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CONTROLLABILITY OF MATRIX SECOND ORDER SYSTEMS:
A TRIGONOMETRIC MATRIX APPROACH

JAITA PANKAJ SHARMA, RAJU K. GEORGE

Abstract. Many of the real life problems are modelled as Matrix Second
Order Systems, (refer Wu and Duan [19], Hughes and Skelton [10]). Neces-

sary and sufficient condition for controllability of Matrix Second Order Linear

(MSOL) Systems has been established by Hughes and Skelton [10]. However,
no scheme for computation of control was proposed. In this paper we first ob-

tain another necessary and sufficient condition for the controllability of MSOL

and provide a computational algorithm for the actual computation of steering
control. We also consider a class of Matrix Second Order Nonlinear systems

(MSON) and provide sufficient conditions for its controllability. In our analy-

sis we make use of Sine and Cosine matrices and employ Páde approximation
for the computation of matrix Sine and Cosine. We also invoke tools of non-

linear analysis like fixed point theorem to obtain controllability result for the

nonlinear system. We provide numerical example to substantiate our results.

1. Introduction

In this paper, we investigate the controllability property of the system governed
by a Matrix Second Order Nonlinear (MSON) differential equation:

d2x(t)
dt2

+ A2x(t) = Bu(t) + f(t, x(t))

x(0) = x0, x′(0) = y0.
(1.1)

where, the state x(t) is in Rn and the control u(t) is in Rm, A2 is a constant matrix
of order n× n and B is a constant matrix of order n×m and f : [0, T ]×Rn → Rn

is a nonlinear function satisfying Caratheodory conditions, that is, f is measurable
with respect to t for all x and continuous with respect to x for almost all t ∈ [0, T ].
The initial states x0 and y0 are in Rn. The corresponding Matrix Second Order
Linear (MSOL) system is:

d2x(t)
dt2

+ A2x(t) = Bu(t)

x(0) = x0, x′(0) = y0.
(1.2)

2000 Mathematics Subject Classification. 93B05, 93C10.
Key words and phrases. Controllability; matrix second order linear system;

cosine and sine matrices; Banach contraction principle.
c©2007 Texas State University - San Marcos.

Submitted February 15, 2007. Published May 29, 2007.

1



2 J. P. SHARMA, R. K. GEORGE EJDE-2007/80

The system (1.2) has been studied by many researchers due to the fact that it
can model the dynamics of many natural phenomenon to a significantly large ex-
tent(refer Hughes and Skelton [10, 16], Balas [1], Diwakar and Yedavalli [5, 6], Laub
and Arnold [13], Fitzgibbon [7]).

Definition 1.1. The system (1.1) is said to be controllable on [0, T ] if for each pair
x0, x1 ∈ Rn, there exists a control u(t) ∈ L2([t0, T ];Rm) such that the correspond-
ing solution of (1.1) together with x(0) = x0 also satisfies x(T ) = x1.

We note that in our controllability definition we are concerned only in steering
the states but not the velocity vector y0 in (1.1). A necessary and sufficient con-
dition for the controllability of the MSOL system has been proved in (Hughes and
Skelton [10]). They converted the second order system into first order system and
obtained controllability result. However, no computational scheme for the steering
control was proposed. In this paper we prove another controllability result and also
provide a computational algorithm for the actual computation of controlled state
and steering control. We do not reduce the system into first order and analyse the
original second order form itself. We use matrix Sine and Cosine operators to find
the solution of the systems (1.1) and (1.2). We employ Páde approximation for the
computation of matrix Sine and Cosine operators. Section 2 provides the necessary
preliminaries on matrix Sine and matrix Cosine and Section 3 deals with the solu-
tion of MSOL and MSON. In section 4, we prove controllability results for MSOL,
and controllability result of MSON is provided in Section 5. Section 6 concludes
with the computational algorithm for Sine and Cosine matrices and steering control
for linear and nonlinear systems. Examples are provided to illustrate the results.

2. Preliminaries

As we know the matrix exponential y(t) = eAty0 provides the solution to the
first order differential system

dy

dt
= Ay, y(0) = y0.

