
Electronic Journal of Differential Equations, Vol. 2008(2008), No. 01, pp. 1–15.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

WELL-POSEDNESS AND ILL-POSEDNESS OF THE
FIFTH-ORDER MODIFIED KDV EQUATION

SOONSIK KWON

Abstract. We consider the initial value problem of the fifth-order modified

KdV equation on the Sobolev spaces.

∂tu− ∂5
xu + c1∂3

x(u3) + c2u∂xu∂2
xu + c3uu∂3

xu = 0

u(x, 0) = u0(x)

where u : R × R → R and cj ’s are real. We show the local well-posedness

in Hs(R) for s ≥ 3/4 via the contraction principle on Xs,b space. Also, we

show that the solution map from data to the solutions fails to be uniformly
continuous below H3/4(R). The counter example is obtained by approximating

the fifth order mKdV equation by the cubic NLS equation.

1. Introduction

The KdV equation and the modified KdV (mKdV) equation are completely
integrable in the sense that there are Lax pair formulations. Being completely
integrable, the KdV and the mKdV equations enjoy infinite number of conservation
laws. Each of these is an Hamiltonian of the flow which commute the KdV flow
(resp. the mKdV flow). This generates an infinite collection of commuting nonlinear
equations of order 2j +1, (j ∈ N), which is known as the KdV hierarchy (resp. the
mKdV hierarchy). In this note, we consider the second equation from the modified
KdV hierarchy:

∂tu− ∂5
xu− 30u4∂xu + 10u2∂3

xu + 10(∂xu)3 + 40u∂xu∂2
xu = 0. (1.1)

Using the theory of the complete integrability, one can show that for any Schwartz
initial data, the solution to any equation in the KdV hierarchy (resp. the mKdV
hierarchy) exists globally in time. However, the well-posedness theory for low regu-
larity initial data requires the theory of dispersive PDEs. And changing coefficients
in the nonlinear terms may break the integrable structure. In this case, we can
no longer rely on the theory of complete integrability. The purpose of this paper
is to study the low regularity well-posedness and ill-posedness. We consider the
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following fifth order mKdV equation, which generalizes (1.1) 1.

∂tu− ∂5
xu + c1∂

3
x(u3) + c2u∂xu∂2

xu + c3uu∂3
xu = 0

u(x, 0) = u0(x)
(1.2)

where u : R× R → R and cj ’s are real.
We show the local well-posedness result and the ill-posedness result. First, we

state the local well-posedness theorem.

Theorem 1.1. Let s ≥ 3/4 and u0 ∈ Hs(R). Then there exists T = T (‖u0‖Hs(R))
such that (1.2) has a unique solution u(t, x) in C([0, T ];Hs(R)). Moreover, the
solution map from data to the solutions is real-analytic.

Previously, Kenig, Ponce, and Vega [6] studied the local well-posedness of the
odd order dispersive equations:

∂tu + ∂2j+1
x u + P (u, ∂xu, . . . , ∂2j

x u) = 0

where P is a polynomial having no constant and linear terms. They proved the
local well-posedness for the initial data in the weighted Sobolev space; i.e.,

u0 ∈ Hs(R) ∩ L2(|x|mdx)

for some s,m ≥ 0. Their method was the iteration using the local smoothing
estimate and the maximal function estimate. Inspecting their proof for the equation
(1.2), one can observe that the local well-posedness holds true for s > 9/4 and
m = 0. In other words, the local well-posedness is established for the Sobolev space
without the decaying weight. Thus, our result can be viewed as an improvement
of theirs. Our proof is also via the contraction principle. A natural choice of the
iteration space is the Bourgain space, also known as the Xs,b space. Assuming the
standard argument of the iteration on the Xs,b space, the main step is to show the
following nonlinear estimate:

‖T (u, v, w)‖Xs,b−1 . ‖u‖Xs,b‖v‖Xs,b‖u‖Xs,b .

where T (u, v, w) = c1∂
3
x(uvw) + c2u∂xv∂2

xw + c3uv∂3
xw. This is performed by the

dyadic method of Tao. In [10], Tao studied multilinear estimates for Xs,b space
systematically and showed the analogous trilinear estimate for the mKdV equa-
tion. This reproves the local well-posedness for s ≥ 1/4, which originally showed
by Kenig, Ponce and Vega [5] by the local smoothing estimate. Thus, in the mKdV
equation the Xs,b estimate has the same strength as the classical local smooth-
ing method, while in the fifth order mKdV (1.2) the Xs,b estimate improves the
preceding one.

In [3], Christ, Colliander and Tao showed the solution map of the mKdV equation
fails to be uniformly continuous for s < 1/4. This implies 1/4 is the minimal
regularity threshold for which the well-posedness problem can be solved via an
iteration method. Our next theorem is the analogue of this for the equation (1.2).

