\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 115, pp. 1--18.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/115\hfil On the existence of weak solutions] {On the existence of weak solutions for $p,q$-laplacian systems with weights} \author[O. H. Miyagaki, R. S. Rodrigues\hfil EJDE-2008/115\hfilneg] {Olimpio H. Miyagaki, Rodrigo S. Rodrigues} % in alphabetical order \address{Olimpio H. Miyagaki \newline Departamento de Matem\'atica, Universidade Federal de Vi\c{c}osa, 36571-000, Vi\c{c}osa, MG, Brazil} \email{olimpio@ufv.br} \address{Rodrigo S. Rodrigues \newline Departamento de Matem\'atica, Universidade Federal de S\~ao Carlos, 13565-905, S\~ao Carlos, SP, Brazil} \email{rodrigosrodrigues@ig.com.br} \thanks{Submitted May 19, 2008. Published August 20, 2008.} \thanks{The first author was supported by the CNPq-Brazil and AGIMB--Millenium Institute \hfill\break\indent MCT/Brazil. The second author was supported by Capes-Brazil} \subjclass[2000]{35B25, 35B33, 35D05, 35J55, 35J70} \keywords{Degenerate quasilinear equations; elliptic system; \hfill\break\indent critical exponent; singular perturbation} \begin{abstract} This paper studies degenerate quasilinear elliptic systems involving $p,q$-superlinear and critical nonlinearities with singularities. Existence results are obtained by using properties of the best Hardy-Sobolev constant together with an approach developed by Brezis and Nirenberg. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}{Lemma}[section] \allowdisplaybreaks \section{Introduction} In a well-known paper, Brezis and Nirenberg \cite{BrezisNirenberg} proved that, under certain conditions, the elliptic problem with Dirichlet boundary condition \begin{equation} \label{PBN} \begin{gathered} -\Delta u =\lambda u^q+u^{2^*-1} \quad \quad\text{in }\Omega, \\ u>0 \quad\text{in }\Omega, \\ u=0 \quad\text{on } \partial\Omega \end{gathered} \end{equation} possesses at least a solution, for all $\lambda > 0$, where $1 p)$, with $1< p\leq q 0$ such that the following Hardy-Sobolev type inequality with weights is satisfied \begin{equation*} \label{Caffarelli-Kohn-Nirenberg} \Big(\int_{\mathbb{R}^N} |x|^{-c_1p^*}|u|^{p^*}dx\Big)^{p/p^*} \leq C_{a,p}\Big({\int_{\mathbb{R}^N} |x|^{-ap}|\nabla u|^p }dx\Big), \quad \forall u\in C_0^{\infty}(\mathbb{R}^N). \end{equation*} Note that several papers have been appeared on this subject, mainly, the works about the existence of solution for a class of quasilinear elliptic problems of the type \begin{equation*} -Lu_{ap}=g(x,u) + |x|^{-e_1p^*}|u|^{q-2}u \quad\text{in } \Omega, \end{equation*} where $ Lu_{ap}= \mathop{\rm div}(|x|^{-ap} |\nabla u|^{p-2} \nabla u)$, under certain suppositions on the exponents $11, \quad \beta_1,\beta_2 \in \mathbb{R}, \end{gathered} \label{Hexp} \end{equation} with one of the following two sets of conditions satisfied: \begin{equation}\label{H1} \begin{gathered} \frac{\theta}{p}+\frac{\delta}{q},\, \frac{\alpha}{p}+\frac{\gamma}{q} > 1 \quad \text{($p,q$-superlinear)} \\ \\ \frac{\theta}{p^*}+\frac{\delta}{q^*},\, \frac{\alpha}{p^*}+\frac{\gamma}{q^*} < 1 \quad \text{($p,q$-subcritical),} \end{gathered} \end{equation} or \begin{equation}\label{HH1} \frac{\theta}{p^*}+\frac{\delta}{q^*} < 1 < \frac{\theta}{p}+\frac{\delta}{q} \text{ and } \frac{\alpha}{p^*}+\frac{\gamma}{q^*}=1 \quad\text{$p,q$-superlinear/critical case)} \end{equation} However, the variational systems behave, in a certain sense, like in the scalar case, there exist some additional difficulties mainly coming from the mutual actions of the variables $u$ and $v$, see e. g. \cite{Han, stavrakakis1}. Another difficulty, even in the regular case, are the systems involving $p$-laplacian and $q$-laplacian operators and their respective critical exponents. In this situation, it is hard to find a well appropriated critical level, mainly, when $p\neq q$. This open question was pointed out in Adriouch and Hamidi \cite{Adriouch1}. But, recently Silva and Xavier in \cite{Elves} were able to prove, in a certain context and in the regular case, the existence of weak solution for a system involving $p$-laplacian and $q$-laplacian operators with $p\neq q$. Still in the regular case and $p=q$, we would like to mention the papers \cite{Abdelaziz,AlvesMoraisSouto, MoraisSouto, Stavrakakis, YangJianfu(system)}, also a survey paper \cite{Djairo(System)}. In particular, Morais and Souto in \cite{MoraisSouto} defined the following critical level number $S_H/p$, where \begin{equation*} S_H={ \inf_{W\setminus\{0\}}} \Big\{\frac{\int_{\Omega} |\nabla u|^p+|\nabla v|^pdx}{\big( \int_{\Omega}H(u,v)dx\big)^{p/p^*}}\Big\}, \end{equation*} $W=W_0^{1,p}(\Omega)\times W_0^{1,q}(\Omega)$ and $H$ is homogeneous nonlinearity of degree $p^*$. In this work, we will improve the critical level by proving that all the Palais Smale sequences at the level $c$ are relatively compact provided that $$ c<(\frac{1}{p}-\frac{1}{p^*})(\mu p^*)^{\frac{-p}{p^*-p}} \tilde{S}^{\frac{p^*}{p^*-p}} +\lambda(\frac{1}{p}-\frac{1}{p_1})M, $$ where $\tilde{S}$ depends of $C_{a,p}^*$ and $M=M(u_n,v_n)\geq 0$ depends of Palais Smale sequence. Our first result deals with $p,q$-superlinear and subcritical nonlinear perturbation. \begin{theorem}\label{thm1} In addition to \eqref{HOmega}, \eqref{Hexp}, and \eqref{H1}, assume that $p_i\in (p,p^*)$, $q_i\in (q,q^*)$, $i=1,2$, with $\theta/p_1+\delta/q_1=\alpha/p_2+ \gamma/q_2=1$ and \begin{equation}\label{hipotese555} \beta_i< \min\big\{(a+1)p_i+ N\big(1-\frac{p_i}{p}\big), (b+1)q_i+ N\big(1-\frac{q_i}{q}\big)\big\}, \quad