation function; let µ ∈M0(Q) be independent
of t, and u0 ∈ L1(Ω). We say that u(x, t) ∈ C([0,∞);L1(Ω)) is an entropy solution
of the problem

ut + A(u) = µ in Ω× (0,∞),

u(x, 0) = u0(x) in Ω,

u(x, t) = 0, on ∂Ω× (0,∞),
(1.7)

if, for all k, T > 0, we have that Tk(u) ∈ Lp(0, T ;W 1,p
0 (Ω)), and it holds∫

Ω

Θk(u− ϕ)(T ) dx−
∫

Ω

Θk(u0 − ϕ(0)) dx

+
∫ T

0

〈ϕt, Tk(u− ϕ)〉W−1,p′ (Ω),W 1,p
0 (Ω) dt +

∫
QT

a(x,∇u) · ∇Tk(u− ϕ) dx dt

≤
∫

QT

Tk(u− ϕ) dµ,

(1.8)

for any ϕ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(QT ) ∩ C([0, T ];L1(Ω)) with ϕt in the space

Lp′(0, T ;W−1,p′(Ω)).

Remark 1.2. The entropy solution u of the problem (1.7) exists and is unique
as shown in [20] for L1 data; this result was improved in many papers for more
general measure data. In [19] it was proved via the notion of renormalized solution
which turns out to be equivalent to the one of entropy solution with this kind of
data (see [9]). Moreover, the solution u is such that |a(x,∇u)| ∈ Lq(QT ) for all
q < 1 + 1

(N+1)(p−1) , T > 0, even if its approximated gradient may not belong to
any Lebesgue space.

Let us finally remark that the continuity of the entropy solution with values in
L1(Ω), which is false in general for measure data (see [18]), turns out to hold true
in our framework since the measure µ is supposed to be independent of t (see [17]).

Our main result reads as follows.

Theorem 1.3. Let µ ∈ M0(Q) be independent of the variable t, p > 2N+1
N+1 , u0 ∈

L1(Ω) be a function; let u(x, t) be the entropy solution of problem (1.4), and v the
entropy solution of the corresponding elliptic problem (1.5). Then

lim
t→+∞

u(x, t) = v(x),

in L1(Ω).

2. Proof of main result

Before passing to the proof of our main result let us state some interesting results
about the entropy solution v of the elliptic problem (1.5).
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According to [3] (see also [6]) we have that v is in the Marcinkiewicz space
M

N(p−1)
N−p (Ω) that implies v ∈ Lq(Ω) fon any q < N(p−1)

N−p ; hence, if p > 2N
N+1 , we

have v ∈ C(0,∞;L1(Ω)). So let us suppose p > 2N
N+1 and let us observe that such a

solution actually turns out to be an entropy solution of the initial boundary-value
problem (1.7) with initial datum u0(x) = v(x), since, for all T > 0, we have∫

Ω

Θk(v − ϕ)(T ) dx−
∫

Ω

Θk(v − ϕ)(0) dx

=
∫

QT

d

dt
Θk(v − ϕ) dx dt =

∫ T

0

〈(v − ϕ)t, Tk(v − ϕ)〉W−1,p′ (Ω),W 1,p
0 (Ω) dt

= −
∫ T

0

〈ϕt, Tk(v − ϕ)〉W−1,p′ (Ω),W 1,p
0 (Ω) dt

that can be cancelled out with the analogous term in (1.8) getting the right formu-
lation (1.6) for v.

For technical reasons we shall use the stronger assumption

p >
2N + 1
N + 1

(2.1)

throughout this note; notice that, according to [5] (see also [8]), in this case a
solution u of problem (1.4) belongs to Lr(0, T ;W 1,r

0 ) for any r < p− N
N+1 , T > 0.

Observe that p − N
N+1 > 1 if and only if (2.1) holds true; hence, in this case,

the gradient of the entropy solution u (that coincides with the distributional one)
actually belong L1(QT ), for any T > 0. Moreover, this is the same assumption used
in [20] since it allows, for instance, to get continuity of the solution with values in
L1(Ω) directly by using the trace result of [19].