Theorem 1.2. Let −7/24 < s < 3/4. The solution map of the initial value problem
(1.2) fails to be uniformly continuous. More precisely, for 0 < δ � ε � 1 and T > 0

1For omitting u4∂xu, See Remark 3.5
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arbitrary, there are two solutions u, v to (1.2) such that

‖u(0)‖Hs
x
, ‖v(0)‖Hs

x
. ε (1.3)

‖u(0)− v(0)‖Hs
x

. δ (1.4)

sup
0≤t≤T

‖u(t)− v(t)‖Hs
x

& ε. (1.5)

The method used here is very similar to theirs in [3]. We approximate the fifth
order mKdV equation by the cubic NLS equation,

i∂tu− ∂2
xu + |u|2u = 0, (1.6)

at (N,N5) in the frequency space.
Let u(t, x) be the linear solution to (∂t − ∂5

x)u = 0 with u(0) = u0. Setting

ξ := N +
ξ′√

10N3/2
,

τ = ξ5 leads τ = N5 +
√

5
2N5/2ξ′ + τ ′ where

τ ′ = ξ′2 +
ξ′3√

10N5/2
+

ξ′4

20N5
+

ξ′5

(10N3)5/2
.

u(t, x) =
∫

eitτ+ixξû0(ξ)dτdξ

=
∫

e
it(N5+

√
5
2 N5/2ξ′+τ ′)+ix(N+ ξ′√

10N3/2 )
û0(ξ)dτdξ

= eiN5+iNx

∫
e
iτ ′t+iξ′( x√

10N3/2 +
√

5
2 N5/2t)

û0(N +
ξ′√

10N3/2
)dτ ′dξ′ .

Since τ ′ ≈ ξ′2 for |ξ′| � N ,

u(t, x) ≈ eiN5t+iNxv(t,
x√

10N3/2
+

√
5
2
N5/2t)

where v(t, x) is a solution to the linear Schrödinger equation i∂tv − ∂2
xv = 0.

By the presence of the nonlinear term, one need the factor c
N3/2 and the real

part projection Re. Then it is approximated to the cubic NLS equation (1.6). The
detail follows in Section 4.

On the other hand, the solutions to the fifth order KdV equation,

∂tu− ∂5
xu + c1∂xu∂2

xu + c2u∂3
xu = 0,

is known to have genuine nonlinear dynamics for all s > 0. In [9] the author showed
the solution map fails to be uniformly continuous in Hs(R) for s > 0. Thus, for
this equation the local well-posedness problem is solved by other than the iteration
method. In [9] the local well-posedness in Hs(R) for s > 5

2 is established via the
compactness method.

Notation. We use X . Y when X ≤ CY for some C. We use X ∼ Y when
X . Y and Y . X. Moreover, we use X .s Y if the implicit constant depends on
s, C = C(s).
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We use Japanese bracket notation 〈ξ〉 :=
√

1 + ξ2. We denote the space time
Fourier transform by ũ(τ, ξ) of u(t, x)

ũ(τ, ξ) =
∫

e−itτ−ixξu(t, x)dtdx,

while the space Fourier transform by û(t, ξ) of u(t, x),

û(t, ξ) =
∫

e−ixξu(t, x)dx.

2. Local well-posedness of the fifth order modified KdV

In this section, we prove the local well-posedness of the initial value problem
(1.2). Our proof is via the contraction principle on the Bourgain space. We first
recall some standard facts and notations. For a Schwartz function u0(x), we denote
the linear solution u(t, x) to the equation ∂tu− ∂5

xu = 0 by

u(t, x) =: et∂5
xu0(x) = c

∫∫
eitξ5

ei(x−y)ξu0(y)dydξ.

Using this notation we have the Duhamel formula for the solution to the inhomo-
geneous linear equation ∂tu− ∂5

xu + F = 0

u(t, x) = et∂5
xu0(x)−

∫ t

0

e(t−t′)∂5
xF (t′, x)dt′.

We denote the Bourgain space by Xs,b
τ=ξ5(R × R), or abbreviated Xs,b. The Xs,b

space is defined to be the closure of the Schwartz functions S(R × R) under the
norm

‖u‖Xs,b

τ=ξ5 (R×R) := ‖〈ξ〉s〈τ − ξ5〉bũ(τ, ξ)‖L2
τ,ξ(R×R).

The Xs,b space is continuously embedded in C0
t Hs

x.

Lemma 2.1. Let b > 1/2 and s ∈ R. Then for any u ∈ Xs,b
τ=ξ5(R× R), we have

‖u‖C0
t Hs

x(R×R) .b ‖u‖Xs,b

τ=ξ5 (R×R).

For the proof of the above lemma, see [11]. Let η(t) be a compactly supported
smooth time cut-off function (i.e. η ∈ C∞

0 (R) with η(t) = 1 on [0, 1]). There is a
standard Xs,b energy estimate for time cut-off solutions.

