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SUFFICIENT CONDITIONS FOR THE OSCILLATION OF
SOLUTIONS TO NONLINEAR SECOND-ORDER

DIFFERENTIAL EQUATIONS

AHMED BERKANE

Abstract. We present sufficient conditions for all solutions to a second-order
ordinary differential equations to be oscillatory.

1. Introduction

Kirane and Rogovchenko [4] studied the oscillatory solutions of the equation[
r(t)ψ(x(t))x′(t)

]′ + p(t)x′(t) + q(t)f(x(t)) = g(t), t ≥ t0, (1.1)

where t0 ≥ 0, r(t) ∈ C1([t0,∞); (0,∞)), p(t) ∈ C([t0,∞); R), q(t) ∈ C([t0,∞);
(0,∞)), q(t) is not identical zero on [t∗,∞) for some t∗ ≥ t0, f(x), ψ(x) ∈ C(R,R)
and ψ(x) > 0 for x 6= 0. Their results read as follows

Theorem 1.1. Case g(t) ≡ 0: Assume that for some constants K,C,C1 and for
all x 6= 0, f(x)/x ≥ K > 0 and 0 < C ≤ Ψ(x) ≤ C1. Let h, H ∈ C(D,R), where
D = {(t, s) : t ≥ s ≥ t0}, be such that

(i) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 in D0 = {(t, s) : t ≥ s ≥ t0}
(ii) H has a continuous and non-positive partial derivative in D0 with respect

to the second variable, and

−∂H
∂s

= h(t, s)
√
H(t, s)

for all (t, s) ∈ D0.
If there exists a function ρ ∈ C1([t0,∞); (0,∞)) such that

lim sup
t→+∞

1
H(t, t0)

∫ t

t0

[H(t, s)Θ(s)− C1

4
ρ(s)r(s)Q2(t, s)]ds = ∞ ,

where

Θ(t) = ρ(t)
(
Kq(t)−

( 1
C
− 1
C1

)p2(t)
4r(t)

)
,

Q(t, s) = h(t, s) +
[ p(s)
C1r(s)

− ρ′(s)
ρ(s)

]√
H(t, s),
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then (1.1) is oscillatory.

Theorem 1.2. Case g(t) 6= 0: Let the assumptions of theorem 1 be satisfied and
suppose that the function g(t) ∈ C([t0,∞); R) satisfies∫ ∞

ρ(s)|g(s)|ds = N <∞ .

Then any proper solution x(t) of (1.1); i.e, a non-constant solution which exists
for all t ≥ t0 and satisfies supt≥t0 |x(t)| > 0, satisfies

lim inf
t→∞

|x(t)| = 0.

Note that localization of the zeros is not given in the work by Kirane and Ro-
govchenko [4]. Here we intend to give conditions that allow us to localize the zeros
of solutions to (1.1). Observe that in contrast to [4] where a Ricatti type transform,

v(t) = ρ
r(t)ψ(x(t))x′(t)

x(t)
,

is used, here we simply use a usual Ricatti transform.

2. Main Results

Differential equation without a forcing term. Consider the second-order dif-
ferential equation[

r(t)ψ(x(t))x′(t)
]′ + p(t)x′(t) + q(t)f(x(t)) = 0, t ≥ t0 (2.1)

where t0 ≥ 0, r(t) ∈ C1([t0,∞); (0,∞)), p(t) ∈ C([t0,∞)); R), q(t) ∈ C([t0,∞));R),
p(t) and q(t) are not identical zero on [t?,∞) for some t? ≥ t0, f(x), ψ(x) ∈ C(R,R)
and ψ(x) > 0 for x 6= 0.

The next theorem follows the ideas in Nasr [6]. Assume that there exists an
interval [a, b], where a, b ≥ t?, such that e(t) ≥ 0.

Theorem 2.1. Assume that for some constants K,C,C1 and for all x 6= 0,

f(x)
x

≥ K ≥ 0, (2.2)

0 < C ≤ ψ(x) ≤ C1 . (2.3)

Suppose further there exists a continuous function u(t) such that u(a) = u(b) = 0,
u(t) is differentiable on the open set (a, b), a, b ≥ t?, and∫ b

a

[(
Kq(t)− p2(t)

2Cr(t)
)
u2(t)− 2C1r(t)(u′)2(t)

]
dt ≥ 0 . (2.4)

Then every solution of (2.1) has a zero in [a, b].

