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Abstract: In this paper, oscillation of second order nonlinear impulsive dynamic
equations on time scales is investigated by Riccati transformation techniques, some
sufficient conditions of oscillation for all solutions are obtained. An example is given to
show that the impulses play a dominant part in oscillations of dynamic equations on
time scales.
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1. Introduction

This paper is concerned with the oscillations of second order nonlinear impulsive dynamic

equations on time scales. Consider the following problem
yRA) + f(ty (1) =0, teIp:=[0,00)NT,t £ty k=12---,
y(t5) = gk (y(te)), v () = b (y® (1)), k=1,2,---, (1.1)
y(t3) = y0, 2 (1) = v
where T is a unbounded-above time scale with 0 € T, ¢, € T,0 < tg < t] < to < -+ <t <
ce limyg ooty = 00,

y(t) = lim y(t+h), y=(H) = Tim y= (e + ), (1.2)

which represent right and left limits of y(¢) at ¢ = t;, in the sense of time scales, and in addition,
if t), is right scattered, then y(tf) = y(tr),y>(t}) = y*(tx). We can defined y(t;),y>(t;)
similar to (1.2).

We always suppose that the following conditions hold
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(Hy) f € Cuy(T xR,R),zf(t,x) > 0 (z # 0) and I(t,7) > p(t) (z # 0), where
p(t) € Crg(T,Ry) and zp(z) > 0 (x #0),¢ (z) > 0.
Hsy) g, hi € C(R,R) and there exist positive constants ag, a}, b, b} such that
k k

B oy, by < )
x T

Throughout the remainder of the paper, we assume that, for each k = 1,2, - - -, the points of
impulses ¢ are right dense (rd for short). In order to define the solutions of the problem (1.1),
we introduce the following space

AC = {y : Jp — R is i—times A—differentiable, whose i—th delta-derivative yA(i) is
absolutely continuous }.

PC = {y : Jp — R is rd-continuous expect at the points ty,k = 1,2,--- for which
y(t), (), y2 (1) and y2 (¢]) exist with y(t;) = y(te), v () = y= (t)}-

Definition 1. A function y € PC (N AC?*(Jp\{t1, -}, R) is said to be a solution of (1.1),
if it satisfies y22(t) + f(t,y7(t)) = 0 a.e. on Jp\{tx}, k= 1,2,---, and for each k = 1,2,---,y
satisfies the impulsive condition y(;") = gr(y(tx)), > (t}) = hi(y>(¢1)) and the initial condition
y(t3) = o,y (t5) = v6™

Definition 2. A solution y of (1.1) is called oscillatory if it is neither eventually positive
nor eventually negative; otherwise it is called nonoscillatory. Eq.(1.1) is called oscillatory if all
solutions are oscillatory.

In recent years, the theory of dynamic equations on time scales which unify differential
equations and difference equations, which provides powerful new tools for exploring connections
between the traditionally separated fields, has been developing rapidly and has received much
attention. We refer the reader to the book by Bohner and Peterson [4] and to the papers cited
therein. The time scales calculus has a tremendous potential for applications in mathematical
models of real processes, for instance, in biotechnology, chemical technology, economic, neural
networks, physics, social sciences and so on, see the monographs of Aulbach and Hilger [2],
Bohner and Perterson [4] and the references therein.

Very recently, impulsive dynamic equations on time scales have been investigate by Agarwal
et al.[1], Belarbi et al.[5], Benchohra et al.[6 — 9] and so forth. In [9], M.Benchohra et al.
considered the existence of extremal solutions for a class of second order impulsive dynamic
equations on time scales, we can see that the existence of global solutions can be guaranted
by some simple conditions. In [6], M.Benchohra et al. discuss the existence of oscillatory and
nonoscillatory solutions for first order impulsive dynamic equations on time scales using lower
and upper solutions method.

The oscillations of impulsive differential equations have been investigated by many authors
and they gained many classical results. See Y. S. Chen and W. Z. Feng [10] and the papers
cited therein. Using the method of Y. S. Chen and W. Z. Feng [10], the present paper is devoted

to study the oscillations of a kind of very extensive second order impulsive nonlinear dynamic



equations on time scales. An example is given to show that though a dynamic equations on time
scales is nonoscillatory, it may become oscillatory if some impulses are added to it. That is, in
some cases, impulses play a dominating part in oscillations of dynamic equations on time scales.

In the following, we always assume the solutions of (1.1) exist in Jpp. Our attention is
restricted to those solution y of Eq.(1.1) which exist on half line Jp with sup{|y(t)|: t > to} # 0
for any to > t,, where t, is dependent on the solution y of (1.1). To the best of our knowledge,
the question of the oscillations for second order nonlinear impulsive dynamic equations has not

been yet considered. Hence, these results can be considered as a contribution to this field.

2. Main results

In this section, we give some new oscillation criteria for Eq.(1.1). In order to prove our main
results, we need the following auxiliary result.