Lemma 2.2. Let b > 1/2 and s ∈ R and let u ∈ C∞
t Sx(R×R) solves the inhomo-

geneous linear fifth order KdV equation ∂tu− ∂5
xu = F . Then we have

‖η(t)u‖Xs,b

τ=ξ5 (R×R) .η,b ‖u(0)‖Hs
x

+ ‖η(t)F‖Xs,b−1
τ=ξ5 (R×R). (2.1)

For the proof of the above Lemma, see [7], [11]. Next, we state the nonlinear
estimate.

Proposition 2.3. Let s ≥ 3/4. For all u, v, w on R×R and 1/2 < b ≤ 1/2 + ε for
some ε, we have

‖∂3
x(uvw)‖Xs,b−1 + ‖uv∂3

xw‖Xs,b−1 + ‖u∂2
xv∂xw‖Xs,b−1 + ‖∂xu∂xv∂xw‖Xs,b−1

. ‖u‖Xs,b‖v‖Xs,b‖w‖Xs,b .

(2.2)
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Combining the preceding estimates (2.1), (2.2) one can easily verify that the
operator

Φ(u)(t, x) := η(t)et∂5
xu0(x)− η(t)

∫ t

0

e(t−t′)∂5
xF (u)(t′, x)dt′

is a contraction on a ball of Xs,b space

B = {u ∈ Xs,b : ‖u‖Xs,b ≤ 2δ}

for a sufficiently small δ > 0 and ‖u0‖Hs
x

< δ, where F (u) = c1∂
3
x(u3)+c2u∂xu∂2

xu+
c3uu∂3

xu. This proves the local well-posedness for small data. Then a standard
scaling argument easily leads the local well-posedness for large data. Once the
local well-posedness is proved via the contraction principle, we also obtain that
the solution map is Lipschitz continuous, and furthermore if the nonlinear term
is algebraic (a polynomial of u and its derivatives), then the solution map is real-
analytic. Hence, it remains to show the trilinear estimate (2.2) for the proof of
Theorem 1.1.

3. Trilinear estimate

In this section, we show the trilinear estimate (2.2). We closely follow the method
developed by Tao [10] in the context of modified KdV equation. Writing the trilinear
inequality in the dual form and we view it as a composition of two bilinear operators
based on L2 norm. Then we reduce to two bilinear estimates. First, we recall
notations and general frame work of Tao’s [k;Z]-multiplier method. For the details
we refer to [10].

Notation and block estimates. We define [k, R]-multiplier norm of Tao [10]
first. Let Z be an abelian additive group with an invariant measure dξ (for instance
Rn, Tn). For any integer k ≥ 2. let Γk(Z) denote the hyperplane

Γk(Z) := {(ξ1, . . . , ξk) ∈ Rk : ξ1 + · · ·+ ξk = 0}.

A [k, Z]-multiplier is defined to be any function m : Γk(Z) → C. Then we define
the multiplier norm ‖m‖[k,Z] to be the best constant so that the inequality

∣∣ ∫
Γk(Z)

m(ξ)
k∏

j=1

fj(ξj)
∣∣ ≤ C

k∏
j=1

‖fj‖L2 ,

holds for all functions fj on Z. Any capitalized variables such as Nj , Lj and H
are presumed to be dyadic. For N1, N2, N3 > 0, we denote the quantities by
Nmin, Nmed, Nmax in their order and similarly for L1, L2, L3. We adopt the following
summation convention: ∑

Nmax∼Nmed∼N

:=
∑

N1,N2,N3>0
Nmax∼Nmed∼N

,

∑
Lmax∼H

:=
∑

L1,L2,L3&1
Lmax∼H

.

For given τj , ξj with ξ1 +ξ2 +ξ3 = 0 and τ1 +τ2 +τ3 = 0, we denote the modulation

τj − ξ5
j =: λj
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and the resonance function

h(ξ) := ξ5
1 + ξ5

2 + ξ5
3 = −λ1 − λ2 − λ3.

By a dyadic decomposition of the variables ξj , λj and h(ξ) Xs,b, a bilinear estimate

‖B(u, v)‖Xs3,b3 . ‖u‖Xs1,b1‖v‖Xs2,b2

is reduced to∥∥∥ ∑
Nmax&1

∑
H

∑
L1,L2,L3&1

m̃(N1, N2)〈N1〉−s1〈N2〉−s2〈N3〉s3

Lb1
1 Lb2

2 L−b3
3

×XN1,N2,N3;H;L1,L2,L3

∥∥∥
[3,R×R]

. 1.

Here, XN1,N2,N3;H;L1,L2,L3 is the multiplier

XN1,N2,N3;H;L1,L2,L3(ξ, τ) := χ|h(ξ)|∼H

3∏
j=1

χ|ξj |∼Nj
χ|λj |∼Lj

and
m̃(N1, N2) := sup

|ξj |∼Nj ,j=1,2

m(ξ1, ξ2)

where m(ξ1, ξ2) is a multiplier of the bilinear operator B(·, ·). This leads us to
consider

‖XN1,N2,N3;H;L1,L2,L3‖[3,R×R], (3.1)

which vanishes unless

Nmed ∼ Nmax (3.2)

Lmax ∼ max(H,Lmed) (3.3)

Moreover, we have the resonance relation: if Nmax ∼ Nmed & 1, then

H ∼ N4
maxNmin (3.4)

Now we state the dyadic block estimate.