Trigonometric matrix functions play a similar role in second order differential matrix
system

d2y

dt2
+ Ay = 0, y(0) = x0, y′(0) = y0,

That is, the solution of the above second order system, using Sine and Cosine
matrices, is given by (refer Hargreaves and Higham [9])

y(t) = cos(
√

At)x0 + (
√

A)−1 sin(
√

At)y0.

where cos(
√

At) and sin(
√

At) are matrix sine and cosine as defined below.
The complex exponential of a matrix is defined as the series, (refer Chen [3])

eiAt = I + iAt +
(iAt)2

2!
+

(iAt)3

3!
+

(iAt)4

4!
+

(iAt)5

5!
+

(iAt)6

6!
+

(iAt)7

7!
+ . . .

= (I − A2t2

2!
+

A4t4

4!
− A6t6

6!
+ . . . ) + i(At− A3t3

3!
+

A5t5

5!
− A7t7

7!
+ . . . ).

Convergence of the above series has been well established, (refer Brockett [2]). We
define Cosine and Sine matrix of A as the real and imaginary part of the above
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series. That is,

cos(At) = I − (At)2

2!
+

(At)4

4!
− (At)6

6!
+ . . . (2.1)

sin(At) = At− (At)3

3!
+

(At)5

5!
− (At)7

7!
. . . (2.2)

Since exponential matrix series converges, the subseries defined in (2.1) and (2.2)
also converge. Further,

eiAt = cos(At) + i sin(At),

e−iAt = cos(At)− i sin(At)

Using the above identities, we have the following representation of Cosine and Sine
matrices in terms of matrix exponentials:

cos(At) =
eiAt + e−iAt

2
, sin(At) =

eiAt − e−iAt

2i
The Sine and Cosine matrices satisfy following properties:

(i) cos(0) = I.
(ii) sin(0) = 0.
(iii) d

dt cos(At) = −A sin(At).
(iv) d

dt sin(At) = A cos(At).
(v) cos(At) is non-singular matrix, if A is nonsingular.
(vi) sin(A(t− s)) = sin(At) cos(As)− cos(At) sin(As) for all t.
(vii) A−1 cos(At) = cos(At)A−1.

3. Solution of Second Order Systems Using Cosine and Sine Matrices

We use Sine and Cosine matrices to reduce the system (1.1) to an integral equa-
tion. It can be shown easily that the matrices X1(t) = cos(At) and X2(t) =
A−1 sin(At) satisfy the homogeneous linear matrix differential equation

d2X(t)
dt2

+ A2X(t) = 0 (3.1)

Here, if A is a singular matrix, then X2 is expanded as the power series, (refer
Hargreaves and Higham [9])

X2 = It− A2t3

3!
+

A4t5

5!
− A6t7

7!
. . . (3.2)

General solution of the homogeneous system

d2x(t)
dt2

+ A2x(t) = 0

is given by

x(t) = X1(t)C1 + X2(t)C2,

x(t) = cos(At)C1 + A−1 sin(At)C2

where, C1 and C2 are arbitrary vectors in Rn. Now using the method of variation
of parameter, a particular integral (P.I) for the nonhomogeneous system (1.2) is
given by

P.I = −X1(t)
∫ t

0

W−1(s)X2(s)Bu(s)ds + X2(t)
∫ t

0

W−1(s)X1(s)Bu(s)ds
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where, the Wronskian

W =
∣∣∣∣X1 X2

X ′
1 X ′

2

∣∣∣∣ =
∣∣∣∣ cos(At) A−1 sin(At)
−A sin(At) A−1A cos(At)

∣∣∣∣ = I ,

P.I = − cos(At)
∫ t

0

A−1 sin(As)Bu(s)ds + A−1 sin(At)
∫ t

0

cos(As)Bu(s)ds

=
∫ t

0

A−1(− cos(At) sin(As) + sin(At) cos(As))Bu(s)ds

=
∫ t

0

A−1 sin(A(t− s))Bu(s)ds,

using property (vi). Hence the solution of (1.2) is given by

x(t) = cos(At)C1 + A−1 sin(At)C2 +
∫ t

0

A−1 sin(A(t− s))Bu(s)ds.

