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REGULARIZATION OF THE BACKWARD HEAT EQUATION
VIA HEATLETS

BETH MARIE CAMPBELL HETRICK, RHONDA HUGHES, EMILY MCNABB

Abstract. Shen and Strang [16] introduced heatlets in order to solve the heat
equation using wavelet expansions of the initial data. The advantage of this

approach is that heatlets, or the heat evolution of the wavelet basis functions,

can be easily computed and stored. In this paper, we use heatlets to regularize
the backward heat equation and, more generally, ill-posed Cauchy problems.

Continuous dependence results obtained by Ames and Hughes [4] are applied

to approximate stabilized solutions to ill-posed problems that arise from the
method of quasi-reversibility.

1. Introduction

Shen and Strang [16] introduced heatlets in order to solve the heat equation
using wavelet expansions of the initial data. The advantage of this approach is
that heatlets, or the heat evolution of the wavelet basis functions, can be computed
easily and stored. When the initial data is expanded in terms of the wavelet basis,
the solution to the heat equation is then obtained from an expansion using the
heatlets and the corresponding wavelet coefficients of the data. In this paper, we
turn our attention to ill-posed problems, using heatlets, and the method of quasi-
reversibility [8], to regularize the backward heat equation [11, 13, 17] as well as more
general ill-posed problems.

Given an ill-posed problem, it is often convenient to define an approximate prob-
lem that is well-posed. Generally, we seek to ensure that a solution to the original
problem, if it exists, will be appropriately close to the solution to the approximate
problem. In our main results, we show that for a wide range of ill-posed problems,
heatlets may be used to obtain such approximate solutions. In addition, apply-
ing the results of [4, 5], we obtain Hölder-continuous dependence results for the
difference between solutions of the ill-posed and approximate well-posed problems.
Previously, wavelets have been used by Liu et al. to decompose the regularized
solution of inverse heat conduction problems using a sensitivity decomposition [9],
but heatlets do not play a role in that work.
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We consider the backward heat equation

∂u

∂t
= −∂

2u

∂x2
where 0 < x < c, 0 < t < T,

u(0, t) = u(c, t) = 0, 0 < t < T,

u(x, 0) = k(x), 0 < x < c,

(1.1)

for suitable initial data k(x). The continuous dependence results in [4, 5] use
semigroup theory and the notion of C-semigroups [10, 12, 17]. If we let A = −∆
denote the self-adjoint Laplacian in L2(R), then the backward heat equation can
be written as an abstract Cauchy problem [7]:

du

dt
= Au,

u(0) = f.
(1.2)

Following [2, 11], we define an approximate well-posed problem as follows:

dv

dt
= (A− εA2)v = −∂

2v

∂x2
− ε

∂4v

∂x4
,

v(0) = f.
(1.3)

This equation is well-posed, since the spectrum of A − εA2 is bounded above.
From the Spectral Theorem, it follows that solutions to the approximate well-posed
problem are of the form

v(t) = et(A−εA2)f. (1.4)

Quasi-reversibility is a regularization technique for ill-posed problems that is de-
signed to generate approximate solutions to the problem in question. The central
idea of quasi-reversibility is to solve the original problem backward, after first re-
placing A by an approximate operator whose spectrum is bounded above. Miller
[11, 12] refines the quasi-reversibility approach of Lattes and Lions, finding sufficient
conditions on the approximate operator to guarantee Hölder continuous dependence
on the data when the method is stabilized; he refers to his approach as an SQR-
method. To implement the method of quasi-reversibility, we consider the well-posed
final value problem

dw

dt
= Aw,

w(T ) = v(T ) = eT (A−εA2)f,

(1.5)

with solution
w(t) = e(t−T )AeT (A−εA2)f = etAe−TεA2

f. (1.6)

We then have the following regularization result from [4].

Theorem 1.1 ([4, Theorem 2]). If u(t) and w(t) are solutions to (1.2) and (1.5)
respectively, and ‖u(T )‖ ≤ k, for some constant k, then there exist constants C and
M , independent of ε > 0, such that for 0 ≤ t < T ,

‖u(t)− w(t)‖ ≤ Cε1−
t
T M t/T .