i=1,2. \end{equation} Then system \eqref{sistemaperturbado1} possesses a weak solution, where each component is nontrivial and nonnegative, for each $\lambda\geq 0$ and $\mu >0$. \end{theorem} The next result treats the $p,q$-superlinear and critical case. \begin{theorem}\label{edr} Assume \eqref{HOmega}, \eqref{Hexp} and \eqref{HH1}, with $p=q$ and $a=b\geq 0$. Suppose also $p_1=q_1\in(p,p^*)$, with $\theta/p_1+\delta/q_1=1$, $p^*=q^*$, $\beta_2=c_1p^*$, and $\beta_1=(a+1)p_1-c$ with \begin{equation*} -N\left[1-({p_1}/{p})\right] 0$. \end{theorem} The $p,q$-superlinear and critical case with $p \neq q$ is studied in the following result. \begin{theorem} \label{dif} In addition to \eqref{HOmega}, \eqref{Hexp}, and \eqref{HH1}, assume that $p_1\in(p,p^*)$, $q_1\in(q,q^*)$, with $\theta/p_1+\delta/q_1=1$, $\beta_2=c_1p^*=c_2q^*$, and $\beta_1$ as in \eqref{hipotese555}. Then there exists $\mu_0$ sufficiently small such that system \eqref{sistemaperturbado1} posesses a weak solution, where each component is nontrivial and nonnegative, for each $\lambda > 0$ and $0<\mu<\mu_0$. \end{theorem} \section{Preliminaries} We will set some spaces and their norms. If $\alpha \in \mathbb{R}$ and $l\geq 1$, we define $L^l(\Omega, |x|^{\alpha})$ as being the subspace of $L^l(\Omega)$ of the Lebesgue measurable functions $u:\Omega \to \mathbb{R}$ satisfying \begin{equation*} \|u\|_{L^{l}(\Omega,|x|^{\alpha})} := { \Big(\int_{\Omega}|x|^\alpha |u|^ldx\Big)^{1/l}}< \infty. \end{equation*} If $1 < p < N$ and $-\infty0$ such that \begin{equation*} {\Big( \int_{\Omega}|x|^{-\delta} |u|^r dx\Big)^{p/r}}\leq C \Big({\int_{\Omega}|x|^{-ap} |\nabla u|^{p}dx}\Big),\quad \forall u\in W_0^{1,p}(\Omega,|x|^{-ap}), \end{equation*} where $1\leq r \leq Np/(N-p)$ and $\delta \leq (a+1)r+N[1-({r}/{p})]$. \begin{lemma}\label{1.121} Suppose that $\Omega$ is a bounded smooth domain of $\mathbb{R}^N$ with $0\in\Omega$, $1 0, \end{equation*} where \begin{equation*} k_{a,p}(\epsilon)=c_0\epsilon^{(N-d_1p)/d_1p^2} \quad\text{and}\quad U_{a,p,\epsilon}(x) = {\Big(\epsilon+|x|^{\frac{d_1p(N-p-ap)}{(p-1)(N-d_1p)}} \Big)^{-(\frac{N-d_1p}{d_1p})}}. \end{equation*} Moreover, $y_{\epsilon}$ satisfies \begin{equation}\label{zzz1} {\int_{\mathbb{R}^N}}|x|^{-ap}|\nabla y_{\epsilon}|^{p}dx= {\int_{\mathbb{R}^N}}|x|^{-c_1p^*}|y_{\epsilon}|^{p^*}dx. \end{equation} See also Cl\'ement, Figueiredo and Mitidieri \cite[Proposition 1.4]{Djairo}. The next lemma can be proved arguing as in \cite{BrezisNirenberg} (see also \cite[Lemma 5.1]{Xuan1}). For the sake of the completeness we will give the proof in the appendix. \begin{lemma}\label{Xuan-O(e)} In addition to \eqref{HOmega} and \eqref{Hexp}, assume that $p_1=q_1\in(p,p^*)$, $\theta/p_1+\delta/q_1=1$, $\beta_2=c_1p^*=c_2q^*$, and $\beta_1=(a+1)p_1-c$ with \begin{equation*} -N\left[1-({p_1}/{p})\right]\frac{(p_1-p+1)N-(a+1)p_1}{p-1}, \\[3pt] O(\epsilon^{{(N-d_1p)p_1}/{d_1p^2}}|ln (\epsilon)|) \text{ if } c=\frac{(p_1-p+1)N-(a+1)p_1}{p-1}, \\[3pt] O\Big(\epsilon^{\frac{(N-d_1p)(p-1)(N-p_1-ap_1+c)}{d_1p(N-p-ap)} -\frac{(N-d_1p)(p-1)p_1}{d_1p^2}}\Big) \\ \text{if } c<\frac{(p_1-p+1)N-(a+1)p_1}{p-1}\,. \end{cases} \end{equation} \end{lemma} The following result, which will be useful in the proof of our results, was proved by Kavian in \cite[Lemma 4.8]{Kavian}. \begin{lemma}\label{Kavian} Let $\Omega$ be an open subset of $\mathbb{R}^N$, $\{f_n\}\in L^{r}(\Omega)$, for some $1 0$ such that \begin{equation}\label{geom2} I(u,v) \geq \sigma \text{\, if \,} \|(u,v)\|=\rho. \end{equation} \item[(b)] There exists $e \in W_0^{1,p}(\Omega,|x|^{-ap})\times W_0^{1,q}(\Omega,|x|^{-bq}) $ such that $$ I(e)\leq 0, \quad \|e\|\geq R \quad \text{for some } R > \rho. $$ \end{itemize} \end{lemma} \begin{proof} Part (a). For $(u,v)\in W_0^{1,p}(\Omega,|x|^{-ap})\times W_0^{1,q}(\Omega,|x|^{-bq})$ with $\|(u,v)\|\leq 1$, we have \begin{align*} I(u,v) &\geq \Big(\frac{1}{p}\|u\|^p - \lambda\frac{\theta C^{p_1/p}}{p_1} \|u\|^{p_1} - \mu \frac{\alpha C^{p_2/p}}{p_2} \|u\|^{p_2} \Big) \\ &\quad +\Big( \frac{1}{q}\|v\|^q -\lambda \frac{\delta C^{q_1/q}}{q_1} \|v\|^{q_1} -\mu \frac{\gamma C^{q_2/q}}{q_2}\|v\|^{q_2} \Big) \\ &\geq \frac{1}{p}\|u\|^{p} -\Big(\lambda \frac{\theta C^{p_1/p}}{p_1} + \mu \frac{\alpha C^{p_2/p}}{p_2}\Big) \|u\|^{\min\{p_1,p_2\}} \\ &\quad +\frac{1}{q}\|v\|^{q} - \Big(\lambda \frac{\delta C^{q_1/q}}{q_1} +\mu \frac{\gamma C^{q_2/q}}{q_2}\Big) \|v\|^{\min\{q_1,q_2\}}. \end{align*} Hence, as $p<\min\{p_1,p_2\}$ and $q<\min\{q_1,q_2\}$, we can choose $\rho\in (0,1)$ such that \begin{equation*} I(u,v) \geq\sigma \quad\text{if } \|(u,v)\|=\rho. \end{equation*} Part (b). The proof follows by taking $(u_0,v_0)\in W_0^{1,p}(\Omega,|x|^{-ap})\times W_0^{1,q}(\Omega,|x|^{-bq})$ with $u_{0_+}.v_{0_+}\not\equiv 0$. Then, defining $(u_t,v_t)=(t^{1/p}u_0,t^{\frac{1}{q}}v_0)$, for $t>0$, we obtain \begin{eqnarray}\label{geom 1} I(u_t,v_t) \leq \Big(\frac{1}{p}\|u_0\|^{p}+ \frac{1}{q}\|v_0\|^q\Big) t- \mu t^{\frac{\alpha}{p}+ \frac{\gamma}{q}} {\int_{\Omega}}|x|^{-\beta_2} u_{0_+}^{\alpha}v_{0_+}^{\gamma} dx \to -\infty, \end{eqnarray} \noindent as $ t\to \infty$. \end{proof} From the mountain pass theorem \cite{AR} we get a $(PS)_c$-sequence $\{(u_n,v_n)\}$ in $W_0^{1,p}(\Omega,|x|^{-ap})\times W_0^{1,q}(\Omega,|x|^{-bq})$, where \begin{equation}\label{Carmo1} 0<\sigma\leq c={\inf_{h\in \Gamma}} {\max_{t\in [0,1]}}I(h(t)) \end{equation} and \begin{equation}\label{Carmo} \Gamma = \big\{h\in C([0,1],W_0^{1,p}(\Omega,|x|^{-ap}) \times W_0^{1,q}(\Omega,|x|^{-bq})) : h(0) = 