Applying the initial conditions x(0) = x0, x′(0) = y0, the solution becomes

x(t) = cos(At)x0 + A−1 sin(At)y0 +
∫ t

0

A−1 sin(A(t− s))Bu(s)ds. (3.3)

Following the same approach the solution of the nonlinear system (1.1) can be
written as

x(t) = cos(At)x0 + A−1 sin(At)y0 +
∫ t

0

A−1 sin(A(t− s))Bu(s)ds

+
∫ t

0

A−1 sin(A(t− s))f(s, x(s))ds

(3.4)

We remark that the above form of solution valid even if the matrix A is singular,
in that case A−1 sin(At) is to be taken as in (3.2).

4. Controllability Results For Linear Systems

In this section we obtain necessary and sufficient conditions for the controllability
of the linear system (1.2). We make use of the following lemmas to prove the
controllability result of (1.2).

Lemma 4.1 (Chen[3]). Let fi, for i = 1, 2, . . . , n, be 1 × p complex vector valued
continuous functions defined on [t1, t2]. Let F be the n× p matrix with fi as its ith

row. Define

W (t1, t2) =
∫ t2

t1

F (t)F ∗(t)dt

Then f1, f2, . . . , fn are linearly independent on [t1, t2] if and only if the n× n con-
stant matrix W (t1, t2) is nonsingular.

Lemma 4.2 (Chen [3]). Assume that for each i, fi is analytic on [t1, t2]. Let F
be the n × p matrix with fi as its ith row, and let F (k) be the kth derivative of F .
Let t0 be any fixed point in [t1, t2]. Then the fi are linearly independent on [t1, t2]
if and only if

Rank[F (t0) : F (1)(t0) : · · · : F (n−1)(t0) : . . . ] = n

The necessary and sufficient condition for the controllability of the linear system
(1.2) is given in the following theorem.
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Theorem 4.3. The following four statements regarding the linear system (1.2) are
equivalent:

(a) The linear system (1.2) is controllable on [0, T ].
(b) The rows of A−1 sin(At)B are linearly independent.
(c) The Controllability Grammian,

W (0, T ) =
∫ T

0

A−1 sin(A(T − s))BB∗(A−1 sin(A(T − s)))∗ds, (4.1)

is nonsingular.
(d)

Rank[B : A2B : (A2)2B : · · · : (A2)n−1B] = n. (4.2)

Proof. First we shall prove the implication (a) ⇒ (b), we prove this by contradic-
tion. Suppose that the system (1.2) is controllable but the rows of A−1 sin(At)B are
linearly dependent functions on [0,T]. Then there exists a nonzero constant 1 × n
row vector α such that

αA−1 sin(At)B = 0 ∀t ∈ [0, T ] (4.3)

Let us choose x(0) = x0 = 0, x′(0) = y0 = 0. Therefore, the solution (3.3) becomes

x(t) =
∫ t

0

A−1 sin(A(t− s))Bu(s)ds

Since the system (1.2) is controllable on [0, T ], taking x(T ) = α∗, where α∗ is the
conjugate transpose of α.

x(T ) = α∗ =
∫ T

0

A−1 sin(A(T − s))Bu(s)ds .

Now premultiplying both sides by α, we have

αα∗ =
∫ T

0

αA−1 sin(A(T − s))Bu(s)ds .

From equation (4.3) αα∗ = 0 and hence α = 0. Hence it contradicts our assumption
that α is non-zero. This implies that rows of A−1 sin(At)B are linearly independent
on [0, T ].

