\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small \emph{Electronic Journal of Differential Equations}, Vol. 2008(2008), No. 03, pp. 1--6.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2008 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2008/03\hfil Oscillation of solutions] {Sufficient conditions for the oscillation of solutions to nonlinear second-order \\ differential equations} \author[A. Berkane\hfil EJDE-2008/03\hfilneg] {Ahmed Berkane} \address{Ahmed Berkane \newline Facult\'e des Sciences, D\'epartement de Math\'ematiques, Universit\'e Badji Mokhtar, 23000 Annaba, Algeria} \email{aberkane20052005@yahoo.fr} \thanks{Submitted September 7, 2007. Published January 2, 2008.} \subjclass[2000]{34C15} \keywords{Nonlinear differential equations; oscillation} \begin{abstract} We present sufficient conditions for all solutions to a second-order ordinary differential equations to be oscillatory. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \section{Introduction} Kirane and Rogovchenko \cite{k3} studied the oscillatory solutions of the equation \begin{equation} \big[r(t)\psi(x(t))x'(t)\big]' +p(t) x'(t)+q(t)f(x(t))=g(t), \quad t \geq t_0 , \label{eE} \end{equation} where $t_0\geq 0$, $r(t) \in C^{1}([t_0, \infty); (0,\infty))$, $p(t)\in C([t_0, \infty); \mathbb{R})$, $q(t)\in C([t_0,\infty);\break (0, \infty))$, $q(t)$ is not identical zero on $[t_\ast,\infty)$ for some $t_\ast \geq t_0, f(x), \psi(x) \in C(\mathbb{R},\mathbb{R})$ and $\psi(x) > 0$ for $x\neq 0$. Their results read as follows \begin{theorem} \label{thmA} Case $g(t)\equiv0$: Assume that for some constants $K,C,C_{1}$ and for all $x\neq0$, $f(x)/x\geq K >0$ and $00 $ in $D_0=\{(t,s): t\geq s \geq t_0\}$ \item[(ii)] $H$ has a continuous and non-positive partial derivative in $ D_0$ with respect to the second variable, and \[ -\frac{\partial H}{\partial s }=h(t,s)\sqrt{H(t,s)} \] for all $(t,s)\in D_0$. \end{itemize} If there exists a function $\rho \in C^{1}([t_0, \infty); (0, \infty))$ such that $$ \limsup_{t \rightarrow +\infty} \frac{1}{H(t,t_0)}\int_{t_0}^{t}[H(t,s) \Theta(s) -\frac{C_1}{4}\rho(s)r(s)Q^{2}(t,s)]ds=\infty \,, $$ where \begin{gather*} \Theta(t)=\rho(t)\Big( Kq(t)-\big(\frac{1}{C}-\frac{1}{C_1}\big) \frac{p^2(t)}{4r(t)}\Big),\\ Q(t,s)=h(t,s)+\big[\frac{p(s)}{C_1r(s)}-\frac{\rho'(s)}{\rho(s)}\big] \sqrt{H(t,s)}, \end{gather*} then \eqref{eE} is oscillatory. \end{theorem} \begin{theorem} \label{thmB} Case $g(t)\neq 0$: Let the assumptions of theorem 1 be satisfied and suppose that the function $g(t) \in C([t_0, \infty); \mathbb{R})$ satisfies $$ \int^{\infty}\rho(s)|g(s)|ds=N<\infty\,. $$ Then any proper solution $x(t)$ of \eqref{eE}; i.e, a non-constant solution which exists for all $t\geq t_0$ and satisfies $\sup_{t\geq t_0}|x(t)|>0$, satisfies $$ \liminf_{t \to \infty}|x(t)|=0. $$ \end{theorem} Note that localization of the zeros is not given in the work by Kirane and Rogovchenko \cite{k3}. Here we intend to give conditions that allow us to localize the zeros of solutions to $\eqref{eE}$. Observe that in contrast to \cite{k3} where a Ricatti type transform, $$ v(t)=\rho\frac{r(t)\psi(x(t))x'(t)}{x(t)}, $$ is used, here we simply use a usual Ricatti transform. \section{Main Results} \subsection*{Differential equation without a forcing term} Consider the second-order differential equation \begin{equation} \label{e1} \big[r(t)\psi(x(t))x'(t)\big]'+p(t)x'(t)+q(t)f(x(t))=0, \quad t\geq t_0 \end{equation} where $t_0 \geq 0$, $r(t) \in C^{1}([t_0, \infty); (0,\infty))$, $p(t) \in C([t_0, \infty)); \mathbb{R})$, $q(t)\in C([t_0,\infty)); R)$, $p(t)$ and $ q(t)$ are not identical zero on $[t_{\star}, \infty)$ for some $t_{\star}\geq t_0, f(x),\psi(x)\in C(\mathbb{R}, \mathbb{R}) $ and $\psi(x) >0$ for $x\neq 0$. The next theorem follows the ideas in Nasr \cite{n1}. Assume that there exists an interval $[a,b]$, where $a,b \geq t_{\star}$, such that $e(t)\geq0 $. \begin{theorem} \label{thm1} Assume that for some constants $K, C, C_1$ and for all $x\neq 0$, \begin{gather} \frac{f(x)}{x}\geq K \geq 0, \label{e2}\\ 00$ for all $ t \in [a,b]$ since the case when $x(t)<0$ can be treated analogously. Let \begin{equation} v(t)=-\frac{x'(t)}{x(t)}, \quad t \in [a,b]. \label{e5} \end{equation} Multiplying this equality by $r(t)\psi(x(t))$ and differentiate the result. Using \eqref{e1} we obtain \begin{align*} (r(t)\psi(x(t))v(t))' &=-\frac{(r(t)\psi(x(t))x'(t))'}{x(t)} +r(t)\psi(x(t))v^2(t) \\ &=-p(t)v(t)+q(t)\frac{f(x(t))}{x(t)}+r(t)\psi(x(t))v^2(t)\\ &=\frac{(r(t)\psi(x(t))}{2}v^2(t)+\frac{r(t)\psi(x(t))}{2} \big(v^2(t)-2\frac{p(t)}{r(t)\psi(x(t))v(t)}\big) \\ &\quad +q(t) \frac{f(x(t))}{x(t)}\\ & =\frac{(r(t)\psi(x(t))}{2}v^2(t)+ \frac{r(t)\psi(x(t))}{2}\big(v(t)-\frac{p(t)}{(r(t)\psi(x(t))}\big)^2\\ &\quad -\frac{p^2(t)}{2r(t)\psi(x(t))} + q(t)\frac{f(x(t))}{x(t)}\,. \end{align*} Using \eqref{e2}-\eqref{e3} and the fact that $$ \frac{(r(t)\psi(x(t))}{2}\big(v(t)-\frac{p(t)}{r(t)\psi(x(t))}\big)^2\geq 0, $$ we have \begin{equation} \label{e6} (r(t)\psi(x(t))v(t))'\geq \frac{(r(t)\psi(x(t))}{2}v^2(t)-\frac{p^2(t)}{2 Cr(t)}+Kq(t) \end{equation} Multiplying both sides of this inequality by $u^2(t)$ and integrating on $[a,b]$. Using integration by parts on the left side, the condition $u(a)=u(b)=0$ and \eqref{e3}, we obtain \begin{align*} 0&\geq\int_{a}^{b}\frac{r(t)\psi(x(t))}{2}v^2(t)u^2(t)dt +2 \int_{a}^{b}r(t)\psi(x(t))v(t)u(t)u'(t)dt \\ &\quad +\int_{a}^{b}Kq(t)u^2(t)dt-\int_{a}^{b}\frac{p^2(t)}{2Cr(t)}u^2(t)dt \\ &\geq \int_{a}^{b}\frac{r(t)\psi(x(t))}{2}(v^2(t)u^2(t)+4v(t)u(t)u'(t))dt\\ &\quad + \int_{a}^{b}Kq(t)u^2(t)dt-\int_{a}^{b}\frac{p^2(t)u^2(t)}{2Cr(t)}dt\\ &\geq \int_{a}^{b}\frac{r(t)\psi(x(t))}{2}[v(t)u(t)+2u'(t)]^2dt -2\int_{a}^{b}r(t)\psi(x(t))u^{\prime 2}(t)dt \\ &\quad +\int_{a}^{b}Kq(t)u^2(t)dt-\int_{a}^{b}\frac{p^2(t)}{2 Cr(t)}u^2(t)dt \\ &\geq\int_{a}^{b}\big[\big(Kq(t)-\frac{p^2(t)}{2 Cr(t)}\big)u^2(t)-2r(t)\psi(x(t))u^{\prime 2}(t)\big]dt\\ &\quad +\int_{a}^{b}\frac{r(t)\psi(x(t))}{2}[v(t)u(t)+2u'(t)]^2dt\,. \end{align*} Now, from \eqref{e3} we have \begin{align*} 0&\geq\int_{a}^{b}\big[\big(Kq(t)-\frac{p^2(t)}{2 Cr(t)}\big)u^2(t)-2r(t)C_1u^{\prime 2}(t)\big]dt\\ &\quad +\int_{a}^{b}\frac{r(t)\psi(x(t))}{2}[v(t)u(t)+2u'(t)]^2dt. \end{align*} If the first integral on the right-hand side of the inequality is greater than zero, then we have directly a contradiction. If the first integral is zero and the second is also zero then $x(t)$ has the same zeros as $u(t)$ at the points $a$ and $b$; $(x(t)=ku^2(t))$, which is again a contradiction with our assumption. \end{proof} \begin{corollary} \label{coro1} Assume that there exist a sequence of disjoint intervals $[a_{n},b_{n}]$, and a sequence of functions $u_n(t)$ defined and continuous an $[a_{n},b_{n}]$, differentiable on $(a_{n},b_{n})$ with $u_n(a_n)=u_n(b_n)=0$, and satisfying assumption \eqref{e4}. Let the conditions of Theorem \ref{thm1}. hold. Then \eqref{e1} is oscillatory. \end{corollary} \subsection*{Differential equation with a forcing term} Consider the differential equation \begin{equation} \label{e7} \big[r(t)\psi(x(t))x'(t)\big]'+p(t)x'(t)+q(t)f(x(t))=g(t), \quad t\geq t_0 \end{equation} where $t_0 \geq 0$, $g(t) \in C([t_0, \infty); \mathbb{R})$ $r(t) \in C^{1}([t_0, \infty); (0,\infty))$, $p(t) \in C([t_0,\infty)); R)$, $q(t)\in C([t_0, \infty)); R)$, $p(t)$ and $ q(t)$ are not identical zero on $[t_{\star},\infty[$ for some $t_{\star}\geq t_0$, $ f(x),\psi(x)\in C(\mathbb{R}, \mathbb{R}) $ and $\psi(x) >0$ for $x\neq 0$. Assume that there exists an interval $[a,b]$, where $a,b \geq t_{\star}$, such that $g(t)\geq 0 $ and there exists $c\in (a,b)$ such that $g(t)$ has different signs on $[a,c]$ and $[c,b]$. Without loss of generality, let $g(t)\leq 0$ on $[a,c]$ and $g(t)\geq0$ on $[c,b]$. \begin{theorem} \label{thm2} Let \eqref{e3} hold and assume that \begin{equation} \label{e8} \frac{f(x)}{x|x|}\geq