Lemma 1. Suppose that (H;) — (Hs) hold and y(t) > 0,t > t, > tg is a nonoscillatory
solution of (1.1). If

* b*b* .. b*

A2 m

b bibs
H3) (t —t Lty —t L2 (tg —t n(tq —t cee =
(Hs) (t1—to) + -tz —t1) + " {ts —t2) + iy, U1~ )+ o0,

then y*(¢{) > 0 and y*(t) > 0 for t € (ty, tp41), where ¢ > to.
Proof. At first, we prove that y® (tx) > 0 for ty, > tz), otherwise, there exists some j such
that t; > t, and y(t;) < 0, hence

y2(7) = hy (v () < biy(ty) <.
Let yA(tj) = —a (a>0). From (1.1), for t € (tj1i—1,tj4il,i = 1,2, -, we obtain
yA2 () = —f(t,y(1) < —p()p(y(t) <0, (2.1)

i.e. y2(t) is nonincreasing in (tjsi-1,tjpalp.i=1,2,---, then

y2 (i) < Y2 () = —a <0,

(2.2)
Y2 (tj+2) < y2 () = hin (yA(tj-H)) <03y () < —b5a <0,
It is easy to show that for any positive integer n > 2
A
Y= (tjn) < =0jp1bjyn o Ui <O (2.3)
Now, we claim that for any positive integer n > 2
by
Y(titn) < Gen10iin-2 i |y(t]) = altin — 1)) — ghiraltie — tiy)
(2.4)

b* b* *
I R T L A R = NIRRT
Aj4n—10j4n—2" " Qj41 a(tj+n tj+n—1) .




Since y*(t) is nonincreasing in (¢;,#;4+1), hence
y2 () <y () te (bt (2.5)
Integrating (2.5) and using (2.2), we obtain
y(tivn) <y +y> ()t — ) = y(t) — altjn — t)). (2.6)
Similarly to (2.6) and using (H2), (2.2) and (2.6), we get
y(tjiv2)  <yth) +y2 )t — ti)
= g1 (y(t01)) + i (2 (E510)) (2 — tj41)
< ajry(tivn) + 05 y= (L) (b — i)

*

biiq
y(t]) — altjsr —t;) - ﬁa(tjw —tj1)] -

< @

Then (2.4) holds for n = 2. Now we suppose that (2.4) holds for n = m, i.e.

*

b:q
Y(titm) < aeme |Y(E) = altin — 1) — g paltive — ti)

(2.7)

b* b* . b*
L gt1vg42 j+m—1 Oé(t ¢ )
Ajr1Q542 A1\ dTm = Htm=1)1

we go to prove that (2.4) holds for n = m + 1. Since y*(¢) is nonincreasing in (t;4m, tjtmt1]T
we have

A

Integrating it and using (Hs), (2.2), (2.3) and (2.7), we obtain

y(threrl) y( ]+m) +y ( j+m)(tj+m+1 - tj+m)

< ajymy(tirm) + 054y Em) (Ejrmer — tym)
*

biiq
< j410542* Qjpm y(t;) — Oz(tjqu — tj) — ﬁa(tﬁrg — tj+1) —

V541942 jtm—1
Aj41G542 - Ajtm—1

a(thrm - thrm*l) - b;+1b;+2 T b;+m0‘(tj+m+1 - tj+m)
b*

y(t]) — altj — ) — a]iﬂ atjye —tjy1) —

ESUTES

= Aj410542  Qj4m

>k >k >k
- bj+1bj+2 "‘ bj+m—1
Aj410542°* Ajtm—1

+

Then (2.4) holds for n = m + 1. By induction, (2.4) holds for any positive integer n > 2.
(2.4) and (Hs) is contrary to y(t) > 0. Therefore, y(t3) > 0 (tx > ty). From (Hs), we get
for any tg > to,y>(t}) > biy™(tx) > 0. Since y”(t) is nonincreasing in (tk, L], we know
y2(t) > y®(tk+1) > 0,t € (tg, tg+1)p- The proof of Lemma 1 is complete.



Remark 1. In the case of y(t) is eventually negative, under the hypothesis (Hy) — (Hs),
it can be proved similarly that y2 (/) < 0 and for t € (ty, ty1]p, y>(t) <0 for t, > T.
Theorem 1. Suppose that (H;) — (H3) hold and there exists a positive integer ko such
that a; > 1 for k > ko. If
f 1 (2 1 qts 1 bt
/ p(t)At + —/ p(t) At + —/ pOAE 4+ ———— [ )AL+ = 00, (28)
to b1 Ju bibz J, bibg -+ by Ji,
then (1.1) is oscillatory.
Proof. Suppose to the contrary that Eq.(1.1) has a nonoscillatory solution y(t), without
loss of generality, we may assume that y(t) is eventually positive solution of (1.1), i.e. y(t) >
0,t > to and kg = 1. From lemma 1, we have y®(t) >0, t ¢ (ths thg1]ps B = 1,2,---. Let