Now we prove the implication (b) ⇒ (a). Suppose that the rows of A−1 sin(At)B
are linearly independent on [0, T ]. Therefore by Lemma 4.1, the n × n constant
matrix

W (0, T ) =
∫ T

0

A−1 sin(A(T − s))BB∗(A−1 sin(A(T − s)))∗ds

is nonsingular.
Now we claim that the control

u(t) = B∗(A−1 sin(A(T − t)))∗W−1(0, T )(x1− cos(AT )x0−A−1 sin(AT )y0) (4.4)

transfers the initial state x0 to the final state x1 during [0, T ]. Substituting (4.4)
for u(t) in the solution (3.3), we obtain

x(t) = cos(At)x0 + A−1 sin(At)y0 +
∫ t

0

A−1 sin(A(t− s))BB∗

× (A−1 sin(A(T − s)))∗W−1(0, T )(x1 − cos(AT )x0 −A−1 sin(AT )y0)ds
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At t = T , we have

x(T ) = cos(AT )x0 + A−1 sin(AT )y0 +
∫ T

0

A−1 sin(A(T − s))BB∗

(A−1 sin(A(T − s)))∗W−1(0, T )(x1 − cos(AT )x0 −A−1 sin(AT )y0)ds

= cos(AT )x0 + A−1 sin(AT )y0 + W (0, T )W−1(0, T )

(x1 − cos(AT )x0 −A−1 sin(AT )y0)

= cos(AT )x0 + A−1 sin(AT )y0 + (x1 − cos(AT )x0 −A−1 sin(AT )y0)
= x1

Hence the system is controllable.
The implications (b) ⇒ (c) and (c) ⇒ (b)) follow directly from Lemma 4.1. Now

we shall obtain the implication (c) ⇒ (d). The controllability Grammian

W (0, T ) =
∫ T

0

A−1 sin(A(T − s))BB∗(s)(A−1 sin(A(T − s)))
∗

is nonsingular. Hence by Lemma 4.1, the rows of A−1 sin(At)B are linearly inde-
pendent on [0, T ]. Since the entries of A−1 sin(At)B are analytic functions, applying
the Lemma 4.2, the rows of A−1 sin(At)B are linearly independent on [0,T] if and
only if

Rank[A−1 sin(At)B : A−1 cos(At)AB : −A−1 sin(At)A2B : −A−1 cos(At)A3B :

A−1 sin(At)A4B : A−1 cos(At)A5B . . . ] = n.

for any t ∈ [0, T ]. Let t = 0, then this reduces to

Rank[0 : B : 0 : A2B : 0 : · · · : (A2)n−1B : . . . ] = n,

Rank[B : A2B : (A2)
2
B : · · · : (A2)

n−1
B : . . . ] = n

Using Cayley-Hamilton theorem,

Rank[B : A2B : (A2)
2
B : · · · : (A2)

n−1
B] = n

Now to prove the implication (d) ⇒ (c), we assume that

Rank[B : A2B : (A2)
2
B : · · · : (A2)

n−1
B] = n

Thus by Lemma 4.2, the rows of A−1 sin(At)B are linearly independent. Hence
Lemma 4.1 implies

W (0, T ) =
∫ T

0

A−1 sin(A(T − s))BB∗(s)(A−1 sin(A(T − s)))
∗
ds

is nonsingular. Thus for the linear system(1.2) , the control u(t) defined by (4.4),
steers the state from x0 to x1 during [0, T ]. Since x0 and x1 are arbitrary, the
system (1.2) is controllable. �

Remark 4.4. Hughes and Skelton [10] obtained the condition (4.2) by converting
the system into first order system. However, our approach is different and the result
obtained is directly from the second order system and also it provides a method to
compute the steering control as we will see this in the next section.
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5. Controllability of the Nonlinear Systems

We now investigate the controllability of the nonlinear system (1.1). We assume
that the corresponding linear system (1.2) is controllable and the control function
u belongs to L2([0, T ], Rm). We use the following definition.

Definition 5.1. An m × n matrix function P (t) with entries in L2([0, T ]) is said
to be a steering function for (1.2) on [0, T ] if∫ T

0

A−1 sin(A(T − s))BP (s)ds = I,

where I is the identity matrix on Rn.

The linear system (1.2) is controllable if and only if there exists a steering func-
tion P (t) for the system (1.2) (refer Russel [15]).

Remark 5.2. If the controllability Grammian (4.1) is nonsingular then

P (t) = B∗(A−1 sin(A(T − t))∗W−1(0, T ) (5.1)

defines a steering function for the linear system (1.2).