In light of this result, we ask whether a heatlet decomposition of the initial data
can be used to determine the regularization w(t). First, we turn to the main result
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in [16], which deals with the well-posed forward heat equation
du

dt
= −Au,

u(0) = f.
(1.7)

Theorem 1.2 ([16, Theorem 3.1]). Let f ∈ L2(R), and {ψj,n} be an orthonormal
wavelet basis. Then the corresponding heat evolution in L2(R) is given by

u(x, t) =
∑

j,n∈Z
cj,nΨh

j,n(x, t),

where cj,n is the wavelet coefficient of f(x) attached to ψj,n = 2j/2ψ(2jx− n), and
Ψh

j,n(x, t) is the solution of (1.5) with initial data ψj,n. Moreover, the infinite series
converges in L2(R) uniformly with respect to t .

Using quasi-reversibility, we determine that w(t) can be obtained by evaluating
a heatlet at time T − t. This will yield our main result, the heatlet decomposition
for the backward heat equation (Theorem 3.3):

Theorem 1.3. Let f ∈ L2(R). If u(t) is a stabilized solution of (1.2), so that
‖u(T )‖ ≤ M̃ , we have

‖u(t)−
∑

j,n∈Z
cj,ne

T (A−εA2)Ψh
j,n(x, T − t)‖ ≤ Cε1−

t
T M t/T ,

for constants C and M that are independent of ε > 0, and cj,n is the wavelet
coefficient of f(x) attached to ψj,n = 2j/2ψ(2jx − n). Thus, for small values of
ε > 0, ∑

j,n∈Z
cj,ne

T (A−εA2)Ψh
j,n(x, T − t)

is close to u(t) in L2(R), for 0 ≤ t < T .

The value of the above theorem lies in the fact that, as in the case of the
well-posed heat equation, the heatlets may be computed and stored, and the ap-
proximation w(t) will require evaluation of eT (A−εA2)Ψh

j,n(x, T − t), rather than
eT (A−εA2)e(t−T )Af . Finally, in Section 4, we show that Theorem 1.3 may be framed
in a more general setting, with other choices of the approximating operators. To
pursue this generalization, we introduce the terminology of [4], and define gener-
alized heatlets, that is, solutions of the abstract Cauchy problem with initial data
consisting of elements of a wavelet basis. We then approximate the solution to the
ill-posed problem using the wavelet coefficients in a manner analagous to that in
Theorem 1.3 (Theorem 4.2).

2. Wavelets and Heatlets

In L2(R) we define the mother wavelet of the Haar basis as

ψ(x) =


1 0 ≤ x < 1

2

−1 1
2 ≤ x < 1

0 otherwise.

For positive integers n, j define ψj
n(x) = 2j/2ψ(2jx − n). Then according to a

theorem of Haar, {ψj
n} is an orthonormal basis for L2(R) (cf. [6]).
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Definition. A multiresolution analysis of L2(R) is a chain of approximate spaces
Vj such that −∞ ≤ j ≤ ∞. These closed subspaces satisfy the following properties:

(i) The Vj spaces are nested: . . . V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .
(ii) These spaces are complete; that is,

∪j∈ZVj = L2(R) (i.e. lim
j→∞

Vj = L2(R)),

∩j∈ZVj = 0 (i.e. lim
j→−∞

Vj = 0).

(iii) f(x) ∈ Vj if and only if f(2x) ∈ Vj+1.
(iv) f(x) ∈ V0 if and only if f(x− k) ∈ V0.
(v) There exists a scaling function φ(x) ∈ V0 such that {φ(x − k) : k ∈ Z} is

an orthonormal basis of V0 (cf. [6]).

To create a multiresolution, one needs to construct a scaling function φ(x).
Then, using the properties of a multiresolution analysis, the entire chain can be
constructed from φ(x). For example, we can let V0 = {φ(x− n)|n ∈ Z}. Then

V1 = {φ(2x− n) : n ∈ Z},
V2 = {φ(22x− n) : n ∈ Z},

V−1 = {φ(
x

2
− n) : n ∈ Z}.

This chain of approximate spaces Vj forms a multiresultion analysis of L2(R) [6].
The multiresolution analysis associated with the Haar basis is provided by

Vj = {f ∈ L2(R) : f |
[ k

2j ,
(k+1)

2j ]
= constant, k ∈ Z}.

Next, we summarize the definitions and results from [16, Section 3].
Definition. Let φ(x) be the scaling function and ψ(x) be the wavelet associated
to a multiresolution analysis. Define the heat evolutions of φ(x) and ψ(x) to be
Φh(x, t) and Ψh(x, t), where

Φh
t = Φh

xx, Φh(x, 0) = φ(x), for t > 0, x ∈ R.