0,\, h(1) = e\big\}, \end{equation} with $I(e)\equiv I(t_0u_0,t_0v_0)<0$. \begin{lemma}\label{u+} In addition to \eqref{HOmega} and \eqref{Hexp}, assume that one of the two following conditions hold: \begin{itemize} \item[(i)] the case \eqref{H1}, $p_i\in (p,p^*)$, $q_i\in (q,q^*)$, with $\theta/p_1+\delta/q_1=\alpha/p_2+ \gamma/q_2=1$, and $\beta_i$ as in \eqref{hipotese555}, for $i=1,2$. \item[(ii)] the case \eqref{HH1}, $p_1\in (p,p^*)$, $q_1\in (q,q^*)$, with $\theta/p_1+\delta/q_1=1$, $\beta_1$ as in \eqref{hipotese555}, $p_2=p^*$, $q_2=q^*$, and $\beta_2=c_1p^*=c_2q^*$. \end{itemize} Let $\{(u_n,v_n)\} \subset W^{1,p}_{0}(\Omega,|x|^{-ap})\times W^{1,q}_{0}(\Omega,|x|^{-bq})$ be a $(PS)_c$-sequence. Then $\{(u_{n_+},v_{n_+})\}$ is a $(PS)_c$-sequence which is bounded uniformly in $\mu>0$. \end{lemma} \begin{proof} Let $\theta_1=\min\{p_1,p_2\}$ and $\theta_2=\min\{q_1,q_2\}$, we have \begin{align*} c + \|(u_n,v_n)\|+O_n(1) &\geq I(u_n,v_n)-\langle I'(u_n,v_n),({u_n}/{\theta_1}, {v_n}/{\theta_2})\rangle \\ &\geq ( \frac{1}{p}-\frac{1}{\theta_1})\|u_n\|^p + ( \frac{1}{q}-\frac{1}{\theta_2})\|v_n\|^q \\ &\quad +\lambda (\frac{\theta}{\theta_1}+\frac{\delta}{\theta_2}-1) {\int_{\Omega}}|x|^{-\beta_1} u_{n_+}^{\theta}v_{n_+}^{\delta}dx \\ &\quad + \mu(\frac{\alpha}{\theta_1}+\frac{\gamma}{\theta_2}-1) {\int_{\Omega}}|x|^{-\beta_2} u_{n_+}^{\alpha}v_{n_+}^{\gamma}dx \\ &\geq (\frac{1}{p}-\frac{1}{\theta_1})\|u_n\|^p +(\frac{1}{q}-\frac{1}{\theta_2})\|v_n\|^q. \end{align*} Therefore, independently of $\lambda\geq 0$ and $\mu>0$, we conclude that $\{(u_n,v_n)\}$ is a bounded sequence in $W^{1,p}_{0}(\Omega,|x|^{-ap})\times W^{1,q}_{0}(\Omega,|x|^{-bq})$. In particular, we have that $\{(u_{n_-},v_{n_-})\}$ and $\{(u_{n_+},v_{n_+})\}$ are bounded sequences in $W^{1,p}_{0}(\Omega,|x|^{-ap})\times W^{1,q}_{0}(\Omega,|x|^{-bq})$, then \begin{equation}\label{l11} -\|u_{n_-}\|^p = \left\langle I'(u_n,v_n),(u_{n_-},0)\right\rangle \to 0\ \quad\text{as }\ n\to \infty \end{equation} and similarly \begin{equation}\label{l11.1} -\|v_{n_-}\|^q = \left\langle I'(u_n,v_n),(0,v_{n_-})\right\rangle \to 0\ \quad\text{as }\ n\to \infty. \end{equation} Moreover, we get \begin{equation*} I(u_{n_+},v_{n_+}) = I(u_n,v_n)+\frac{1}{p}\|u_{n_-}\|^p + \frac{1}{q}\|v_{n_-}\|^q = I(u_n,v_n)+ O_n(1). \end{equation*} Therefore, from $(\ref{l11})$ and $(\ref{l11.1})$, we obtain $I(u_{n_+},v_{n_+}) \to c$ as $n \to \infty$. Similarly, if $(w,z)\in W_0^{1,p}(\Omega,|x|^{-ap}) \times W_0^{1,q}(\Omega,|x|^{-bq})$, we prove that $$ \langle I'({u_n}_{+},{v_n}_{+}),(w,z)\rangle = \langle I'(u_n,v_n),(w,z)\rangle +O_n(1), $$ hence $I'(u_{n_+},u_{n_+})\to 0$ as $n\to \infty$. \end{proof} \section{Proof of theorem \ref{thm1}} \begin{lemma}\label{PS} Suppose that \eqref{HOmega} and \eqref{Hexp} hold. Assume that $p_i\in (p,p^*)$, $q_i\in (q,q^*)$, $i=1,2$, with $\theta/p_1+\delta/q_1=\alpha/p_2+ \gamma/q_2=1$, and $\beta_i, i=1,2$, as in \eqref{hipotese555}. Then, every $(PS)_c$-sequence $\{(u_n,v_n)\}$ with $u_n,v_n\geq 0$, for a.e. in $\Omega$, is precompact. \end{lemma} \begin{proof} From lemma \ref{u+}, the sequence $\{(u_{n},v_{n})\}$ is bounded in $W^{1,p}_{0}(\Omega,|x|^{-ap})\times W^{1,q}_{0}(\Omega,|x|^{-bq})$. We can assume, passing to a subsequence if necessary, there exists $(u,v)\in W_0^{1,p}(\Omega,|x|^{-ap})\times W_0^{1,q}(\Omega,|x|^{-bq})$ satisfying $u_{n}\rightharpoonup u$ and $v_{n}\rightharpoonup v$ weakly, as $n \to \infty$. From the compact embedding theorem \cite[Theorem 2.1]{Xuan1}, we obtain \begin{gather*} u_{n} \to u \quad\text{in } L^{p_1}(\Omega, |x|^{-\beta_1}) \cap L^{p_2}(\Omega,|x|^{-\beta_2})\,\quad\text{as }\, n \to \infty,\\ v_{n} \to v \quad\text{in } L^{q_1}(\Omega,|x|^{-\beta_1}) \cap L^{q_2}(\Omega,|x|^{-\beta_2})\,\quad\text{as }\, n\to \infty . \end{gather*} Since there exist $f\in L^{p_1}(\Omega, |x|^{-\beta_1})$ and $g\in L^{q_1}(\Omega, |x|^{-\beta_1})$ such that $|u_n|(x)\leq f(x)$ and $|v_n|(x)\leq g(x)$, for a.e. $x\in \Omega$ and all $n\in \mathbb{N}$, applying the Lebesgue's dominated convergence theorem we infer that \begin{equation}\label{fjl1} \lim_{n\to \infty}{\int_{\Omega}} |x|^{-\beta_1}u_{n}^{\theta-1}v_{n}^{\delta}(u_n-u)dx =0\,, \end{equation} and similarly \begin{equation}\label{fjl2} \lim_{n\to \infty}{\int_{\Omega}} |x|^{-\beta_2}u_{n}^{\alpha-1}v_{n}^{\gamma}(u_n-u)dx =0. \end{equation} Now, taking the upper limit in the equation \begin{align*} & {\int_{\Omega}}|x|^{-ap}\left(|\nabla u_n|^{p-2} \nabla u_n-|\nabla u|^{p-2}\nabla u \right)\nabla(u_n-u)dx\\ &=\langle I'(u_n,v_n),(u_n-u,0)\rangle -{\int_{\Omega}}|x|^{-ap}|\nabla u|^{p-2}\nabla u \nabla(u_n-u)dx \\ &\quad +\lambda \theta {\int_{\Omega}}|x|^{-\beta_1} u_{n}^{\theta-1}v_{n}^{\delta}(u_n-u)dx +\mu \alpha{\int_{\Omega}}|x|^{-\beta_2} u_{n}^{\alpha-1}v_{n}^{\gamma}(u_n-u)dx\,. \end{align*} Using the definition of $(PS)_c$-sequence, the weak convergence, $(\ref{fjl1})$, and $(\ref{fjl2})$, we obtain \begin{equation*} \limsup_{n\to \infty} {\int_{\Omega}}|x|^{-ap}\left(|\nabla u_n|^{p-2} \nabla u_n-|\nabla u|^{p-2}\nabla u \right)\nabla(u_n-u)dx = 0. \end{equation*} Consequently, by a well known lemma (see e.g. \cite[lemma 4.1]{Ghoussoub}) we achieve, up to a subsequence, that $u_n\to u$ strongly in $W_0^{1,p}(\Omega,|x|^{-ap})$ as $n\to \infty$. Analogously, we get $v_n\to v$ strongly in $W_0^{1,q}(\Omega,|x|^{-bq})$ as $n \to \infty$. \end{proof} \begin{proof}[Proof of theorem $\ref{thm1}$] By combining lemmata \ref{GC} and \ref{u+}, there exists a $(PS)_c$-sequence $\{(u_n,v_n)\}$ in $W_0^{1,p}(\Omega,|x|^{-ap}) \times W_0^{1,q}(\Omega,|x|^{-bq})$ with $u_n,v_n\geq 0$, for a.e. in $\Omega$. Moreover, from lemma $\ref{PS}$ there exist $(u,v) \in W_0^{1,p}(\Omega,|x|^{-ap}) \times W_0^{1,q}(\Omega,|x|^{-bq})$ and a subsequence of $\{(u_n,v_n)\}$, that we will denote by $\{(u_n,v_n)\}$, such that $u_n\to u$ strongly in $W_0^{1,p}(\Omega,|x|^{-ap})$ and $v_n\to v$ strongly in $W_0^{1,q}(\Omega,|x|^{-bq})$, as $n \to \infty$. Then, we conclude that \begin{equation*} I(u,v)=c>0 \quad\text{and}\quad I'(u,v) = 0, \end{equation*} that is, $(u,v)$ is a nonnegative weak solution of system \eqref{sistemaperturbado1}. Moreover, it is easy to check that $u,v\not \equiv 0$. \end{proof} \section{Proof of theorem \ref{edr}} First of all, notice that by lemma \ref{GC} the geometric conditions of the mountain pass theorem for the functional $I$ are satisfied. The next three lemmata are crucial in the proof of this theorem. \begin{lemma}\label{existenciaCriticoProdFraco} Let $\{(u_n,v_n)\}\subset (W^{1,p}_{0}(\Omega,|x|^{-ap}))^2$ be a bounded $(PS)_c$-sequence such that $u_n,v_n\geq 0$, for a.e. in $\Omega$, and there exists $(u,v)\in (W^{1,p}_{0}( \Omega,|x|^{-ap}))^2$ satisfying $u_n\rightharpoonup u$ and $v_n\rightharpoonup v$ weakly in $W^{1,p}_{0}(\Omega,|x|^{-ap})$, as $n \to \infty$. Then, $(u,v)$ is a weak solution of system \eqref{sistemaperturbado1} and $u,v \geq 0$ for a.e. in $\Omega$. \end{lemma} \begin{proof} Arguing as in the proof of lemma $\ref{PS}$, by combining the compact embedding theorem \cite[Theorem 2.1]{Xuan1} with the Lebesgue's dominated convergence theorem, we obtain that $u,v\geq 0$ for a.e. in $\Omega$, \begin{equation}\label{ed1} {\lim_{n\to \infty}} {{\int_{\Omega}}} |x|^{-\beta_1}u_{n}^{\theta-1}v_{n}^{\delta}wdx = {{\int_{\Omega}}} |x|^{-\beta_1}u^{\theta-1}v^{\delta}wdx, \quad \forall w\in W^{1,p}_{0}(\Omega,|x|^{-ap}), \end{equation} and \begin{equation}\label{ed2} {\lim_{n\to \infty}} {\int_{\Omega}} |x|^{-\beta_1} u_{n}^{\theta}v_{n}^{\delta-1}zdx = {\int_{\Omega}} |x|^{-\beta_1} u^{\theta}v^{\delta-1}zdx, \quad \forall z\in W^{1,p}_{0}(\Omega,|x|^{-ap}). \end{equation} Notice that $\nabla u_n(x) \to \nabla u(x)$ and $\nabla v_n(x)\to \nabla v(x)$, for a.e. $x\in \Omega$, as $n \to \infty$. These facts can be proved arguing as in \cite{Boccardo} (see also \cite{Assuncao(Critical), Ghoussoub, Rakotoson}). Since $\{(u_n,v_n)\}$ is bounded in $(W_0^{1,p}(\Omega,|x|^{-ap}))^2$, we have $\{|\nabla u_n|^{p-2}\nabla u_n\}$ and $\{|\nabla v_n|^{p-2}\nabla v_n\}$ are bounded in $(L^{\frac{p}{p-1}} (\Omega,|x|^{-ap}))^{N}{ .}$ On the other hand, since $\alpha+\gamma=p^*$, by the H\"older's inequality, we infer that $\{{u_n}^{\alpha-1}{v_n}^{\gamma}\}$ and $\{{u_n}^{\alpha}{v_n}^{\gamma-1}\}$ are bounded in $L^{\frac{p^*}{p^*-1}}(\Omega,|x|^{-e_1p^*})$. Therefore, by lemma $\ref{Kavian}$ we get \begin{equation}\label{ed3} \nabla u_n\rightharpoonup\nabla u \quad\text{and } \nabla v_n\rightharpoonup\nabla v \quad\text{weakly in } (L^{\frac{p}{p-1}}(\Omega,|x|^{-ap}))^{N} \end{equation} and \begin{equation}\label{ed4} u_{n}^{\alpha} v_{n}^{\gamma-1} \rightharpoonup u^{\alpha}v^{\gamma-1}, \quad u_{n}^{\alpha-1} v_{n}^{\gamma} \rightharpoonup u^{\alpha-1}v^{\gamma} \quad\text{weakly in } L^{\frac{p^*}{p^*-1}}(\Omega,|x|^{-c_1p^*}), \end{equation} as $n\to \infty$. Consequently, using $(\ref{ed1})-(\ref{ed4})$ we obtain \begin{equation*} \langle I'(u,v),(w,z)\rangle= {\lim_{n\to\infty}} \langle I'(u_n,v_n),(w,z)\rangle =0, \quad \forall (w,z)\in (W_0^{1,p}(\Omega,|x|^{-ap}))^2, \end{equation*} that is, $(u,v)$ is a weak solution of system \eqref{sistemaperturbado1}. \end{proof} \begin{lemma}\label{PScriticoRN} In addition to \eqref{HOmega}, \eqref{Hexp}, and \eqref{HH1}, assume that $p=q$, $0\leq a=b$, $p_1=q_1\in(p,p^*)$, with $\theta/p_1+\delta/q_1=1$, $p^*=q^*$, and $\beta_2=c_1p^*$. Then, all the Palais Smale sequences $\{(u_n,v_n)\}\subset(W^{1,p}_{0}(\Omega,|x|^{-ap}))^2$ for the operator $I$ at the level $c$, with $u_n,v_n\geq 0$ for a.e. in $\Omega$, are precompact provided that \begin{equation}\label{mmC7R} c< (\frac{1}{p}-\frac{1}{p^*}) (\mu p^*)^{\frac{-p}{p^*-p}}\tilde{S} ^{\frac{p^*}{p^*-p}}+ K(\lambda), \end{equation} where \begin{equation*} K(\lambda)=\lambda p_1(\frac{1}{p}-\frac{1}{p_1}) \lim_{n\to \infty}{\int_{\Omega}}|x|^{-\beta_1} {u}_{n}^{\theta}{v}_{n}^{\delta}dx. \end{equation*} \end{lemma} \begin{proof} By Lemma \ref{u+} the sequence $\{(u_n,v_n)\}$ is bounded in $(W^{1,p}_{0}(\Omega,|x|^{-ap}))^2;$ consequently, there exists $(u,v)\in(W^{1,p}_{0}(\Omega,|x|^{-ap}))^2$ such that $u_n\rightharpoonup u$ and $v_n\rightharpoonup v$ weakly in $W^{1,p}_{0}(\Omega,|x|^{-ap})$, as $n \to \infty$. Then, by combining the compact embedding theorem \cite[Theorem 2.1]{Xuan1} with the Lebesgue's dominated convergence theorem, we infer that $u_n(x)\to u(x)$, $v_n(x)\to v(x)$, for a.e. in $\Omega$, as $n \to \infty$, and \begin{equation}\label{RR2} {\lim_{n\to \infty}} {\int_{\Omega}}|x|^{-\beta_1} {u}_{n}^{\theta}{v}_{n}^{\delta}dx = {\int_{\Omega}}|x|^{-\beta_1} {u}^{\theta}{v}^{\delta}dx. \end{equation} Moreover, as in Lemma $\ref{existenciaCriticoProdFraco}$ we can suppose that $\nabla u_n(x) \to \nabla u(x)$ and $\nabla v_n(x)\to \nabla v(x)$, for a.e. $x\in \Omega$, as $n \to \infty$. Define $\tilde{u}_n=u_n-u$ and $\tilde{v}_n=v_n-v$. By Brezis and Lieb \cite[Theorem 1]{BrezisLieb} we have \begin{itemize} \item [(i)]\hspace{0.17cm} $\|u_n\|^p=\|\tilde{u}_n\|^p+\|u\|^p+O_n(1)$, as $ n \to\infty$. \item [(ii)]\hspace{0.05cm} $\|v_n\|^p=\|\tilde{v}_n\|^p+\|v\|^p+O_n(1)$, as $ n\to \infty$. \item[(iii)] {${}$}\vspace{-.57cm} \begin{align*} &{ \int_{\Omega}|x|^{-c_1p^*}|u_n|^{\alpha}|v_n|^{\gamma}dx -\int_{\Omega}|x|^{-c_1p^*}|\tilde{u}_n|^{\alpha} |\tilde{v}_n|^{\gamma}dx}\\ &= \int_{\Omega} |x|^{-c_1p^*}|u|^{\alpha}|v|^{\gamma}dx+ O_{n}(1), \quad\text{as } n\to \infty. \end{align*} \end{itemize} We recall that the proof of identity {\bf iii.