Now the nonlinear system (1.1) is controllable on [0, T ] if and only if for every
given x1 and x0 in Rn there exists a control u, such that

x1 = x(T )

= cos(AT )x0 + A−1 sin(AT )y0 +
∫ T

0

A−1 sin(A(T − s))f(s, x(s))ds

+
∫ T

0

A−1 sin(A(T − s))Bu(s)ds

Consider the control u(t) defined by

u(t) = P (t){x1− cos(AT )x0−A−1 sin(AT )y0−
∫ T

0

A−1 sin(A(T − s))f(s, x(s))ds}

(5.2)
where, P (t) is the steering function for the linear system (1.2). Now substituting
this control u(t) into equation (3.4), we have

x(t) = cos(At)x0 + A−1 sin(At)y0 +
∫ t

0

A−1 sin(A(T − s))f(s, x(s))ds

+
∫ t

0

A−1 sin(A(T − s))BP (s){x1 − cos(AT )x0 −A−1 sin(AT )y0

−
∫ T

0

A−1sinA(T − τ)f(τ, x(τ))dτ}ds

(5.3)

If this equation is solvable then x(t) satisfies x(0) = x0 and x(T ) = x1. This
implies that the system (1.1) is controllable with control u(t) given by (5.2). Hence,
controllability of the system (1.1) is equivalent to the solvability of the equation
(5.3). Now applying Banach contraction principle, we will prove the solvability of
the equation (5.3).

Theorem 5.3 (Banach contraction Principle, Limaye [14]). Let X be a Banach
space and T : X → X be a contraction on X. Then T has precisely one fixed point,
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and the fixed point can be computed by the iterative scheme xn+1 = Txn, x0 being
any arbitrary initial guess.

We define a mapping F : C([0, T ];Rn) → C([0, T ];Rn) by

(Fx)(t) = cos(At)x0 + A−1 sin(At)y0 +
∫ t

0

A−1 sin(A(t− s))f(s, x(s))ds

+
∫ t

0

A−1 sin(A(t− s))BP (s){x1 − cos(AT )x0 −A−1 sin(AT )y0

−
∫ T

0

A−1sinA(T − τ)f(τ, x(τ))dτ}ds .

(5.4)

The following lemma proves that F is a contraction under some assumptions on
the system components.

Lemma 5.4. Under the following assumptions the nonlinear operator F is a con-
traction:

(i) a = supt∈[0,T ] ‖A−1 sin(At)‖.
(ii) b = ‖B‖.
(iii) p = supt∈[0,T ] ‖P (t)‖.
(iv) The nonlinear function f : [0, T ]×Rn → Rn is Lipschitz continuous. That

is, there exists α > 0 such that

‖f(t, x)− f(t, y)‖ ≤ α‖x− y‖ ∀x, y ∈ Rn, t ∈ [0, T ].

(v) αaT (1 + abpT ) < 1.

Proof. From the definition of F , we have

‖Fx− Fy‖
= sup

t∈[0,T ]

‖(Fx)(t)− (Fy)(t)‖

= sup
t∈[0,T ]

‖
∫ t

0

A−1 sin(A(T − s))(f(s, x(s))− f(s, y(s))ds +
∫ t

0

A−1

× sin(A(T − s))BP (s)
∫ T

0

A−1sinA(T − τ)(f(τ, x(τ))− f(τ, y(τ)))dτds‖

≤ sup
t∈[0,T ]

‖
∫ t

0

A−1 sin(A(T − s))(f(s, x(s))− f(s, y(s))ds‖+ sup
t∈[0,T ]

‖
∫ t

0

A−1

× sin(A(T − s))BP (s)
∫ T

0

A−1sinA(T − τ)(f(τ, x(τ))− f(τ, y(τ)))dτds‖

≤ sup
t∈[0,T ]

∫ t

0

‖A−1 sin(A(T − s))‖ ‖(f(s, x(s))− f(s, y(s))‖ds

+ sup
t∈[0,T ]