Lemma 3.1. Let H, N1, N2, N3, L1, L2, L3 > 0 satisfy (3.2), (3.4), (3.3).
(a) ((++)Coherence) If Nmax ∼ Nmin and Lmax ∼ H, then we have

(3.1) . L
1/2
minN−2

maxL
1/2
med. (3.5)

(b) ((+-)Coherence) If N2 ∼ N3 � N1 and H ∼ L1 & L2, L3, then

(3.1) . L
1/2
minN−2

max min(H,
Nmax

Nmin
Lmed)1/2. (3.6)

Similarly for permutations.
(c) In all other cases, we have

(3.1) . L
1/2
minN−2

max min(H, Lmed)1/2. (3.7)

Lemma 3.1 is obtained in a similar way to Tao’s ([10], Proposition 6.1) in the
context of the KdV equation. For the fifth order equation, it is first shown by Chen,
Li, Miao and Wu [2]. See [2] for the proof.
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Bilinear estimates. Using Lemma 3.1 we show three bilinear estimates to which
the trilinear estimate is reduced.

Proposition 3.2. For Schwartz functions u, v on R× R and 0 < ε � 1, we have

‖uv‖L2(R×R) . ‖u‖
X
−3/2,1/2−ε

τ=ξ5
‖v‖

X
3/4,1/2+ε

τ=ξ5
, (3.8)

‖uv‖L2(R×R) . ‖u‖
X
−3/4,1/2−ε

τ=ξ5
‖v‖

X
0,1/2+ε

τ=ξ5
, (3.9)

‖uv‖L2(R×R) . ‖u‖
X
−1/4,1/2−ε

τ=ξ5
‖v‖

X
−1/2,1/2+ε

τ=ξ5
. (3.10)

Proof. We prove (3.8) first. Rewriting (3.8) by duality, Plancherel’s theorem and
dyadic decomposition and using the translation invariance of the [k;Z]-multiplier
(may assume L1, L2, L3 & 1 and max(N1, N2, N3) & 1) and Schur’s test [10, Lemma
3.11], it suffices to show∑

N∼Nmax∼Nmed

∑
L1,L2,L3≥1,

H∼Lmax

〈N2〉3/2

〈N1〉3/4L
1/2+ε
1 L

1/2−ε
2

× ‖XN1,N2,N3;Lmax;L1,L2,L3‖[3,R×R] . 1

(3.11)

and ∑
N∼Nmax∼Nmed

∑
Lmax∼Lmed,

H�Lmax

〈N2〉3/2

〈N1〉3/4L
1/2+ε
1 L

1/2−ε
2

× ‖XN1,N2,N3;Lmax;L1,L2,L3‖[3,R×R] . 1

(3.12)

for all N & 1. Fix N . We prove (3.12) first. From (3.7) it reduces to show∑
N∼Nmax∼Nmed

∑
Lmax∼Lmed&N4Nmin

〈N2〉3/2

〈N1〉3/4L
1/2+ε
1 L

1/2−ε
2

L
1/2
minN−2N2N

1/2
min . 1

Estimating

〈N2〉3/2

〈N1〉3/4
.

N3/2

〈Nmin〉3/4

L
1/2+ε
1 L

1/2−ε
2 & L

1/2+ε
min Lε

med(N4Nmin)1/2−2ε

and then performing the L summations, we reduce to∑
N∼Nmax∼Nmed

〈N〉3/2N
1/2
min

〈Nmin〉3/4(N4Nmin)1/2−ε
. 1,

which is true with about N−1/2 to spare.
Now, we show the case (3.11). In this case we have Lmax ∼ N4

maxNmin. We first
show when (3.5) (i.e. (++)coherence) holds. From (3.5) we have Nmax ∼ Nmed ∼
Nmin and (3.1) . L

1/2
minN−2

maxL
1/2
med, so we reduce to∑

Lmax∼N5

N3/2

N3/4L
1/2−ε
1 L

1/2+ε
2

L
1/2
minN−2L

1/2
med . 1.

Estimating
L

1/2+ε
1 L

1/2−ε
2 ≥ L

1/2+ε
min L

1/2−ε
med
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and then performing the L summations we reduce to

N3/2

N3/4N5ε
N−2 . 1,

which is true.
Now we deal with (+-)coherence case (i.e. when (3.6) holds true). Since we

don’t have the symmetry on indices, we need to consider the following three cases:

N ∼ N1 ∼ N2 � N3; H ∼ L3 & L1, L2

N ∼ N2 ∼ N3 � N1; H ∼ L1 & L2, L3

N ∼ N1 ∼ N3 � N2; H ∼ L2 & L1, L3

In the first case we reduce by (3.6) to∑
N3�N,L1,L2.N4N3

N3/2

N3/4L
1/2+ε
1 L

1/2−ε
2

L
1/2
minN−2 min(N4N3,

N

N3
Lmed)1/2 . 1.