} follows arguing as in \cite[Lemma 8]{MoraisSouto}. By Lemma \ref{existenciaCriticoProdFraco} we have that $(u,v)$ is a weak solution of system \eqref{sistemaperturbado1}, that is, $\langle I'(u,v),(w,z)\rangle=0$ for all $(w,z)\in (W_0^{1,p}(\mathbb{R}^N,|x|^{-ap}))^2$. By using $(\ref{RR2})$ and (i)--(iii), we get \begin{align*} &\|\tilde{u}_n\|^p-\mu\alpha {\int_{\Omega}}|x|^{-c_1p^*} |\tilde{u}_{n}|^{\alpha}|\tilde{v}_{n}|^{\gamma}dx \\ &=\|u_n\|^p-\|u\|^p -\mu\alpha\Big[ {\int_{\Omega}}|x|^{-c_1p^*} {u}_{n}^{\alpha}{v}_{n}^{\gamma}dx -{\int_{\Omega}}|x|^{-c_1p^*} {u}^{\alpha}{v}^{\gamma}dx \Big] + O_n(1)\\ & = \langle I'(u_n,v_n),(u_n,0)\rangle -\langle I'(u,v),(u,0)\rangle + O_n(1) \\ & = O_n(1), \quad \text{as } n \to \infty. \end{align*} Analogously, we obtain \begin{equation*} \|\tilde{v}_n\|^p-\mu\gamma {\int_{\Omega}}|x|^{-c_1p^*} |\tilde{u}_{n}|^{\alpha}|\tilde{v}_{n}|^{\gamma}dx = O_n(1). \end{equation*} Thus, we can take $l\geq 0$ such that \begin{equation*} l={\lim_{n\to \infty}} \frac{\|\tilde{u}_n\|^p}{\alpha} = {\lim_{n\to \infty}} \frac{\|\tilde{v}_n\|^p}{\gamma} =\mu{\lim_{n\to \infty}} {\int_{\Omega}}|x|^{-c_1p^*} |\tilde{u}_{n}|^{\alpha}|\tilde{v}_{n}|^{\gamma} dx. \end{equation*} If $l=0$ the result is proved. Suppose by contradiction that $l>0$. By the definition of $(PS)_c$-sequence we get \begin{equation}\label{RR3} \begin{aligned} &c+O_n(1) \\ &= I(u_n,v_n) -\frac{1}{p_1}\langle I'(u_n,v_n), (u_n,v_n)\rangle\\ &= (\frac{1}{p}-\frac{1}{p_1})(\|u_n\|^p+\|v_n\|^p) +\mu(\frac{\alpha+\gamma}{p_1}-1) {\int_{\Omega}}|x|^{-c_1p^*} u_n^{\alpha}v_n^{\gamma}dx\\ &=(\frac{1}{p}-\frac{1}{p_1}) (\|\tilde{u}_n\|^p+\|\tilde{v}_n\|^p) +(\frac{1}{p}-\frac{1}{p_1}) (\|u\|^p+\|v\|^p)\\ &\quad +\mu(\frac{p^*}{p_1}-1)\Big[ {\int_{\Omega}}|x|^{-c_1p^*} \tilde{u}_n^{\alpha}\tilde{v}_n^{\gamma}dx +{\int_{\Omega}}|x|^{-c_1p^*} u_n^{\alpha}v_n^{\gamma}dx\Big] +O_n(1) \\ &= (\frac{1}{p}-\frac{1}{p_1})p^* l +(\frac{1}{p}-\frac{1}{p_1}) (\|u\|^p+\|v\|^p) \\ &\quad +(\frac{1}{p_1}-\frac{1}{p^*})p^*\Big[l +\mu{\int_{\Omega}}|x|^{-c_1p^*} u_n^{\alpha}v_n^{\gamma}dx\Big] +O_n(1) \\ &= (\frac{1}{p}-\frac{1}{p^*})p^* l +(\frac{1}{p}-\frac{1}{p_1}) \Big[\lambda p_1 {\int_{\Omega}}|x|^{-\beta_1} u^{\theta}v^{\delta}dx + \mu p^*{\int_{\Omega}}|x|^{-c_1p^*} u^{\alpha}v^{\gamma}dx\Big]\\ &\quad +\mu(\frac{1}{p_1}-\frac{1}{p^*})p^* {\int_{\Omega}}|x|^{-c_1p^*} u_n^{\alpha}v_n^{\gamma}dx +O_n(1) \\ &= (\frac{1}{p}-\frac{1}{p^*})p^* l +\lambda p_1(\frac{1}{p}-\frac{1}{p_1}) {\int_{\Omega}}|x|^{-\beta_1} u^{\theta}v^{\delta}dx\\ &\quad +\mu(\frac{1}{p}-\frac{1}{p^*})p^* {\int_{\Omega}}|x|^{-c_1p^*} u_n^{\alpha}v_n^{\gamma}dx +O_n(1)\\ &\geq (\frac{1}{p}-\frac{1}{p^*})p^*l +\lambda p_1(\frac{1}{p}-\frac{1}{p_1}) {\int_{\Omega}}|x|^{-\beta_1} u^{\theta}v^{\delta}dx+O_n(1). \end{aligned} \end{equation} Using the definition of $\tilde{S}$ we have \begin{equation*} \Big({\int_{\Omega}}|x|^{-c_1p^*} u_{n}^{\alpha}v_{n}^{\gamma} dx \Big)^{p/p^*}\tilde{S} \leq \|u_n\|^{p}+\|v_n\|^p, \, \forall n. \end{equation*} Hence, taking the limit in the above inequality we get \begin{equation*} \big(\frac{l}{\mu}\big)^{p/p^*}\tilde{S} \leq (\alpha + \gamma)l=p^*l \end{equation*} then \begin{equation}\label{ss13R} l\geq (\mu)^{\frac{-p}{p^*-p}}(p^*)^{\frac{-p^*}{p^*-p}} \tilde{S}^{\frac{p^*}{p^*-p}}. \end{equation} Substituting \eqref{ss13R} in \eqref{RR3} and taking the limit, we obtain \begin{equation*} c\geq (\frac{1}{p}-\frac{1}{p^*}) (\mu p^*)^{\frac{-p}{p^*-p}} \tilde{S}^{\frac{p^*}{p^*-p}} +K(\lambda), \end{equation*} which contradicts the inequality (\ref{mmC7R}). \end{proof} \begin{lemma}\label{claim} We can choose $e$ in $(\ref{Carmo})$ such that $c$ given by $(\ref{Carmo1})$ satisfies \begin{equation}\label{c} c<(\frac{1}{p}-\frac{1}{p^*}) (\mu p^*)^{\frac{-p}{p^*-p}} \tilde{S}^{\frac{p^*}{p^*-p}}. \end{equation} \end{lemma} \begin{proof} Let us consider $s_0={s_1}{(s_1^{\alpha} t_1^{\gamma})^{\frac{-1}{p^*}}}$ and $t_0={t_1}{(s_1^{\alpha}t_1^{\gamma})^{\frac{-1}{p^*}}}$, where $s_1,t_1>0$ and $s_1/t_1=(\alpha/\gamma)^{1/p}$, and $u_{\epsilon}$ the function defined in lemma $\ref{Xuan-O(e)}$. Then, it is suffices to prove that there exists $\epsilon>0$ such that \begin{equation*} {\sup_{t\geq 0}} I(t(s_0u_{\epsilon}),t(t_0u_{\epsilon})) <(\frac{1}{p}-\frac{1}{p^*}) (\mu p^*)^{\frac{-p}{p^*-p}} \tilde{S}^{\frac{p^*}{p^*-p}}. \end{equation*} Due to the geometric conditions of the mountain pass theorem, for each $\epsilon>0$, there exists $t_{\epsilon}>0$ such that \begin{equation*} 0< \sigma\leq{\sup_{t\geq 0}} I(t(s_0u_{\epsilon}),t(t_0u_{\epsilon}))= I(t_{\epsilon}(s_0u_{\epsilon}),t_{\epsilon}(t_0u_{\epsilon})). \end{equation*} Moreover, supposing by contradiction that there exists a subsequence $\{t_{\epsilon_n}\}$ with $t_{\epsilon_n}\to 0$ as $n \to \infty$, we obtain \begin{align*} 0&<\sigma \leq I(t_{\epsilon_n}(s_0u_{\epsilon_n}), t_{\epsilon_n}(t_0u_{\epsilon_n}))\\ &\leq \frac{t_{\epsilon_n}^ps_0^p}{p}\|u_{\epsilon_n}\|^p +\frac{t_{\epsilon_n}^pt_0^p}{p}\|u_{\epsilon_n}\|^p \\ &\leq \frac{t_{\epsilon_n}^p}{p}(s_0^p+t_0^p) (\tilde{S}_{a,p,R}+O(\epsilon_n^{{(N-d_1p)}/{d_1p}})) \to 