∫ t

0

‖A−1 sin(A(T − s))‖‖B‖‖P (s)‖

×
∫ T

0

‖A−1sinA(T − τ)‖ ‖(f(τ, x(τ))− f(τ, y(τ)))‖dτds

≤ sup
t∈[0,T ]

a

∫ t

0

α‖x(s)− y(s)‖ds + sup
t∈[0,T ]

a2bpt

∫ T

0

α‖y(τ))− x(τ)‖dτ
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≤ aα sup
t∈[0,T ]

∫ t

0

‖x(s)− y(s)‖ds + a2bpTα

∫ T

0

sup
t∈[0,T ]

‖y(τ))− x(τ)‖dτ

≤ aαT‖x− y‖+ a2bpTαT‖x− y‖
≤ aαT (1 + abpT )‖x− y‖

Since aαT (1 + abpT ) < 1, we have F is a contraction. �

Now we have the following computational result for the controllability of the
nonlinear system (1.1).

Theorem 5.5. Under the assumptions of Lemma 5.4, the system (1.1) is control-
lable and the steering control and the controlled solution can be computed by the
following iterative scheme:

un(t) = P (t){x1−cos(AT )x0−A−1 sin(AT )y0−
∫ T

0

A−1 sin(A(T−s))f(s, xn(s))ds

(5.5)

xn+1(t) = cos(At)x0 + A−1 sin(At)y0 +
∫ t

0

A−1 sin(A(t− s))f(s, xn(s))ds

+
∫ t

0

A−1 sin(A(t− s))Bun(s)ds

(5.6)

where x0(t) = x0 and n = 1, 2, 3, . . . .

Proof. In Lemma 5.4 we have proved that F , as defined in the equation (5.4), is
a contraction. Hence, from the Banach contraction principle, F has a fixed point.
Thus the equation (5.3) is solvable, subsequently the system (1.1) is controllable.
Further, Theorem 5.4 implies the convergence of the iterative scheme for the com-
putation of control and controlled trajectory. �

6. Computational Algorithm for the controlled state and steering
control

Here we compute Cosine and Sine of a matrix A ∈ Rn×n, using the algorithm
proposed by Higham and Hargreaves [9]. The algorithm makes use of Páde approx-
imations of cos(A) and sin(A). We define Ci = cos(2i−mA) and Si = sin(2i−mA).
The value of m is chosen in such a way that ‖2−mA‖ is small enough, ensuring a
good approximation of C0 = cos(2−mA) and S0 = sin(2−mA) by Páde approxima-
tion. By applying the cosine and sine double angle formulae cos(2A) = 2cos2(A)−I
and sin(2A) = 2 sin(A) cos(A), we can compute Cm = cos(A) and Sm = sin(A),
from C0 and S0 using the recurrence relation Ci+1 = 2C2

i − I and Si+1 = 2CiSi,
i = 0, 1, . . . m− 1. The algorithm for the computation of Sine and Cosine matrices
is summarized as follows:

Algorithm. Given a matrix A ∈ Rn×n:
Choose m such that 2−m‖A‖ is very small.
C0 = pade approximation to cos(2−mA).
S0= pade approximation to sin(2−mA).
for i = 0 . . .m− 1.
Ci+1 = 2C2

i − I.
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Si+1 = 2CiSi.
end.

Steering Control For The Linear System. The control which steers the initial
state x0 of the MSOL system (1.2) to a desired state x1 during [0, T ] is given by

u(t) = B∗(A−1 sin(A(T − t)))∗W−1(0, T ){x1 − cos(AT )x0 −A−1 sin(AT )y0

−
∫ T

0

A−1 sin(A(T − s))f(s, x(s))ds}

(6.1)
where, sin(At) and cos(At) are computed by the Páde approximation algorithm
given in (Hargreaves and Higham [9]), and W−1(0, T ) is computed by using (4.1).

Numerical Experiment For Matrix Second Order Linear System

Example 6.1. Consider the Matrix Second Order Linear (MSOL) System

d2x(t)
dt2

+ A2x(t) = Bu(t), x(t) ∈ R3

with initial conditions x(0) =

−1
1
0

, x′(0) =

 1
1
−1

, where

A2 =

 5 −4 2
−4 7 −2
4 −4 3

 , B =

0
0
1

 , and hence A =

 1 −2 0
−2 1 −1
0 −2 1

 .