Performing the N3 summation we reduce to∑
1≤L1,L2.N5

N3/2

N3/4L
1/2+ε
1 L

1/2−ε
2

L
1/2
minN−2N5/4L

1/4
med . 1

which is easily verified.
To symmetrize the second and third case we replace L

1/2+ε
1 by L

1/2−ε
1 . It suffices

to show the second case. Using min(H, N
Nmin

Lmed) ≤ H ∼ N4N1 we reduce to∑
N1≤N

∑
L2,L3≤N4N1

N3/2N
1/2
1

〈N1〉3/4(N4N1)1/2+εL
1/2−ε
2

. 1

We may assume N1 ≥ N−4 since the inner sum vanishes otherwise. Performing the
L summations we reduce to∑

N−4≤N1≤N

N3/2−2+4ε N ε
1

〈N1〉3/4
(N4N1)ε . 1

which is true with about N−1/2 to spare. Finally, we show the cases (3.7) holds. It
suffices to show∑

Nmax∼Nmed∼N

∑
Lmax∼N4Nmin

N3/2

〈N1〉3/4L
1/2+ε
1 L

1/2−ε
2

L
1/2
minN−2L

1/2
med . 1

Performing the L summations, we reduce to∑
Nmax∼Nmed∼N

N−1/2

〈N1〉3/4
(N4Nmin)ε . 1

which is easily verified with about N−1/2 to spare. This completes the proof for
(3.8). The proof of (3.9) and (3.10) are very similar to the preceding one. In
general, the same computation shows

‖uv‖L2(R×R) . ‖u‖
X
−α,1/2−ε

τ=ξ5
‖v‖

X
β,1/2+ε

τ=ξ5
.

for α < 2 and α− β ≤ 3/4. We omit the detail here. �
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Proof of the trilinear estimate. To reduce the trilinear estimate we use the
following lemma.

Lemma 3.3 (Tao [10, Lemma 3.7] Composition and TT*). If k1, k2 ≥ 1, and
m1,m2 are functions on Rk1 and Rk2 respectively, then

‖m1(ξ1, . . . , ξk1)m2(ξk1+1, . . . , ξk1+k2)‖[k1+k2;R]

≤ ‖m1(ξ1, . . . , ξk1)‖[k1+1;R]‖m2(ξ1, . . . , ξk2)‖[k2+1;R].
(3.13)

As a special case we have the TT ∗ identity

‖m(ξ1, . . . , ξk)m(−ξk+1, . . . ,−ξ2k)‖[2k;R] = ‖m(ξ1, . . . , ξk)‖2[k+1;R] (3.14)

for all functions m : Rk → R.

For simplicity we prove the most interesting case s = 3/4. For the first term it
suffices to show that∥∥∥ (ξ1 + ξ2 + ξ3)3〈ξ4〉3/4

〈τ4 − ξ5
4〉1−b

∏3
j=1〈ξj〉s〈τj − ξ5

j 〉b
∥∥∥

[4, R×R]
. 1.

Estimating |ξ1 + ξ2 + ξ3| by 〈ξ4〉, and

〈ξ4〉3/4+3 . 〈ξ4〉3/2
3∑

j=1

〈ξj〉3/4+3/2.

By symmetry we reduce to∥∥∥ 〈ξ1〉−3/4〈ξ3〉−3/4〈ξ2〉3/2〈ξ4〉3/2

〈τ4 − ξ5
4〉1−b

∏3
j=1〈τj − ξ5

j 〉b
∥∥∥

[4, R×R]
. 1.

We may replace 〈τ2− ξ5
2〉b by < τ2− ξ5

2 >1−b. By TT ∗ identity (3.14), the estimate
is reduced to the bilinear estimate (3.8).

The proof of the second term (2.2) is very similar to the first one but we use the
composition rule (3.13) instead of the TT ∗ identity. We estimate

ξ3
1 ≤ ξ

9/4
1

(
〈ξ2〉3/4 + 〈ξ3〉3/4 + 〈ξ4〉3/4

)
〈ξ4〉3/4.

The third term is the same as above and so by symmetry we reduce to∥∥∥ 〈ξ1〉3/2〈ξ3〉−3/4〈ξ2〉0〈ξ4〉3/4

〈τ4 − ξ5
4〉1−b

∏3
j=1〈τj − ξ5

j 〉b
∥∥∥

[4, R×R]
. 1.

This is verified by (3.8) and (3.9), as well as the composition rule (3.13).
The fourth term in (2.2) is proved in the same way. Estimating

〈ξ4〉3/4 ≤ 〈ξ4〉1/2
(
〈ξ1〉1/4 + 〈ξ2〉1/4 + 〈ξ3〉1/4

)
,

and by symmetry we reduce to∥∥∥ 〈ξ1〉1/2〈ξ2〉1/4〈ξ3〉1/4〈ξ4〉1/2

〈τ4 − ξ5
4〉1−b

∏3
j=1〈τj − ξ5

j 〉b
∥∥∥

[4,R×R]
. 1.