Proof. Let x(t) be a solution of (2.1) that has zero on [a, b]. We may assume that
x(t) > 0 for all t ∈ [a, b] since the case when x(t) < 0 can be treated analogously.
Let

v(t) = −x
′(t)
x(t)

, t ∈ [a, b]. (2.5)
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Multiplying this equality by r(t)ψ(x(t)) and differentiate the result. Using (2.1) we
obtain

(r(t)ψ(x(t))v(t))′ = − (r(t)ψ(x(t))x′(t))′

x(t)
+ r(t)ψ(x(t))v2(t)

= −p(t)v(t) + q(t)
f(x(t))
x(t)

+ r(t)ψ(x(t))v2(t)

=
(r(t)ψ(x(t))

2
v2(t) +

r(t)ψ(x(t))
2

(
v2(t)− 2

p(t)
r(t)ψ(x(t))v(t)

)
+ q(t)

f(x(t))
x(t)

=
(r(t)ψ(x(t))

2
v2(t) +

r(t)ψ(x(t))
2

(
v(t)− p(t)

(r(t)ψ(x(t))
)2

− p2(t)
2r(t)ψ(x(t))

+ q(t)
f(x(t))
x(t)

.

Using (2.2)-(2.3) and the fact that

(r(t)ψ(x(t))
2

(
v(t)− p(t)

r(t)ψ(x(t))
)2 ≥ 0,

we have

(r(t)ψ(x(t))v(t))′ ≥ (r(t)ψ(x(t))
2

v2(t)− p2(t)
2Cr(t)

+Kq(t) (2.6)

Multiplying both sides of this inequality by u2(t) and integrating on [a, b]. Using
integration by parts on the left side, the condition u(a) = u(b) = 0 and (2.3), we
obtain

0 ≥
∫ b

a

r(t)ψ(x(t))
2

v2(t)u2(t)dt+ 2
∫ b

a

r(t)ψ(x(t))v(t)u(t)u′(t)dt

+
∫ b

a

Kq(t)u2(t)dt−
∫ b

a

p2(t)
2Cr(t)

u2(t)dt

≥
∫ b

a

r(t)ψ(x(t))
2

(v2(t)u2(t) + 4v(t)u(t)u′(t))dt

+
∫ b

a

Kq(t)u2(t)dt−
∫ b

a

p2(t)u2(t)
2Cr(t)

dt

≥
∫ b

a

r(t)ψ(x(t))
2

[v(t)u(t) + 2u′(t)]2dt− 2
∫ b

a

r(t)ψ(x(t))u′2(t)dt

+
∫ b

a

Kq(t)u2(t)dt−
∫ b

a

p2(t)
2Cr(t)

u2(t)dt

≥
∫ b

a

[(
Kq(t)− p2(t)

2Cr(t)
)
u2(t)− 2r(t)ψ(x(t))u′2(t)

]
dt

+
∫ b

a

r(t)ψ(x(t))
2

[v(t)u(t) + 2u′(t)]2dt .
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Now, from (2.3) we have

0 ≥
∫ b

a

[(
Kq(t)− p2(t)

2Cr(t)
)
u2(t)− 2r(t)C1u

′2(t)
]
dt

+
∫ b

a

r(t)ψ(x(t))
2

[v(t)u(t) + 2u′(t)]2dt.

If the first integral on the right-hand side of the inequality is greater than zero,
then we have directly a contradiction. If the first integral is zero and the second is
also zero then x(t) has the same zeros as u(t) at the points a and b; (x(t) = ku2(t)),
which is again a contradiction with our assumption. �

Corollary 2.2. Assume that there exist a sequence of disjoint intervals [an, bn],
and a sequence of functions un(t) defined and continuous an [an, bn], differentiable
on (an, bn) with un(an) = un(bn) = 0, and satisfying assumption (2.4). Let the
conditions of Theorem 2.1. hold. Then (2.1) is oscillatory.

Differential equation with a forcing term. Consider the differential equation

[
r(t)ψ(x(t))x′(t)

]′ + p(t)x′(t) + q(t)f(x(t)) = g(t), t ≥ t0 (2.7)

where t0 ≥ 0, g(t) ∈ C([t0,∞); R) r(t) ∈ C1([t0,∞); (0,∞)), p(t) ∈ C([t0,∞));R),
q(t) ∈ C([t0,∞));R), p(t) and q(t) are not identical zero on [t?,∞[ for some t? ≥ t0,
f(x), ψ(x) ∈ C(R,R) and ψ(x) > 0 for x 6= 0.

Assume that there exists an interval [a, b], where a, b ≥ t?, such that g(t) ≥ 0 and
there exists c ∈ (a, b) such that g(t) has different signs on [a, c] and [c, b]. Without
loss of generality, let g(t) ≤ 0 on [a, c] and g(t) ≥ 0 on [c, b].