The controllability matrix is

Q = [BA2B(A2)2B] =

0 2 24
0 −2 −28
1 3 25


and the Rank(Q) = 3. Hence the system is controllable. The matrices sin(At) and
cos(At) for t = 1 are

sin(A) =

−0.1512 −0.2810 −0.4965
−0.2810 −0.6478 −0.1405
−0.9931 −0.2810 0.3453

 ,

cos(A) =

−0.0972 0.4385 −0.3188
0.4385 −0.4160 0.2192
−0.6375 0.4385 0.2215

 .

The controllability Grammian matrix, W (0, T ) is

W =

 0.0733 −0.0406 −0.2130
−0.0406 0.0272 0.1255
−0.2130 0.1255 0.6915

 ,

taking T = 2. Now using the algorithm given in (6.1) along with Páde approxima-
tion to the Sine and Cosine matrix, we compute the steering control u(t), steering
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the state from x0 =

−1
1
0

 to x1 =

 1
−1
2

 during the time interval [0, 2]. Fur-

thermore, the controlled trajectory and steering control u are computed and are
depicted in Figure 1.
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Figure 1.

Steering Control For The Nonlinear System. The steering control and con-
trolled trajectories of the MSON system steering from x0 to x1 during [0, T ] can be
approximated from the following algorithm:

un(t) = P (t){x1−cos(AT )x0−A−1 sin(AT )y0−
∫ T

0

A−1 sin(A(T−s))f(s, xn(s))ds

xn+1(t) = cos(At)x0 + A−1 sin(At)y0 +
∫ t

0

A−1 sin(A(t− s))f(s, xn(s))ds

+
∫ t

0

A−1 sin(A(t− s))Bun(s)ds

(6.2)

with x0(t) = x0, n = 1, 2, 3, . . . , and P (t) being the steering function given in
equation (5.1).

Numerical Experiment For Matrix Second Order Nonlinear System

Example 6.2. Consider the Matrix Second Order Nonlinear(MSON) system de-
scribed by:

d2x(t)
dt2

+ A2x(t) = Bu(t) + f(t, x(t)),
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where x(t) ∈ R3 and

f(t, x(t)) =

f1(x1, x2, x3)
f2(x1, x2, x3)
f3(x1, x2, x3)


with the initial conditions x(0) =

−1
1
0

, x′(0) =

 1
1
−1

 and

A2 =

14 −2 12
10 14 30
0 −12 16

 , B =

1
1
0

 and hence A =

−2 2 3
2 4 3
2 −2 4

 .

The controllability matrix is

Q = [BA2B(A2)2B] =

0 10 100
1 44 836
1 4 −464


and Rank(Q) = 3. Hence the corresponding linear system is controllable. We have
the following numerical estimate, for the parameters given in Lemma 5.4, taking
T = 1,

a = sup
t∈[0,T ]

‖A−1 sin(At)‖ = 1.0316, b = ‖B‖ = 1.4142,

p = sup
t∈[0,T ]

‖P (t)‖ = 52.1831

Let us take

f1(x1, x2, x3) =
sin(x1(t))

82
, f2(x1, x2, x3) =

cos(x2(t))
81

, f3(x1, x2, x3) =
x3(t)
80

.
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The nonlinear function f(t, x(t)) is Lipschitz continuous with Lipschitz constant
α = 1/80 and αaT (1 + abpT ) < 1. Hence, it satisfies all the assumption of the
Theorem 5.5. So the MSON system is controllable. Now using the algorithm given
in (6.2) with Páde approximation to Sine and Cosine matrices, the controllability
Grammian matrix, W (0, T ) is

W =

0.0682 0.1128 0.0241
0.1128 0.1998 0.0525
0.0241 0.0525 0.0994

 .

We compute the steering control u(t), steering the state from x0 =

−1
1
0

 to

x1 =

 0
−1
1

 during the time interval [0, 1]. Furthermore the controlled trajectory

and the steering control u(t) are computed and is shown in Figure 2.
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