0 \quad\text{as } n\to \infty, \end{align*} which is an absurd. Then, there exists $l>0$ with $t_{\epsilon}\geq l$, for all $\epsilon>0$. Consequently, by using lemma $\ref{Xuan-O(e)}$ and putting $c_0=l^{p_1}s_0^{\theta}t_0^{\delta}$, we get \begin{equation}\label{gggg232} {\sup_{t\geq 0}} I(t(s_0u_{\epsilon}),t(t_0u_{\epsilon})) \leq \frac{t_{\epsilon}^p}{p}\Big( \frac{s_1^p+t_1^p}{\left(s_1^{\alpha}t_1^{\gamma} \right)^{p/p^*}}\|u_{\epsilon}\|^p \Big) - \lambda c_0 {\int_{\Omega}}|x|^{-\beta_1} u_{\epsilon}^{p_1}dx - \mu t_{\epsilon}^{p^*}. \end{equation} Note that \begin{equation}\label{oo333} t_{1_\epsilon} = (\mu p^*)^{\frac{-1}{p^*-p}} \Big(\frac{s_1^p+t_1^p} {(s_1^{\alpha}t_1^{\gamma})^{{p}/{p^*}}} \Big)^{\frac{1}{p^*-p}}\|u_{\epsilon}\|^{\frac{p}{p^*-p}} \end{equation} is the unique maximum point of $f_{\epsilon}:(0,\infty)\to \mathbb{R}$, given by \begin{equation*} f_{\epsilon}(t) = \frac{(s_1^p+t_1^p)\, t^p} {(s_1^{\alpha}t_1^{\gamma})^{{p}/{p^*}}p} \|u_{\epsilon}\|^p -\mu t^{p^*}. \end{equation*} Also we know that \begin{equation}\label{oo444} (A+B)^{k}\leq A^k +k(A+B)^{k-1}B, \end{equation} for all $A,B\geq 0$ and $k\geq 1$ \cite{Miyagaki}. Observe that the following identity holds \begin{equation}\label{ksd} \big[\frac{s_1^p+t_1^p}{(s_1^{\alpha} t_1^{\gamma})^{{p}/{p^*}}}\big] = \left[({\alpha}/{\gamma})^ {{\gamma}/{p^*}} + ({\alpha}/ {\gamma})^{{-\alpha}/{p^*}}\right]. \end{equation} By the Caffarelli-Kohn-Nirenberg's inequality, $W_0^{1,p}(\Omega,|x|^{-ap})\subset W_{a,c_1}^{1,p}(\mathbb{R}^N)$. Then \begin{equation}\label{SSS} \tilde{S}_{a,p}\leq C_{a,p}^*. \end{equation} Substituting \eqref{oo333} in $(\ref{gggg232})$, from \eqref{oo444}, \eqref{ksd}, \eqref{SSS}, and using lemma \ref{Xuan-O(e)}, we obtain \begin{equation}\label{kkk101} \begin{aligned} { \sup_{t\geq 0}} I(t(s_0u_{\epsilon}),t(t_0u_{\epsilon})) &\leq (\frac{1}{p}-\frac{1}{p^*}) (\mu p^*)^{\frac{-p}{p^*-p}} \Big\{[(\frac{\alpha}{\gamma})^ {\gamma/p^*} + (\frac{\alpha}{\gamma})^{-\alpha/p^*}] \tilde{S}_{a,p,R}\\ &\quad +O(\epsilon^{\frac{N-d_1p}{d_1p}}) \Big\}^{\frac{p^*}{p^*-p}} -\lambda c_0 {\int_{\Omega}}|x|^{-\beta_1} u_{\epsilon}^{p_1}dx \\ &\leq (\frac{1}{p}-\frac{1}{p^*}) (\mu p^*)^{\frac{-p}{p^*-p}} \Big\{[(\frac{\alpha}{\gamma})^ {\frac{\gamma}{p^*}} + (\frac{\alpha}{\gamma})^{\frac{-\alpha}{p^*}}] \tilde{S}_{a,p}\Big\}^{\frac{p^*}{p^*-p}}\\ &\quad +O(\epsilon^{\frac{N-d_1p}{d_1p}}) -\lambda c_0 {\int_{\Omega}}|x|^{-\beta_1} u_{\epsilon}^{p_1}dx\\ & \leq(\frac{1}{p}-\frac{1}{p^*}) (\mu p^*)^{\frac{-p}{p^*-p}} \Big\{[(\frac{\alpha}{\gamma})^ {\frac{\gamma}{p^*}} + (\frac{\alpha}{\gamma})^{\frac{-\alpha}{p^*}}] C^*_{a,p}\Big\}^{\frac{p^*}{p^*-p}} \\ &\quad +O(\epsilon^{\frac{N-d_1p}{d_1p}}) -\lambda c_0 {\int_{\Omega}}|x|^{-\beta_1} u_{\epsilon}^{p_1}dx \end{aligned} \end{equation} Now, from lemma \ref{1.121} and (\ref{kkk101}), we get \begin{equation}\label{kkk1} \begin{aligned} { \sup_{t\geq 0}} I(t(s_0u_{\epsilon}),t(t_0u_{\epsilon})) &\leq (\frac{1}{p}- \frac{1}{p^*})(\mu p^*)^{\frac{-p}{p^*-p}} \tilde{S}^{\frac{p^*}{p^*-p}} +O(\epsilon^{\frac{N-d_1p}{d_1p}}) \\ &\quad -\lambda c_0 {\int_{\Omega}}|x|^{-\beta_1} u_{\epsilon}^{p_1}dx. \end{aligned} \end{equation} Supposing that $c<\frac{(p_1-p+1)N-(a+1)p_1}{p-1}-\frac{(N-p-ap)(p_1-p)}{p(p-1)}$ we have \begin{equation*} \frac{(N-p_1+ap_1+c)(p-1)(N-d_1p)}{d_1p(N-p-ap)}- \frac{(N-d_1p)(p-1)p_1}{d_1p^2} <\frac{N-d_1p}{d_1p}, \end{equation*} then, by lemma \ref{Xuan-O(e)} and by (\ref{kkk1}), we can take a $\epsilon>0$ small enough such that \begin{align*} {\sup_{t\geq 0}} I(t(s_0u_{\epsilon}),t(t_0u_{\epsilon})) &\leq (\frac{1}{p}-\frac{1}{p^*}) (\mu p^*)^{\frac{-p}{p^*-p}} \tilde{S}^{\frac{p^*}{p^*-p}} +O(\epsilon^{\frac{N-d_1p}{d_1p}})\\ &\quad - O(\epsilon^{\frac{(N-d_1p)(p-1)(N-p_1-ap_1+c)}{d_1p(N-p-ap)} -\frac{(N-d_1p)(p-1)p_1}{d_1p^2}})\\ &< (\frac{1}{p}-\frac{1}{p^*}) (\mu p^*)^{\frac{-p}{p^*-p}} \tilde{S}^{\frac{p^*}{p^*-p}}. \end{align*} This completes the proof. \end{proof} \begin{proof}[Proof of theorem \ref{edr}] From lemmata \ref{GC}, \ref{u+}, and $\ref{claim}$, there exists a bounded $(PS)_c$-sequence $\{(u_n,v_n)\}$ in $(W_0^{1,p}(\Omega,|x|^{-ap}))^2$ with $c>0$ satisfying $(\ref{c})$ and $u_n,v_n\geq 0$ for a.e. in $\Omega$. Since that $p_1\in (p,p^*)$, it follows that $c$ verifies $(\ref{mmC7R})$. Thus, we have by lemma \ref{PScriticoRN} that there exists $(u,v)\in (W_0^{1,p}(\Omega,|x|^{-ap}))^2$ with $u_n\to u$ and $v_n\to v$ in $W_0^{1,p}(\Omega,|x|^{-ap})$, as $n\to \infty$. Hence, we conclude \begin{equation*} I(u,v)=c>0 \quad\text{and}\quad I'(u,v) = 0, \end{equation*} that is, $(u,v)$ is a nontrivial and nonnegative weak solution of system \eqref{sistemaperturbado1}. \end{proof} \section{Proof of theorem $\ref{dif}$} The proof follows the steps the proof of theorem \ref{edr}. By lemmata \ref{GC} and \ref{u+}, there exists a $(PS)_c$-sequence $\{(u_n,v_n)\}$ in $W_0^{1,p}(\Omega,|x|^{-ap})\times W_0^{1,q}(\Omega,|x|^{-bq})$ with $c>0$ given as in $(\ref{Carmo1})$ and $u_n,v_n\geq 0$ for a.e. in $\Omega$. Moreover, $\{(u_n,v_n)\}$ is bounded uniformly in $\mu>0$, that is, there exist $M>0$ such that $\|(u_n,v_n)\|\leq M$ for all $n \in \mathbb{N}$, uniformly in $\mu>0$. Consequently, we get that $c\leq \overline{M}$ uniformly in $\mu>0$. Due to the boundedness of $\{(u_n,v_n)\}$, there exists a subsequence, that we will denote by $\{(u_n,v_n)\}$, and $(u,v) \in W_0^{1,p}(\Omega,|x|^{-ap}) \times W_0^{1,q}(\Omega,|x|^{-bq})$ with $u_n\rightharpoonup