Most part of our work will rely on comparison between suitable entropy subso-
lutions and supersolutions of problem (1.4). The notion of entropy subsolution and
supersolution for the parabolic problem has been given as a natural extension of
the one for the elliptic case (see for instance [15]) in [17]. Let us recall it.

Definition 2.1. A function u(x, t) ∈ C([0,∞);L1(Ω)) is an entropy subsolution
of problem (1.4) if, for all k, T > 0, we have that Tk(u) ∈ Lp(0, T ;W 1,p

0 (Ω)), and
holds∫

Ω

Θk((u− ϕ)+)(T ) dx−
∫

Ω

Θk((u0 − ϕ(0))+) dx

+
∫ T

0

〈ϕt, Tk(u− ϕ)+〉W−1,p′ (Ω),W 1,p
0 (Ω) dt +

∫
QT

a(x,∇u) · ∇Tk(u− ϕ)+ dx dt

≤
∫

QT

Tk(u− ϕ)+ dµ,

for all ϕ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(QT ) ∩ C([0, T ];L1(Ω)) with ϕt in the space

Lp′(0, T ;W−1,p′(Ω)) and u(x, 0) ≡ u0(x) ≤ u0(x) almost everywhere on Ω with
u0 ∈ L1(Ω).

On the other hand, u(x, t) ∈ C([0,∞);L1(Ω)) is an entropy supersolution of
problem (1.4) if, for all k, T > 0, we have that Tk(u) ∈ Lp(0, T ;W 1,p

0 (Ω)), and
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holds∫
Ω

Θk((u− ϕ)−)(T ) dx−
∫

Ω

Θk((u0 − ϕ(0))−) dx

+
∫ T

0

〈ϕt, Tk(u− ϕ)−〉W−1,p′ (Ω),W 1,p
0 (Ω) dt +

∫
QT

a(x,∇u) · ∇Tk(u− ϕ)− dx dt

≥
∫

QT

Tk(u− ϕ)− dµ,

for all ϕ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(QT ) ∩ C([0, T ];L1(Ω)) with ϕt in the space

Lp′(0, T ;W−1,p′(Ω)) and u(x, 0) ≡ u0(x) ≥ u0(x) almost everywhere on Ω with
u0 ∈ L1(Ω).

In [17] the author proved the following result.

Lemma 2.2. Let µ ∈M0(Ω), and let u and u be, respectively, an entropy subsolu-
tion and an entropy supersolution of problem (1.4), and let u be the unique entropy
solution of the same problem. Then, for any t > 0, u(t) ≤ u(t) ≤ u(t), a.e. in Ω.

Thanks to this result we are able to prove Theorem 1.3. For the sake of simplicity,
in what follows, the convergences are all understood to be taken up to a suitable
subsequence extraction, even if no explicitly claimed.

Proof of Theorem 1.3. We will prove it in a few steps. As usual, the symbol C will
indicate any positive constant whose value may change from line to line. Let us
consider v⊕ and v	 as the entropy solutions of, respectively,

A(v) = µ+ in Ω,

v = 0 on ∂Ω,
(2.2)

and
A(v) = −µ− in Ω,

v = 0 on ∂Ω,
(2.3)

By comparison [15], we have both v	 ≤ 0 ≤ v⊕ and

v	 ≤ v ≤ v⊕ . (2.4)

Moreover, it is easy to see that both v⊕ and v	 are stationary solution of the
associated parabolic problem with themselves as initial data.
Step 1. u0 = v⊕. Some a Priori Estimates. To simplify the notation, during this
proof, we will indicate by Q the parabolic cylinder of height one Ω× (0, 1), instead
of Q1 as usual; let n ∈ N ∪ {0}, and define un(x, t) as the entropy solution of the
initial boundary-value problem

un
t + A(un) = µ in Ω× (0, 1),

un(x, 0) = u(x, n) in Ω,

un(x, t) = 0 on ∂Ω× (0, 1),
(2.5)

with u(x, 0) = v⊕. Notice that, since µ does not depend on t, un turns out to be
nothing but the time-translation (of length n) of the solution u with initial datum
v⊕.