Theorem 2.3. Let (2.3) hold and assume that

f(x)
x|x|

≥ K, (2.8)

for a positive constant K and for all x 6= 0. Furthermore assume that there exists
a continuous function u(t) such that u(a) = u(b) = u(c) = 0, u(t) differentiable on
the open set (a, c) ∪ (c, b), and satisfies the inequalities

∫ c

a

[(√
Kq(t)g|(t)| − p2(t)

2Cr(t)
)
u2 − 2C1r(t)(u′)2(t)

]
d(t) ≥ 0, (2.9)∫ b

c

[(√
Kq(t)g|(t)| − p2(t)

2Cr(t)
)
u2 − 2C1r(t)(u′)2(t)

]
d(t) ≥ 0 . (2.10)

Then every solution of equation (2.7) has a zero in [a, b].

Proof. Assume to the contrary that x(t), a solution of (2.7), has no zero in [a, b].
Let x(t) < 0 for example. Using the same computations as in the first part, we
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obtain:

(r(t)ψ(x(t))v(t))′ = − (r(t)ψ(x(t))x′(t))′

x(t)
+ r(t)ψ(x(t))v2(t)− g(t)

x(t)

= −p(t)v(t) + q(t)
f(x(t))
x(t)

+ r(t)ψ(x(t))v2(t)− g(t)
x(t)

=
(r(t)ψ(x(t))

2
v2(t) +

r(t)ψ(x(t))
2

(
v2(t)− 2

p(t)v(t)
r(t)ψ(x(t))

)
+ q(t)

f(x(t))
x(t)

− g(t)
x(t)

=
(r(t)ψ(x(t))

2
v2(t) +

r(t)ψ(x(t))
2

(
v(t)− p(t)

r(t)ψ(x(t))v(t)
)2

− p2(t)
2r(t)ψ(x(t))

+ q(t)
f(x(t))
x(t)

− g(t)
x(t)

For t ∈ [c, b] we have

(r(t)ψ(x(t))v(t))′ =
r(t)ψ(x(t))

2
v2(t) +

r(t)ψ(x(t))
2

(
v(t)− p(t)

r(t)ψ(x(t))
)2

− p2(t)
2r(t)ψ(x(t))

+ q(t)
f(x(t))
x(t)|x(t)|

|x(t)|+ |g(t)|
|x(t)|

From (2.8), and using the fact that

r(t)ψ(x(t))
2

(
v(t)− p(t)

r(t)ψ(x(t))
)2 ≥ 0

we deduce

(r(t)ψ(x(t))v(t))′ ≥ (r(t)ψ(x(t))
2

v2(t)− p2(t)
2r(t)ψ(x(t))

+Kq(t)|x(t)|+ |g(t)|
|x(t)|

. (2.11)

Using the Hölder inequality in (2.11) we obtain

(r(t)ψ(x(t))v(t))′ ≥ (r(t)ψ(x(t))
2

v2(t) +
√
Kq(t)|g(t)| − p2(t)

2r(t)ψ(x(t))
. (2.12)

Multiplying both sides of this inequality by u2(t) and integrating on [c, b], we obtain
after using integration by parts on the left-hand side and the condition u(c) =
u(b) = 0,

0 ≥
∫ b

c

r(t)ψ(x(t))
2

v2(t)u2(t)dt+
∫ b

c

√
Kq(t)|g(t)|u2(t)dt

−
∫ b

c

p2(t)u2(t)
2r(t)ψ(x(t))

dt+ 2
∫ b

c

r(t)ψ(x(t))v(t)u(t)u′(t)dt

≥
∫ b

c

r(t)ψ(x(t))
2

[v(t)u(t)− 2u′(t)]2dt− 2
∫ b

c

r(t)ψ(x(t))u′2(t)dt

+
∫ b

c

√
Kq(t)|g(t)|u2(t)dt−

∫ b

c

p2(t)u2(t)
2r(t)ψ(x(t))

dt.
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Assumption (2.3) allows us to write

0 ≥
∫ b

c

r(t)ψ(x(t))
2

[v(t)u(t) + 2u′(t)]2dt− 2
∫ b

c

C1r(t)(u′)2(t)dt

+
∫ b

c

√
Kq(t)|g(t)|u2(t)dt−

∫ b

c

p2(t)u2(t)
2Cr(t)

dt

≥
∫ b

c

r(t)ψ(x(t))
2

[v(t)u(t) + 2u′(t)]2dt

+
∫ b

c

[(√
Kq(t)g|(t)| − p2(t)

2Cr(t)
)
u2(t)− 2C1r(t)(u′)2(t)

]
dt.

This leads to a contradiction as in Theorem 2.1; the proof is complete. �

Corollary 2.4. Assume that there exist a sequence of disjoint intervals [an, bn] a
sequences of points cn ∈ (an, cn), and a sequence of functions un(t) defined and
continuous on [an, bn], differentiable on (an, cn) ∪ (cn, bn)with un(an) = un(bn) =
un(cn) = 0, and satisfying assumptions (2.9)-(2.10). Let the conditions of Theorem
2.3 hold. Then (2.7) is oscillatory.
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