u$ weakly in $W^{1,p}_{0}(\Omega,|x|^{-ap})$ and $v_n\rightharpoonup v$ weakly in $W^{1,q}_{0}(\Omega,|x|^{-bq})$, as $n \to \infty$. Then, arguing as in lemma $\ref{existenciaCriticoProdFraco}$ we obtain that $(u,v)$ is a weak solution of system \eqref{sistemaperturbado1} with $u,v\geq 0$ for a.e. in $\Omega$. Now, we will prove that there exists $\mu_0>0$ such that $u,v$ is nontrivial, provided that $0<\mu<\mu_0$. Supposing by contradiction that $u(x)\equiv 0$ for a.e. $x\in \Omega$ and proceeding as in the proof of theorem \ref{edr}, we obtain $l>0$ such that \begin{equation*} l={\lim_{n\to \infty}} \frac{\|u_n\|^p}{\alpha} ={\lim_{n\to \infty}} \frac{\|v_n\|^q}{\gamma} =\mu{\lim_{n\to \infty}} {\int_{\Omega}}|x|^{-c_1p^*} u_{n}^{\alpha}v_{n}^{\gamma} dx \end{equation*} and \begin{equation}\label{dr 223} c= {{\lim_{n\to \infty}}} I(u_n,v_n) = (\frac{\alpha}{p}+\frac{\gamma}{q}-1)l >0. \end{equation} On the other hand, by Young's inequality and definitions of $C^*_{a,p}$ and $C^*_{b,q}$, we obtain \begin{align*} \frac{l}{\mu} &\leq \frac{\alpha^{({p^*+p})/{p}}}{p^*} (C^*_{a,p})^{{-p^*}/{p}}l^{{p^*}/{p}} +\frac{\gamma^{({q^*+q})/{q}}}{q^*} (C^*_{b,q})^{{-q^*}/{q}}l^{{q^*}/{q}} \\ &\leq \big[\frac{\alpha^{(p^*+p)/p}}{p^*} (C^*_{a,p})^{{-p^*}/{p}}+\frac{\gamma^{(q^*+q)/q}}{q^*} (C^*_{b,q})^{{-q^*}/{q}}\big]l^{\tau} , \end{align*} where $\tau=\max\{p^*/p, q^*/q\}$ if $l>1$, and $\tau=\min\{p^*/p, q^*/q\}$ if $l\leq 1$. Therefore, \begin{equation*} %\label{dr 224} l\geq \Big[\mu \Big(\frac{\alpha^{(p^*+p)/p}}{p^*} (C^*_{a,p})^{{-p^*}/{p}}+\frac{\gamma^{(q^*+q)/q}}{q^*} (C^*_{b,q})^{{-q^*}/{q}}\Big)\Big]^{\frac{-1}{\tau-1}} . \end{equation*} Thus substituting the above inequality in \eqref{dr 223} and taking $\mu_0>0$ small enough we conclude \begin{equation*} c\geq(\frac{\alpha}{p}+\frac{\gamma}{q}-1)\Big[\mu \Big(\frac{\alpha^{(p^*+p)/p}}{p^*} (C^*_{a,p})^{{-p^*}/{p}}+\frac{\gamma^{(q^*+q)/q}}{q^*} (C^*_{b,q})^{{-q^*}/{q}}\Big)\Big]^{\frac{-1}{\tau-1}} \geq \overline{M}, \end{equation*} for all $0<\mu<\mu_0$, which is an absurd. % \end{proof} \section{Appendix} \subsection*{Proof of lemma \ref{Xuan-O(e)}} From equation (\ref{zzz1}) we obtain \begin{gather*} \|\nabla y_{\epsilon}\|^p_{L^p(\mathbb{R}^N,|x|^{-ap})} = (\tilde{S}_{a,p,R})^{p^*/(p^*-p)} = (k_{a,p}(\epsilon))^{p} \|\nabla U_{a,p,\epsilon}\|^p_{L^p(\mathbb{R}^N,|x|^{-ap})}, \\ \|y_{\epsilon}\|^{p^*}_{L^{p^*}(\mathbb{R}^N,|x|^{-c_1p^*})} = (\tilde{S}_{a,p,R})^{p^*/(p^*-p)} = (k_{a,p}(\epsilon))^{p^*} \|U_{a,p,\epsilon}\|^{p^*}_{L^{p^*}(\mathbb{R}^N,|x|^{-c_1p^*})}. \end{gather*} We observe that \begin{equation*} \nabla (\psi(x)U_{a,p,\epsilon}(x)) = \begin{cases} \nabla U_{a,p,\epsilon}(x)& \text{if } |x|[(p_1-p+1)N-(a+1)p_1]/({p-1})$, we have \begin{gather*} \frac{-(N-d_1p)p_1}{d_1p}+ \frac {(N-p_1-ap_1+c)(p-1)(N-d_1p)}{d_1p(N-p-ap)}>0, \\ -(a+1)p_1+c+N-\frac{(N-p-ap)p_1}{(p-1)}>0. \end{gather*} Consequently, by $(\ref{k1})$, \begin{align*} & \int_{\Omega}|x|^{-(a+1)p_1+c} |\psi U_{a,p,\epsilon}|^{p_1}dx \\ & \geq O(1) + \omega_N (R_0^{\alpha}\epsilon)^{\frac{-(N-d_1p)p_1}{d_1p}+ \frac{(N-p_1-ap_1+c)(p-1)(N-d_1p)}{d_1p(N-p-ap)}} \\ &\quad \times \frac{1}{( R_0^{-\alpha} +1 )^{{(N-d_1p)p_1}/{d_1p}}} \int_{1/2}^{1} s^{-(a+1)p_1+c+N-1}\,ds \geq O(1). \end{align*} Hence, we get \begin{align*} { \int_{\Omega}} |x|^{-(a+1)p_1+c}|u_{\epsilon}|^{p_1}dx &\geq \frac{O(1)}{(k_{a,p}(\epsilon))^{-p_1}[ O(k_{a,p}(\epsilon)^{p^*})+(S_{a,p,R})^{p^*/(p^*-p)} ]^{p_1/p^*}} \\ & \geq \frac{O(k_{a,p}(\epsilon)^{p_1})} {[O(1)+(S_{a,p,R})^{p^*/(p^*-p)}]^{p_1/p^*}} \\ & \geq O(\epsilon^{(N-d_1p)p_1/d_1p^2}). \end{align*} If $c < [(p_1-p+1)N-(a+1)p_1]/({p-1})$, we see that \begin{gather*} \frac{-(N-d_1p)p_1}{d_1p}+ \frac {(N-p_1-ap_1+c)(p-1)(N-d_1p)}{d_1p(N-p-ap)}<0,\\ -(a+1)p_1+c+N-\frac{(N-p-ap)p_1}{(p-1)}<0. \end{gather*} Using (\ref{k1}) we obtain \begin{align*} & { \int_{\Omega}|x|^{-(a+1)p_1+c}} |\psi U_{\epsilon}|^{p_1}dx \\ & \geq O(1)\epsilon^{\frac{-(N-d_1p)p_1}{d_1p} +\frac{(N-p_1-ap_1+c)(p-1)(N-d_1p)}{d_1p(N-p-ap)}} { \int_{1/2}^{1}} s^{-(a+1)p_1+c+N-1}ds \\ & \geq O\Big(\epsilon^{\frac{-(N-d_1p)p_1}{d_1p} +\frac{(N-p_1-ap_1+c)(p-1)(N-d_1p)}{d_1p(N-p-ap)}} \Big)\,. \end{align*} Hence, we conclude \begin{align*} { \int_{\Omega}|x|^{-(a+1)p_1+c}} |u_{\epsilon}|^{p_1}dx &\geq \frac{O\big(\epsilon^{\frac{-(N-d_1p)p_1}{d_1p} + \frac{(N-p_1-ap_1+c)(p-1)(N-d_1p)}{d_1p(N-p-ap)}}\big)} {\big[O(1)+(S_{a,p,R})^{p^*/(p^*-p)}(k_{a,p} (\epsilon))^{-p^*}\big]^{p_1/p^*}} \\ &\geq O\Big(\epsilon^{\frac{(N-p_1-ap_1+c)(p-1)(N-d_1p)}{d_1p(N-p-ap)} -\frac{(N-d_1p)(p-1)p_1}{d_1p^2}}\Big). \end{align*} %\end{proof} \begin{thebibliography}{00} \bibitem{Adriouch1} K. Adriouch, and A. El Hamidi; \emph{On local compactness in quasilinear elliptic problems}, Diff. Int. Eqns., Vol. 20 (2007), 77-92. \bibitem{Abdelaziz} A. Ahammou; \emph{Positive radial solutions of nonlinear elliptic systems}, New York J. Math., Vol. 7 (2001), 267-280. \bibitem{Akdim} Y. Akdim, E. Azroul, and A. Benkirane; \emph{Existence of solutions for quasilinear degenerate elliptic equation}, Electronic J. Diff. Eqns., 2001 (2001) (71), 1-19. \bibitem{Carriao} C. O. Alves, P. C. Carri\~ao, and O. H. Miyagaki; \emph{Nontrivial solutions of a class of quasilinear elliptic problems involving critical exponents}, Prog. Nonl. Diff. Eqns. Applic., Vol. 54 (2003), 225-238. \bibitem{AlvesMoraisSouto} C. O. Alves, D. C. de Morais Filho, and M. A. S. Souto; \emph{On systems of elliptic equations involving subcritical or critical Sobolev exponents}, Nonlinear Anal., Vol. 