Thanks to Lemma 2.2 we readily have u(x, t) ≤ v⊕, for any t > 0. So, using again
the fact that the datum µ does not depend on time, we can apply the comparison
result also between u(x, t+s) solution with u0 = u(x, s), with s a positive parameter,
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and u(x, t), the solution with u0 = v⊕ as initial datum; so we obtain u(x, t + s) ≤
u(x, t) for all t, s ≥ 0, a.e. in Ω.

Recall that, since u ∈ C([0,∞);L1(Ω)), then u(x, n) ∈ L1(Ω) is well defined.
Now, let us look for some a priori estimates concerning the sequence un.

Following the same outline of [17], we can perform the same calculations to prove
first ∫

Q

|∇Tk(un)|p dx dt ≤ Ck; (2.6)

moreover, from (2.6), we deduce that the sequence un is uniformly bounded in the
Marcinkiewicz space Mp−1+ p

N (Q); this fact implies, since in particular p > 2N
N+1 ,

that un is uniformly bounded in Lm(Q) for all 1 ≤ m < p − 1 + p
N (for further

properties of Marcinkiewicz spaces see for instance [22]). Finally, for every n ≥ 0,
|∇un| is equi-bounded in Mγ(Q), with γ = p− N

N+1 , and so, since p > 2N+1
N+1 , |∇un|

is uniformly bounded in Ls(Q) with 1 ≤ s < p− N
N+1 .

Now, we shall use the above estimates to prove some compactness results that
will be useful to pass to the limit in the entropy formulation for un. Indeed, thanks
to these estimates, we can say that there exists a function u ∈ Lq(0, 1;W 1,q

0 (Ω)),
for all q < p − N

N+1 , such that un converges to u weakly in Lq(0, 1;W 1,q
0 (Ω)). On

the other hand from the equation we deduce that un
t is uniformly bounded, with

respect to n, in the space L1(Q) + Ls′(0, 1;W−1,s′(Ω)), where s′ = q
p−1 , for all

q < p− N
N+1 . So that, thanks to the Aubin-Simon type result proved in [7] we have

that un actually converges to u in L1(Q). Moreover, using the estimate (2.6) on
the truncations of un, we deduce, from the boundedness and continuity of Tk(s),
that, for every k > 0,

Tk(un) ⇀ Tk(u), weakly in Lp(0, 1;W 1,p
0 (Ω)),

Tk(un) → Tk(u), strongly in Lp(Q).

Finally, the sequence un satisfies the hypotheses of [5, Theorem 3.3], and so we get

∇un → ∇u a.e. in Ω.

All these results allow us to pass to the limit in the entropy formulation of un;
indeed, for all k > 0, un satisfies∫

Ω

Θk(un − ϕ)(1) dx (2.7)

−
∫

Ω

Θk(un(x, 0)− ϕ(0)) dx (2.8)

+
∫ 1

0

〈ϕt, Tk(un − ϕ)〉W−1,p′ (Ω),W 1,p
0 (Ω) dt (2.9)

+
∫

Q

a(x,∇un) · ∇Tk(un − ϕ) dx dt (2.10)

≤
∫

Q

Tk(un − ϕ) dµ, (2.11)

for ϕ ∈ Lp(0, 1;W 1,p
0 (Ω))∩L∞(Q)∩C([0, 1];L1(Ω)) with ϕt ∈ Lp′(0, 1;W−1,p′(Ω)).