K , \end{equation} for a positive constant $K$ and for all $x\neq 0$. Furthermore assume that there exists a continuous function $u(t)$ such that $u(a)=u(b)=u(c)=0$, $u(t)$ differentiable on the open set $(a,c)\cup(c,b)$, and satisfies the inequalities \begin{gather} \int_{a}^{c} \big[ \big(\sqrt{Kq(t)g|(t)|}-\frac{p^2(t)}{2Cr(t)}\big)u^2-2C_1r(t)(u')^2 (t)\big]d(t)\geq 0, \label{e9} \\ \int_{c}^{b} \big[\big(\sqrt{Kq(t)g|(t)|}-\frac{p^2(t)}{2Cr(t)}\big)u^2 -2C_1r(t)(u')^2 (t)\big]d(t)\geq 0\,. \label{e10} \end{gather} Then every solution of equation \eqref{e7} has a zero in $[a,b]$. \end{theorem} \begin{proof} Assume to the contrary that $x(t)$, a solution of \eqref{e7}, has no zero in $[a,b]$. Let $x(t) < 0$ for example. Using the same computations as in the first part, we obtain: \begin{align*} (r(t)\psi(x(t))v(t))' &= -\frac{(r(t)\psi(x(t))x'(t))'}{x(t)}+r(t)\psi(x(t))v^2(t) -\frac{g(t)}{x(t)} \\ &=-p(t)v(t)+q(t)\frac{f(x(t))}{x(t)}+r(t)\psi(x(t))v^2(t) -\frac{g(t)}{x(t)} \\ &= \frac{(r(t)\psi(x(t))}{2}v^2(t)+\frac{r(t)\psi(x(t))}{2} \big(v^2(t)-2\frac{p(t)v(t)}{r(t)\psi(x(t))}\big) \\ &\quad +q(t) \frac{f(x(t))}{x(t)}-\frac{g(t)}{x(t)} \\ &=\frac{(r(t)\psi(x(t))}{2}v^2(t)+\frac{r(t)\psi(x(t))}{2} \big(v(t)-\frac{p(t)}{r(t)\psi(x(t))v(t)}\big)^2 \\ &\quad -\frac{p^2(t)}{2r(t)\psi(x(t))} + q(t)\frac{f(x(t))}{x(t)}-\frac{g(t)}{x(t)} \end{align*} For $t\in [c,b]$ we have \begin{align*} (r(t)\psi(x(t))v(t))' &= \frac{r(t)\psi(x(t))}{2}v^2(t) +\frac{r(t)\psi(x(t))}{2}\big(v(t)-\frac{p(t)}{r(t)\psi(x(t))}\big)^2 \\ &\quad -\frac{p^2(t)}{2 r(t)\psi(x(t))}+ q(t)\frac{f(x(t))}{x(t)|x(t)|}|x(t)|+\frac{|g(t)|}{|x(t)|} \end{align*} From \eqref{e8}, and using the fact that $$ \frac{r(t)\psi(x(t))}{2}\big(v(t)-\frac{p(t)}{r(t)\psi(x(t))}\big)^2\geq0 $$ we deduce \begin{equation} \label{e11} (r(t)\psi(x(t))v(t))'\geq \frac{(r(t)\psi(x(t))}{2}v^2(t)-\frac{p^2(t)}{2 r(t)\psi(x(t))}+ Kq(t)|x(t)|+\frac{|g(t)|}{|x(t)|}\,. \end{equation} Using the H\"{o}lder inequality in \eqref{e11} we obtain \begin{equation} \label{e12} (r(t)\psi(x(t))v(t))'\geq \frac{(r(t)\psi(x(t))}{2}v^2(t) +\sqrt{Kq(t)|g(t)|}-\frac{p^2(t)}{2 r(t)\psi(x(t))}\,. \end{equation} Multiplying both sides of this inequality by $u^2(t)$ and integrating on $[c,b]$, we obtain after using integration by parts on the left-hand side and the condition $u(c)=u(b)=0$, \begin{align*} 0&\geq\int_{c}^{b}\frac{r(t)\psi(x(t))}{2}v^2(t)u^2(t)dt+ \int_{c}^{b}\sqrt{Kq(t)|g(t)|}u^2(t)dt \\ &\quad -\int_{c}^{b}\frac{p^2(t)u^2(t)}{2 r(t)\psi(x(t))}dt+2\int_{c}^{b}r(t)\psi(x(t))v(t)u(t)u'(t)dt \\ &\geq\int_{c}^{b}\frac{r(t)\psi(x(t))}{2} [v(t)u(t)-2u'(t)]^2dt-2 \int_{c}^{b}r(t)\psi(x(t))u^{\prime 2}(t)dt \\ &\quad +\int_{c}^{b}\sqrt{Kq(t)|g(t)|}u^2(t)dt -\int_{c}^{b}\frac{p^2(t)u^2(t)}{2 r(t)\psi(x(t))}dt. \end{align*} Assumption \eqref{e3} allows us to write \begin{align*} 0&\geq\int_{c}^{b}\frac{r(t)\psi(x(t))}{2} [v(t)u(t)+2u'(t)]^2dt-2\int_{c}^{b}C_1r(t)(u')^2(t)dt \\ &\quad +\int_{c}^{b}\sqrt{Kq(t)|g(t)|}u^2(t)dt -\int_{c}^{b}\frac{p^2(t)u^2(t)}{2 C r(t)}dt \\ &\geq\int_{c}^{b}\frac{r(t)\psi(x(t))}{2} [v(t)u(t)+2u'(t)]^2dt \\ &\quad + \int_{c}^{b} \big[\big(\sqrt{Kq(t)g|(t)|}-\frac{p^2(t)}{2Cr(t)} \big)u^2(t)-2C_1r(t)(u')^2(t)\big]dt. \end{align*} This leads to a contradiction as in Theorem \ref{thm1}; the proof is complete. \end{proof} \begin{corollary} \label{coro2} Assume that there exist a sequence of disjoint intervals $[a_n,b_n]$ a sequences of points $c_n\in (a_n,c_n)$, and a sequence of functions $u_n(t)$ defined and continuous on $[a_n,b_n]$, differentiable on $(a_n,c_n)\cup(c_n,b_n) $with $u_n(a_n)=u_n(b_n)=u_n(c_n)=0$, and satisfying assumptions \eqref{e9}-\eqref{e10}. Let the conditions of Theorem \ref{thm2} hold. Then \eqref{e7} is oscillatory. \end{corollary} \begin{thebibliography}{00} \bibitem{e1} M. A. El-Sayed, \textit{An oscillation criterion for forced second order linear differential equation}, Proc. Amer. Math. Soc. \textbf{33} (1972), 613-817. \bibitem{k1} A. G. Kartsatos, \textit{On the maintenance of oscillation of n-th order equation under the effect of a small forcing terms}, J. Diff. Equations \textbf{10 }(1971), 355-363. \bibitem{k2} A. G. Kartsatos, \textit{On the maintenance of oscillation of a periodic forcing term}, Proc. Amer. Math. Soc. \textbf{33} (1972), 377-382. \bibitem{k3} M. Kirane and Y. Rogovchenko, \textit{Oscillations results for the second order damped differential equation with non-monotonous nonlinearity}, J. Math. Anal. Appl. 250, 118-138 (2000). \bibitem{k4} V. Komkov, \textit{On boundedness and oscillation of the differential equation} $ x^{\prime \prime}-A(t)g(x)=f(t)$ in $\mathbb{R}^n$, SIAM J. Appl. Math. \textbf{22} (1972), 561-568. \bibitem{n1} A. H. Nasr, \textit{Sufficient conditions for the oscillation of forced super-linear second order differential equations with oscillatory potential}, Proc. Amer. Math. Soc. \textbf{126, 1}, (1998) 123-125. \bibitem{r1} S. M. Rankin, \textit{Oscillation theorems for second order nonhomogeneous linear differential equations}, J. Math. Anal. \textbf{53} (1976), 550-556. \bibitem{w1} J. S. W. Wong, \textit{Second order nonlinear forced oscillations}, SIAM J. Math. Anal. \textbf{19, 3} (1998). \end{thebibliography} \end{document}