42 (2000), 771-787. \bibitem{AR} A. Ambrosetti, and P. H. Rabinowitz; \emph{Dual variational methods in critical point theory and applications}, J. Funct. Anal., Vol. 14 (1973), 349-381. \bibitem{Assuncao} R. B. Assun\c c\~ao, P. C. Carri\~ao, and O. H. Miyagaki; \emph{Subcritical pertubations of a singular quasilinear elliptic equation involving the critical Hardy-Sobolev exponent}, Nonlinear Anal., Vol. 66 (2007), 1351-1364. \bibitem{Assuncao(Critical)} R. B. Assun\c c\~ao, P. C. Carri\~ao, and O. H. Miyagaki; \emph{Critical singular problems via concentration-compactness lemma}, J. Math. Anal. Appl. Vol. 326 (2007) 137-154. \bibitem{Boccardo} L. Boccardo and D. G. de Figueiredo; \emph{Some remarks on a system of quasilinear elliptic equations,} NoDEA-Nonl. Diff. Eqns. Appl. {\bf 9} (2002), 309-323. \bibitem{BrezisLieb} H. Brezis, E. Lieb; \emph{A relation between pointwise convergence of functions and convergence of functionals,} Proc. Amer. Math. Soc. 88 (1983) 486-488. \bibitem{BrezisNirenberg} H. Brezis, and L. Nirenberg; \emph{Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents}, Comm. Pure Appl. Math., Vol. 36 (1983), 437-477. \bibitem{Caffarelli-Kohn-Nirenberg} L. Caffarelli, R. Kohn, and L. Nirenberg; \emph{First order interpolation ine\-qua\-lities with weights}, Compositio Mathematica, Vol. 53 (1984), 259-275. \bibitem{Catrina-Wang} F. Catrina, and Z. Q. Wang; \emph{Positive bound states having prescribed symmetry for a class of nonlinear elliptic equations in $\mathbb{R}^N$}, Ann. Inst. Henri Poincar\'e, Analyse Non Lin\`eaire Vol. 18 (2001) 157-178. \bibitem{ChenLi} J. Chen, and S. Li; \emph{On multiple solutions of a singular quasilinear equation on unbounded domain}, J. Math. Anal. Appl., Vol. 275 (2002), 733-746. \bibitem{Radu} F. C\^irstea, D. Motreanu, and V. R\v{a}dulescu; \emph{Weak solutions of quasilinear problems with nonlinear boundary condition}, Nonlinear Anal., Vol. 43 (2001), 623-636. \bibitem{Djairo} P. Cl\'ement, D.G. de Figueiredo, and E. Mitidieri; \emph{Quasilinear elliptic equations with critical exponents}, Topol. Meth. Nonlinear Anal., Vol. 7 (1996), 133-170. \bibitem{Djairo(System)} D.G. de Figueiredo; \emph{Nonlinear elliptic systems}, An. Acad. Brasil. Ci\^enc., Vol. 72 (2000), 453-469. \bibitem{Fleckinger} J. Fleckinger, R. Pardo, and F. Th\'elin; \emph{Four-parameter bifurcation for a p-laplacian system}, Electronic J. Diff. Eqns., 2001 (2001) (06), 1-15. \bibitem{Garcia} J. P. Garc\'ia Azorero, and I. Peral Alonso; \emph{Existence and nonuniqueness for the $p$-laplacian: Nonlinear eigenvalues}, Comm. Partial Diff. Eqns., Vol. 12 (1987), 1389-1430. \bibitem{Ghoussoub} N. Ghoussoub, and C. Yuan; \emph{Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents}, Trans. Amer. Math. Soc., Vol. 352 (1998), 5703-5743. \bibitem{GoncalvesAlves} J. V. Gon\c{c}alves, C. O. Alves; \emph{Existence of positive solutions for $m$-laplacian equations in $\mathbb{R}^N$ involving critical Sobolev exponents}, Nonlinear Anal., Vol. 32 (1998), 53-70. \bibitem{Rakotoson} A. El Hamidi, and J. M. Rakotoson; \emph{Compactness and quasilinear problems with critical exponents}, Diff. Int. Eqns., Vol. 18 (2005), 1201-1220. \bibitem{Han} P. Han; \emph{Multiple positive solutions of nonhomogeneous elliptic systems involving critical Sobolev exponents}, Nonlinear Anal., Vol. 64 (2006), 869-886. \bibitem{Horiuchi} T. Horiuchi; \emph{Best constant in weighted Sobolev inequality with weights being powers of distance from origin}, J. Inequal. Appl., Vol. 1 (1997), 275-292. \bibitem{Kavian} O. Kavian; \emph{Introduction \`a la th\'eorie des points critiques et applications aux probl\`emes elliptiques}, Springer-Verlag, Paris, 1993. \bibitem{Miyagaki} O. H. Miyagaki; \emph{On a class of semilinear elliptic problems in $\mathbb{R}^N$ with critical growth}, Nonlinear Anal., Vol. 29 (1997), 773-781. \bibitem{MoraisSouto} D.C. de Morais Filho, and M. A. S. Souto; \emph{Systems of $p$-laplacian equations involving homogeneous nonlinearities with critical Sobolev exponent degrees}, Comm. Partial Diff. Eqns., Vol. 24 (1999), 1537-1553. \bibitem{Nicolaescu} L. I. Nicolaescu; \emph{A weighted semilinear elliptic equation involving critical Sobolev exponents}, Diff. Int. Eqns., Vol. 3 (1991), 653-671. \bibitem{Pan} X. Pan; \emph{Positive solutions of the elliptic equation $\Delta u+u^{(n+2)/(n-2)}+K(x)u^q=0$ in $\mathbb{R}^n$ and in ball}, J. Math. Anal. Appl. Vol. 172 (1993) 323-338. \bibitem{Poho} S. I. Pohozaev; \emph{Eigenfunctions of the equation $\Delta u + \lambda f(u)=0.$}, Soviet Math. Dokl., Vol. 6 (1965), 1408-1411. \bibitem{Elves} E. A. Silva, and M. Xavier; \emph{Quasilinear elliptic system with coupling on nonhomogeneous critical term}, Nonlinear Anal, to appear. \bibitem{Stavrakakis} N. M. Stavrakakis, and N. B. Zographopoulos; \emph{Existence results for quasi\-linear elliptic systems in $\mathbb{R}^N$}, Electronic J. Diff. Eqns., 1999 (1999) (39), 1-15. \bibitem{stavrakakis1} N. M. Stavrakakis, N. B. Zographopoulos; \emph{Bifurcation results for quasilinear elliptic systems}, Adv. Diff. Eqns. Vol. 08 (2003) 315-336. \bibitem{Wang} Z. Q. Wang, and M. Willem; \emph{Singular minimization problems}, J. Diff. Eqns., Vol. 161 (2000), 307-320. \bibitem{Xuan1} B. Xuan; \emph{The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights}, Nonlinear Anal., Vol. 62 (2005), 703-725. \bibitem{YangJianfu(system)} J. Yang; \emph{On critical semilinear elliptic systems}, Adv. Diff. Eqns., Vol. 6 (2001),769-798. \end{thebibliography} \end{document}