Let us analyze this inequality term by term: recalling that µ can be decomposed
as µ = f − div(g), where f ∈ L1(Ω) and g ∈ (Lp′(Ω))N , then, since Tk(un − ϕ)
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converges to Tk(u−ϕ) ∗-weakly in L∞(Q), and Tk(un −ϕ) converges to Tk(u−ϕ)
also weakly in Lp(0, 1;W 1,p

0 (Ω)), we have∫
Q

Tk(un − ϕ) dµ
n−→

∫
Q

Tk(u− ϕ) dµ;

moreover, we can write∫
Q

a(x,∇un) · ∇Tk(un − ϕ) dx dt

=
∫

Q

(a(x,∇un)− a(x,∇ϕ)) · ∇Tk(un − ϕ) dx dt

+
∫

Q

a(x,∇ϕ) · ∇Tk(un − ϕ) dx dt,

(2.12)

and the second term on the right-hand side of (2.12) converges, as n tends to infinity,
to ∫

Q

a(x,∇ϕ) · ∇Tk(u− ϕ) dx dt,

while to deal with the nonnegative first term of the right hand side of (2.12), we
must use the a.e. convergence of the gradients; then, applying Fatou’s lemma, we
get ∫

Q

(a(x,∇u)− a(x,∇ϕ)) · ∇Tk(u− ϕ) dx dt

≤ lim inf
n

∫
Q

(a(x,∇un)− a(x,∇ϕ)) · ∇Tk(un − ϕ) dx dt.

On the other hand, since u(x, t), is monotone nonincreasing in t and recalling
(2.4), we have that there exists a function w such that

v(x) ≤ w(x) ≤ u(x, t) ≤ v⊕(x)

and u(x, t) converges to w a.e. in Ω as t tends to infinity. Clearly w does not
depend on t and, thanks to dominated convergence theorem, u(x, t) converges to w
in L1(Ω).

Our goal is to prove that u = v almost everywhere in Ω; to do that, it is
enough to observe that u does not depend on time (in fact, u(x, t) = w(x), since
un(x, t) = u(x, t + n)), and that (2.7)+(2.8)+(2.9) converges to zero as n tends to
infinity. Indeed, if that holds true, we obtain that u satisfies the entropy formulation
for the elliptic problem (1.5), and so, since the entropy solution is unique, we get
that u = v a.e. in Ω.

Let us check that (2.7)+(2.8)+(2.9) approaches zero as n goes to infinity. Using
the monotone convergence theorem, we get

lim
n

[(2.7) + (2.8)] =
∫

Ω

Θk(w(x)− ϕ(1)) dx−
∫

Ω

Θk(w(x)− ϕ(0)) dx

=
∫

Ω

∫ 1

0

d

dt
Θ(w(x)− ϕ) dtdx

=
∫ 1

0

〈(w(x)− ϕ)t, Tk(w(x)− ϕ)〉W−1,p′ (Ω),W 1,p
0 (Ω) dt,
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while, since Tk(un−ϕ) converges to Tk(w−ϕ) weakly in Lp(0, 1;W 1,p
0 (Ω)), we have∫ 1

0

〈ϕt, Tk(un − ϕ)〉W−1,p′ (Ω),W 1,p
0 (Ω) dt

n−→
∫ 1

0

〈ϕt, Tk(w − ϕ)〉W−1,p′ (Ω),W 1,p
0 (Ω) dt.

Finally we can sum all these terms and, since w does not depend on time, we find

lim
n

[(2.7) + (2.8) + (2.9)] =
∫ 1

0

〈wt, Tk(w − ϕ)〉W−1,p′ (Ω),W 1,p
0 (Ω) dt = 0;

and, as we mentioned above, this is enough to prove that w(x) = v(x). The same
argument can be developed to prove that the solution of (1.4) with v	 as initial
data converges in L1(Ω) to v.

Using again Lemma 2.2, we easily deduce that the result holds true for any
solution of problem (1.4) with u0 such that v	 ≤ u0 ≤ v⊕.