This is verified by (3.10) and TT ∗ identity (3.14) after minorizing one of b by 1− b.
Finally, the third term in (2.2) automatically follows since it is a linear combination
of other three. This conclude the proof of Proposition 2.3.
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Remark 3.4. The trilinear estimate (2.2) fails for s < 3
4 . The counter example in-

troduced by Kenig, Ponce and Vega [7] in the context of the modified KdV equation
extends to here. I n the frequency space, set

A = {(τ, ξ) ∈ R2|N ≤ ξ ≤ N + N−3/2, |τ − ξ5| ≤ 1},

and
−A = {(τ, ξ) ∈ R2| − (τ, ξ) ∈ A}.

Defining f̃(τ, ξ) = χA + χ−A, we obtain

|f̃ ∗ f̃ ∗ f̃(τ, ξ)| & N−3χR(τ, ξ),

where R is a rectangle located at (N,N5) of dimension N−4×N5/2 with its longest
side pointing (1, 5N4) like A. Thus,

‖∂3
x(f · f · f)‖Xs,b−1 & Ns−3/4

and
‖f‖Xs,b . Ns−3/4,

then (2.2) implies s ≥ 3/4. This example holds good for other nonlinear terms in
(2.2).

Remark 3.5. In our general equation (1.2) we omitted the term u4∂xu from (1.1).
Since the term u4∂xu is a lower order term, it is easier to handle than other third
order terms. Once we have the 5-linear estimate

‖∂x(u1u2u3u4u5)‖Xs,b−1 .
5∏

j=1

‖ui‖Xs,b , (3.15)

we can insert it into the iteration. The proof of (3.15) is similar to the preceding one.
Using Lemma 3.3 we reduce to two trilinear estimates and each trilinear estimate
is again reduced to two bilinear estimates. The resulting bilinear estimates are
supposedly easier than those in Proposition 3.2 since there are fewer derivatives
and more u’s. In fact, it is true for s lower than 3/4.

4. Ill-posedness

In this section we give the proof of Theorem 1.2. For simplicity, we pretend the
nonlinear term is

F (u) = ∂3
x(u3).

The general case F (u) = c1∂
3
x(u3) + c2u

2∂3
x + c3u∂xu∂2

x (cj ’s are real numbers)
follows in the same manner. Our method is to approximate the fifth mKdV solution
by the cubic NLS solution. This is originally introduced by Christ, Colliander and
Tao [3] for the mKdV equation. This method extends to the fifth order equation
without substantial change.

Having two solutions to the cubic NLS breaking the uniform continuity of the
flow map for s < 0, we find approximate solutions to the fifth mKdV exhibiting the
same property. First, we state the ill-posedness for the cubic NLS in [3].

Theorem 4.1. Let s < 0. The solution map of the initial value problem of the cubic
NLS (1.6) fails to be uniformly continuous. More precisely, for 0 < δ � ε � 1 and
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T > 0 arbitrary, there are two solutions u1, u2 to (1.6) satisfying (1.3), (1.4) and
(1.5). Moreover, For any fixed K ≥ 1, we can find such solutions to satisfy

sup
0≤t<∞

‖uj‖HK
x

. ε (4.1)

for j = 1, 2.

Remark 4.2. Theorem 4.1 is stated for the defocusing cubic NLS. The method
in [3] exhibiting the phase decoherence holds good for the focusing case, too. But
previously another method for the focusing case was presented by Kenig, Ponce and
Vega [8]. They used the Galilean invariance on the soliton solutions. In our focusing
case (for instance, F (u) = −∂3

x(u3)) one could employ their counterexample to
approximate.

Now we start to find the approximate solution to the fifth order mKdV equation
using the NLS solutions. Let u(s, y) solve the cubic NLS equation (1.6). We also
assume that

sup
0≤t<∞

‖u(t)‖Hk
x

. ε

for a large k. Using the change of variable

(s, y) :=
(
t,

x

(10N3)1/2
+

√
5
2
N5/2t

)
,

we define the approximate solution

Uap(t, x) :=
2√
3N3

Re eiNxeiN5tu(s, y), (4.2)

where N � 1. We want to show that Uap is an approximate solution to the fifth
mKdV equation. A direct computation shows that

(∂t − ∂5
x)Uap(t, x) =

2√
3N3

Re
{

eiNxeiN5t
(
∂su + i∂2

yu

+
1√

10N5/2
∂3

yu− i

20N5
∂4

yu− 1
(10N3)5/2

∂5
yu

)}
and that

∂3
x(U3

ap)

=
( 2√

3N3

)3 3
4
∂3

x

{
Re eiNxeiN5t|u|2u +

1
3

Re eiNxeiN5tu3
}

=
( 2√

3N3

)3 3
4

{
Re (iN)3eiNxeiN5t|u|2u + Re

3(iN)2√
10N3/2

eiNxeiN5t∂y(|u|2u)

+ Re
3iN

10N3
eiNxeiN5t∂2

y(|u|2u) + Re
1

(10N3)3/2
eiNxeiN5t∂3

y(|u|2u)

+ Re
(3iN)3

3
e3iNxe3iN5tu3 + Re

(3iN)2√
10N3/2

e3iNxe3iN5t∂y(u3)

+ Re
3iN

10N3
e3iNxe3iN5t∂2

y(u3) + Re
1

3(10N3)3/2
e3iNxe3iN5t∂3

y(u3)
}

.