Similarly,
Ψh

t = Ψh
xx, quadΨ

h(x, 0) = ψ(x), for t > 0, x ∈ R.
The function Ψh is called a heatlet and Φh is a refinable heat.

Proposition 2.1. Assume that φ(x) and ψ(x) satisfy the equations

φ(x) = 2
∑
n∈Z

hnφ(2x− n),

ψ(x) = 2
∑
n∈Z

gnφ(2x− n),

where (hn), (gn) ∈ l2. Then, the refinable heat and heatlet will satisfy

Φh(x, t) = 2
∑
n∈Z

hnΦh(2x− n, 4t),

Ψh(x, t) = 2
∑
n∈Z

gnΦh(2x− n, 4t).
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Proposition 2.2. Define Ψh
j,n(x, t) to be the solution of (1.5) with initial data

ψj,n. Then
Ψh

j,n(x, t) = 2j/2Ψh(2jx− n, 4jt).

The main theorem of Shen and Strang [16] is as follows.

Theorem 2.3 ([16]). Let f ∈ L2(R). Then the corresponding heat evolution in
L2(R) is given by

u(x, t) =
∑

j,n∈Z
cj,nΨh

j,n(x, t),

where cj,n is the wavelet coefficient of f(x) attached to ψj,n = 2j/2ψ(2jx − n).
Moreover, the infinite series converges in L2(R) uniformly with respect to t .

3. Regularization of the Backward Heat Equation

Consider the final value problem

∂u

∂t
=
∂2u

∂x2
for 0 < t < T, x ∈ (0, l),

u(x, T ) = φ(x),

u(0, t) = u(l, t) = 0.

This problem is ill-posed, and equivalent to (1.1). Following [13], we will stabilize
the problem as follows. Define M to be the collection of all continuous functions
φ(x, t) in D × [0, T ) such that φ(x, t) is twice differentiable in x and continuously
differentiable in t for t ∈ (0, T ). Furthermore, assume

‖φ(T )‖2 ≤ k2

for some prescribed constant k which is a natural bound. The following stability
result is well-known:

Theorem 3.1 ([13]). If u(x, t) ∈ M is a solution to the backward heat equation
and ‖u(T )‖2 ≤ k2, then

‖u(t)‖2 ≤ ‖f‖2(1− t
T )k

2t
T .

In addition, we have the previously mentioned Hölder-continuity result from [4]
(Theorem 1.1).

Now, recall that for f ∈ L2(R), the corresponding heat evolution in L2(R) from
f (for the well-posesd problem) is given by

u(x, t) =
∑

j,n∈Z
cj,nΨh

j,n(x, t),

where cj,n are the wavelet coefficients of f(x) attached to ψj,n = 2j/2ψ(2jx − n).
Using quasireversibility, we find that w(t) may be obtained by evaluating a heatlet
at time T − t. This will yield the heatlet decomposition for the backward heat
equation.

Theorem 3.2. Let f ∈ L2(R), and let cj,n denote the wavelet coefficient of f(x)
attached to ψj,n = 2j/2ψ(2jx − n). Assume that u(t) is a stabilized solution of
(1.2). Then there exist constants C and M , independent of ε > 0, such that

‖u(t)−
∑

j,n∈Z
cj,ne

T (A−εA2)Ψh
j,n(x, T − t)‖ ≤ Cε1−

t
T M t/T .



6 B. M. CAMPBELL H., R. HUGHES, E. MCNABB, EJDE-2008/130

Thus, for small values of ε > 0,
∑

j,n∈Z cj,ne
T (A−εA2)Ψh

j,n(x, T − t) is close to u(t)
in L2(R), for 0 ≤ t < T .

Proof. Recall that the solution to (1.5) is

w(t) = e(t−T )AeT (A−εA2)f

=
∑

j,n∈Z
cj,ne

(t−T )AeT (A−εA2)ψj,n

=
∑

j,n∈Z
cj,ne

T (A−εA2)Ψh
j,n(x, T − t),

where for each j, n, e(t−T )Aψj,n is the heatlet Ψh
j,n(x, T − t). We consider

‖u(t)− w(t)‖ = ‖etAχ− etAe−εTA2
f‖ = ‖(I − e−εTA2

)etAf‖.
In order to obtain a convexity result, we set

φn(α) = (eα2
[eαA − eαAe−εTA2

]fn, h),

where fn = E(en), E(·) is the resolution of the identity for A, en is a bounded
Borel function, and h is an arbitrary element of H. Then

|φn(α)| ≤ et2−η2
‖e(t+iη)Afn − e(t+iη)Ae−εTA2

fn‖ ‖h‖

≤ et2−η2
‖(I − e−εTA2

)etAfn‖ ‖h‖

≤ C1 e
t2−η2

ε‖A2etAfn‖ ‖h‖.