Step 2. v	,τ ≤ u0 ≤ v⊕,τ . Let us fix τ > 1. Then, we can easily readapt the
idea of [17] to show that the same result holds true even for initial data data
v	,τ ≤ u0 ≤ v⊕,τ , where v⊕,τ and v	,τ solve (1.5) with, respectively,

µ⊕,τ =

{
τµ+ if f+ = 0,

τf+ − div(g+) if f+ 6= 0,

and

µ	,τ =

{
−τµ− if f− = 0,
−τf− + div(g−) if f− 6= 0.

as data. Here, thanks to the decomposition result of [6], µ± = f±−div(g±) (f± ≥ 0
in L1(Ω), g± ∈ (Lp′(Ω))N ).

Step 3. u0 ∈ L1(Ω) and µ 6= 0. Let us consider the general case of a solution u(x, t)
with initial datum u0 ∈ L1(Ω) and let suppose that µ 6= 0 since, if µ = 0, then the
result it is well known; let us define the family of functions

u0,τ =

{
min(u0, v

⊕,τ ) if u0 ≥ 0
max(u0, v

	,τ ) if u0 < 0.
.

As we have shown in Step 2, for every fixed τ > 1, uτ (x, t), the entropy solution
of problem (1.4) with u0,τ as initial datum, converges to v a.e. in Ω, as t tends
to infinity. Moreover, we have also that Tk(uτ (x, t)) converges to Tk(v) weakly in
W 1,p

0 (Ω) as t diverges, for every fixed k > 0. So, using Lemma 3.4 of [17], we can
easily check that u0,τ converges to u0 in L1(Ω) as τ tends to infinity. Therefore,
using a stability result of entropy solution (see for instance [19]) we obtain that
Tk(uτ (x, t)) converges to Tk(u(x, t)) strongly in Lp(0, T ;W 1,p

0 (Ω)) as τ tends to
infinity.

Now, making the same calculations used in [20] to prove the uniqueness of en-
tropy solutions applied to u and uτ , where uτ is considered as the solution obtained
as limit of approximating solutions with smooth data, we can easily find, for any
fixed τ > 1, the following estimate∫

Ω

Θk(u− uτ )(t) dx ≤
∫

Ω

Θk(u0 − u0,τ ) dx,
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for every k, t > 0. Then, let us divide the above inequality by k, and let us pass to
the limit as k tends to 0; we obtain

‖u(x, t)− uτ (x, t)‖L1(Ω) ≤ ‖u0(x)− u0,τ (x)‖L1(Ω), (2.13)

for every t > 0. Hence, we have

‖u(x, t)− v(x)‖L1(Ω) ≤ ‖u(x, t)− uτ (x, t)‖L1(Ω) + ‖uτ (x, t)− v(x)‖L1(Ω);

then, thanks to the fact that the estimate in (2.13) is uniform in t, for every fixed
ε, we can choose τ̄ large enough such that

‖u(x, t)− uτ̄ (x, t)‖L1(Ω) ≤
ε

2
,

for every t > 0; on the other hand, according to Step 2, there exists t̄ such that

‖uτ̄ (x, t)− v(x)‖L1(Ω) ≤
ε

2
,

for every t > t̄, and this proves our result. �

Remark 2.3. As we said before, in many cases, the convergence in norm to the
stationary solution can be improved depending on the regularity of the limit solution
(or equivalently to the regularity of the datum); for instance, according to Lemma
2.2, we have that, if 0 ≤ u0 ≤ v,

0 ≤ u(x, t) ≤ v(x), for all t ∈ (0,∞), a.e. in Ω;

so, if µ ∈ Lq(Ω) with q > N
p , then Stampacchia’s type estimates ensure that the

solution v of the stationary problem

A(v) = µ in Ω,

v = 0 on ∂Ω,

is in L∞(Ω) and so the convergence of u(x, t) to v of Theorem 1.3 is at least ∗-weak
in L∞(Ω) and almost everywhere. Reasoning similarly one can refine, depending
on the data, the asymptotic result of Theorem 1.3.
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