Since u(s, y) is a solution of (1.6), three terms of the preceding equations canceled
and it results in

(∂t − ∂5
x)Uap(t, x) + ∂3

x(U3
ap) = E



12 S. KWON EJDE-2008/01

where the error term E is a linear combination of the real and imaginary parts of
the following:

E1 := N−4eiNxeiN5t∂y(|u|2u), E2 := N−11/2eiNxeiN5t∂2
y(|u|2u),

E3 := N−18/2eiNxeiN5t∂3
y(|u|2u), E4 := N−4e3iNxe3iN5t∂y(u3),

E5 := N−11/2e3iNxe3iN5t∂2
y(u3), E6 := N−18/2eiNxeiN5t∂3

y(u3),

E7 := N−3/2e3iNxe3iN5tu3.

Next, we find a bound of the error.

Lemma 4.3. For each j = 1, . . . , 7, let ej be the solution to the initial problem

(∂t − ∂5
x)ej = Ej ; ej(0) = 0 .

Let η(t) be a smooth time cut-off function taking 1 on [0, 1] and compactly supported.
Then

‖η(t)ej‖X3/4,b . εN−5/2+δ

for arbitrarily small δ > 0.

For the proof we use the estimate of high-frequency modulations of smooth
functions.

Lemma 4.4 ([3, Lemma 2.1] ). Let −1/2 < s, σ ∈ R+ and u ∈ Hσ(R). For any
M > 1, τ ∈ R+, x0 ∈ R, and A > 0 let

v(x) = AeiMxu(
x− x0

τ
).

(i) Suppose s ≥ 0. Then ‖v‖H1 .s |A|τ1/2Ms‖u‖Hs for all u, A, x0 and M ·τ ≥
1.

(ii) Suppose that s < 0 and that σ ≥ |s|. Then ‖v‖Hs .s,σ |A|τ1/2Ms‖u‖Hσ

for all u, A, x0 and M1+(s/σ) · τ ≥ 1.

Proof of Lemma 4.3. Using (2.1) and Plancherel theorem we obtain

‖η(t)ej‖X3/4,b . ‖η(t)Ej‖X3/4,b−1

= ‖〈τ − ξ5〉b−1〈ξ〉3/4η̃(t)Ej‖L2
τ,ξ

≤ ‖〈ξ〉3/4η̃(t)Ej‖L2
τ,ξ

(∵ b− 1 < 0)

= ‖η(t)〈ξ〉3/4Êj(t, ξ)‖L2
t,ξ

≤ ‖〈ξ〉3/4Êj(t, ξ)‖L∞t L2
x([0,1]×R)

Thus, we reduce to show

sup
0≤t≤1

‖Ej‖H
3/4
x

. εN−5/2+δ.

E1, . . . , E6 have enough negative powers of N. The above bound for these terms is
obtained by (4.1), Lemma 4.4 and the fact that Hk is closed under multiplication
for k ≥ 1. For the last term E7 since there is not enough of a negative power on
N , we need to use the fact that the modulation e3iNxe3iN5t is away from the the
curve τ = ξ5. A direct computation leads that

η̃(t)E7(τ, ξ) = N−3/2η̃ u3
(
τ − a,

√
10N3/2(ξ − 3N)

)√
10N3/2
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where a = 3N5 − 3
√

5
2N5 +

√
5
2N4ξ.

Let Pλ,µ be the Littlewood-Paley projection with dyadic numbers λ, µ. (4.1) and
the fact that η(t) is compactly supported yield

‖ ˜Pλ,µη u3(τ, ξ)‖L2
τ,ξ

.
ε

〈λ〉K〈µ〉K

and so

‖ ˜Pλ,µη u3(τ − a,N3/2(ξ − 3N))‖L2
τ,ξ

. N−3/4 ε

〈λ− a〉K〈µ− 3N〉K
.