Thus φn(α) is bounded in the strip 0 ≤ <α ≤ T , and so by the Three Lines
Theorem, we obtain

|φn(t)| ≤M(0)1−t/TM(T )t/T ,

where M(t) = maxη∈R |φ(t+ iη)|. Since M(0) ≤ C1ε‖A2fn‖ ‖h‖, and

M(T ) ≤ eT 2
‖(I − e−εTA2

)eTAfn‖ ‖h‖ ≤ C2 e
T 2
‖eTAfn‖ ‖h‖,

we obtain, taking the supremum over all h ∈ H, with ‖h‖ ≤ 1,

‖u(t)− w(t)‖ ≤ C{ε‖A2fn‖}1−t/T {‖eTAfn‖}t/T .

for a suitable constant C. If we take the limit as n → ∞, and assume in addition
that ‖eTAf‖ ≤ M̃ , from which it follows that ‖A2f‖ ≤ M̃ , for a possibly different
constant, we have

‖u(t)−
∑

j,n∈Z
cj,ne

T (A−εA2)Ψh
j,n(x, T − t)‖ = ‖u(t)− w(t)‖ ≤ Cε1−t/TM t/T .

Thus, for small values of ε > 0,
∑

j,n∈Z cj,ne
T (A−εA2)Ψh

j,n(x, T − t) is close to u(t)
in L2(R), for 0 ≤ t < T . �

4. Applications to Ill-Posed Problems

In this section, following [1, 2, 3, 4, 5], we consider ill-posed Cauchy problems in
L2(R), where A is now any positive self-adjoint operator. Let ψ be associated with
a multiresolution analysis, and let be the corresponding wavelet basis be {ψj,n}.
We show that the choice of approximate problem can be generalized.
Definition. Let f : [0,∞) → R be a Borel function, and assume that there
exists ω ∈ R such that f(λ) ≤ ω for all λ ∈ [0,∞). Then f is said to satisfy
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Condition (A) if there exist positive constants β, δ with 0 < β < 1, for which
Dom(A1+δ) ⊆ Dom(f(A)) and

‖(−A+ f(A))ψ‖ ≤ β‖A1+δψ‖.
Set g(A) = −A+ f(A).

As in the previous section, we also obtain an approximation w(t) through quasire-
versibility: w(t) = e(t−T )AeTf(A)χ, where we replace the initial data f by χ, to
avoid confusion.

Theorem 4.1 ([5, Theorem 2]). Let A be a positive self-adjoint operator acting
on H, let f satisfy Condition (A), and assume that there exists a constant γ, in-
dependent of β, such that (g(A)ψ,ψ) ≤ γ(ψ,ψ), for all ψ ∈ H. If u(t) and w(t)
are solutions of (1.2) and (1.4), respectively, and ‖u(T )‖ ≤ M̃ , then there exist
constants C and M , independent of β, such that for 0 ≤ t < T ,

‖u(t)− w(t)‖ ≤ Cβ1−t/TM t/T .

Definition. For a self-adjoint operator A, we define a generalized heatlet to be the
solution Ψj

n of the abstract Cauchy problem du
dt = −Au, with initial data ψj,n.

The next theorem follows in the same manner as Theorem 3.2 in the previous
section, using the realization of w(t) in terms of heatlets.

Theorem 4.2. Let χ ∈ L2(R), and let cj,n denote the wavelet coefficient of χ(x)
attached to ψj,n = 2j/2ψ(2jx−n). Assume that u(t) is a stabilized solution of (1.2),
where A is a positive self-adjoint operator on L2(R), and that f satisfies Condition
(A). Then there exist constants C and M , independent of ε > 0, such that

‖u(t)−
∑

j,n∈Z
cj,ne

Tf(A)Ψh
j,n(x, T − t)‖ ≤ Cε1−

t
T M t/T .

Thus, for small values of ε > 0,
∑

j,n∈Z cj,ne
Tf(A)Ψh

j,n(x, T − t) is close to u(t) in
L2(R), for 0 ≤ t < T .
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