Rewriting ‖η(t)E7‖X3/4,b−1 by dyadic decompositions,

‖η(t)E7‖2X3/4,b−1 .
∑

λ,µ≥1
dyadic

〈λ− µ5〉2(b−1)〈µ〉3/2N−3

×
∥∥∥ ˜Pλ,µη u3

(
τ − a,

√
10N3/2(ξ − 3N)

)√
10N3/2

∥∥∥2

L2
τ,ξ

.
∑

λ,µ≥1
dyadic

〈λ− µ5〉2(b−1)〈µ〉3/2N−3/2 ε2

〈λ− a〉2K〈µ− 3N〉2K

. ε2N10(b−1)

by choosing K large enough. We used the fact that e3iNxe3iN5t is away from the
curve in the frequency space at the last inequality. Therefore, choosing b > 1

2

sufficiently close to 1
2 we conclude

‖η(t)E7‖2X3/4,b−1 . εN−5/2+δ.

�

Finally, we state the following perturbation result from the local well-posedness.

Lemma 4.5. Let u be a Schwartz solution to the fifth order modified KdV equation
(1.2) and v be a Schwartz solution to the approximate fifth mKdV equation

∂tv − ∂5
xv + ∂3

x(v3) = E

for some error function E. Let e be the solution to the inhomogeneous problem

∂te− ∂5
xe = E, e(0) = 0.

Suppose that
‖u(0)‖

H
3/4
x

, ‖v(0)‖
H

3/4
x

. ε; ‖η(t)e‖X3/4,b . ε

Then we have

‖η(t)(u− v)‖X3/4,b . ‖u(0)− v(0)‖H3/4 + ‖η(t)e‖X3/4,b .

In particular, we have

sup
0≤t≤1

‖u(t)− v(t)‖H3/4 . ‖u(0)− v(0)‖H3/4 + ‖η(t)e‖X3/4,b .

Proof. The proof is very similar to that of [3, Lemma 5.1]. Here, we give only a
sketch. Writing the integral equation for v with a time cut-off function η(t),

η(t)v(t) = η(t)et∂5
xv(0)− η(t)e(t) + η(t)

∫ t

0

e(t−t′)∂5
x∂3

x(v3)(t′)dt′.
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we use (2.1), (2.2) and a continuity argument (assuming ε is sufficiently small) to
obtain

‖η(t)v‖X3/4,b . ε.

We repeat the same argument on the difference of the two w = u − v to get the
desired result. �

Proof of Theorem 1.2. Let 0 < δ � ε � 1 and T > 0 be given. From Theorem 4.1
we can find two global solutions u1, u2 satisfying

‖uj(0)‖Hs
x

. ε (4.3)

‖u1(0)− u2(0)‖Hs
x

. δ (4.4)

sup
0≤t≤T

‖u1(t)− u2(t)‖Hs
x

& ε (4.5)

sup
0≤t≤∞

‖uj(t)‖Hk
x

. ε (4.6)

for s < 0 and k ≥ 6 to be chosen later. Define Uap,1 and Uap,2 as in (4.2), and let
U1, U2 be smooth global solutions with initial data Uap,1, Uap,2, respectively. Now
we rescale these solutions to make them satisfy (1.3), (1.4), (1.5). Set

Uλ
j (t, x) := λUj(λ5t, λx)

and similarly,
Uλ

ap,j(t, x) := λUap,j(λ5t, λx),
for j = 1, 2. Then

Uλ
j (0, x) = λ

2√
3N3

Re eiNλxu(0, λx/(10N3)1/2).

From Lemma 4.3 and Lemma 4.5 we have

sup
0≤t≤1

‖U1(t)− U2(t)‖H
3/4
x

. εN−5/2+δ.

An induction argument on time interval up to log N yields

sup
0≤t.η log N

‖U1(t)− U2(t)‖H
3/4
x

. εN−5/2+η (4.7)

for any η > δ > 0. Applying Lemma 4.4 when s ≥ 0 we obtain

‖Uλ
j (0)‖Hs

x
. λs+1/2Ns−3/4‖uj(0)‖Hs

x
,

while for s < 0, we use Lemma 4.4 (ii) for sufficiently large k to obtain

‖Uλ
j (0)‖Hs

x
. λs+1/2Ns−3/4‖uj(0)‖Hk

x
.

Setting λ := N
3/4−s
1/2+s , and from (4.3), (4.6) we have (1.3) for Uλ

j (0). Similarly, we
also get (1.4) for Uλ

1 (0)− Uλ
2 (0) from (4.4).

Next, we show (1.5). From (4.5) one can find 0 < t0 such that

‖u1(t0)− u2(t0)‖L2
x

& ε.

Using Lemma 4.4 we obtain

‖Uap,1(t0/λ5)− Uap,2(t0/λ5)‖Hs
x

& λ1/2+sNs−3/4ε ∼ ε.

On the other hand, using the hypothesis s > − 7
24 and (4.7)

‖Uλ
ap,j(t)− Uλ

j (t)‖Hs . λmax(0,s)+1/2εN−5/2+η . ε
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for 0 < t .η log N/λ5 and sufficiently small η > 0. A triangle inequality shows

‖Uλ
1 (t0/λ5)− Uλ

2 (t0/λ5)‖Hs
x

& ε

for t0/λ5 � log N/λ5. Choosing λ (and hence N) large enough that t0/λ5 < T , we
get (1.5). This completes the proof. �
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