A
w(t) = j(yég) (29)
then w(t)) >0,k =1,2,--- and w(t) > 0,t > t,. Using (H;) and (1.1), we get when ¢ # ¢,
_ Sy (t) y2(1) L
W =G ey ¢ 0 Out o) iy
. apy\? L (2.10)
< —p(t) - S ( j(y&g)) i@ (0 + bl (0)) dh
since ¢ (y(t)) > 0 and @(y(t)) > 0. From (Hy) and a} > 1, we obtain
(i) — y2 () by (te) _ bey™(ts) _ w o
)= 20 = Ha@) = el — We0 k=L @)
Integrating (2.10), we have .
w(ty) < with) = [ p)ar (2.12)
Using (2.11) and (2.12), we obtain
w(th) < brw(ty) < brw(t) — b /t AL (2.13)

Similarly, we get

1)

w(t) — / " p(t)At} < bibow(td) — bibs / AL — by / p(t)AL,

t1 to t1

U}(t;) S bgw(tz) S b2

(2.14)
By induction, for any positive integer n, we have
w(ty) < biba-buw(ty) — biba- by [ p(t) At — by by [{2 p() AL — -
—bp—1bn "L p(E)AL — by [i7 p(t)At
(2.15)

= biby by [w(tg) = i} P)AL = 5~ [2p()AL = -

1 tn—1 1 tn
“biby-- by s Jer=, p(t)At — Biby - b g St p(t)At|.



Using (2.8) and by, > 0,k = 1,2,---, we obtain w(t,}) — —oo,n — oo, which contradicts to
w(th) > 0.
Theorem 2. Assume that (H;) — (H3) hold and ¢(ab) > ¢(a)p(b) for any ab > 0. If

1 p(t) AL+ Sp(b‘”) S p(t)At + 7“0(%3202%) 2 p(t)At 16)
by ela 1)bszi(bc;g)".-b;lso(a2) U p($) AL + - '

= 00,

then (1.1) is oscillatory.

Proof. As before, we may suppose y(t) > 0,t > ty be a nonoscillatory solution of (1.1),
Lemma 1 yields y2(t) > 0,t > to, define w(t) as in (2.9) and we get w(ty) > 0,t > to, w(t}) >
0,k=1,2,--- and (2.10) holds for ¢ # t;, and

v () < - wity). (2.17)
ey®)) ~ elajy(tr) — wlap)ey(te)  e(a;)

w(t)) =

Similarly to proof (2.15), by induction, we get for any positive integer n

biby - - by, *
wth) < e () - tﬁlp(”m—% T2 p(t) At —

a* a* . a;f e CL* a* P a;i "
A e e L L L0

Let n — oo and use (2.16), we obtain the desired contradiction.
In the following , we will use the hypothesis
(Hy) [£° ﬁ:j) < o0, for any € > 0,
where [£ (pAu) < oo denotes [ A“) < oo and [77° ﬁ;‘) < 00.
Theorem 3. Assume that (Hy) — (Hy) hold and there exists a positive integer kg such

that aj > 1 for k > ko. If

S0 | [ p(t) At + bk " S pt) AL+ -

ftk+n+1p(t)At+ AS:OO

tk+n

(2.18)

bk+1bk+2

then (1.1) is oscillatory.

Proof. As before, we may assume y(t) > 0,t > tg be a nonoscillatory solution of (1.1)
and kg = 1, Lemma 1 shows that yA(t;) > 0,k = 1,2,--- and y®(t) > 0,t > to. Since
ap; > 1,k=1,2,---, we get

y(t3) <yltr) <y(t]) <ylta) <y(t3) <---, (2.19)

its easy to see that y(t) is nondecreasing in [tg, 00), hence (1.1) yields

yR2R () = —f(ty(1) < —p(e(y(t), t# b, (2.20)



hence, y2(t1) — y2(tg) < — ti)lp(t)go(y(t))At. Using (H2), we obtain
t1

+ t1
P 2w+ [ popwenarz S L [ paem)a

Similarly,
At ¢
y—(t 2
y2 () = b(Q)
2 t1

Generally, for any positive integer n, we get

tnil Yy (t+ ) tnil

v 2 v ) + [ ppuar= L [T pmpmar @2

n n n

By (2.20) and (2.21), noting that y®(¢) > 0,k = 1,2, -, we have for s € (thy thg1] s

A tei1 A tei1 yA(t;:—f—l)
y2(s) = [ p@e(yE)AL -y (Hie) = [ p(E)e(y(8) At + Zp o

A+
> [ p(0p ()AL + 5L lf <>¢<y(t>>m+yb<;$2>]

> 0 p()e(y(D) At + gl [ ple)e(y(t) At +
Y (t;+3)
bk+1bk+20K+3 =

> fstk+1p (t)(y(t)) At + bk : fikff O (y(t)AL + - - -

t
bk’-i—lbk,’—‘,-Q ftkk:; ) ( (t))At

JE )y () At + — “(thin ) ‘
lhtn k1042 + + Okt

bk+1 bk+2 “brin 22
2.22

Noting that by > 0 and y2 () > 0,k = 1,2,- -+, (2.22) yields
t
yR(s) > [ p(t)e(y(t) At + bk ; St p()p(y(t)) At + -+

2.23
S p(t)p(y(t)) At, 229

bk+1 bk+2 “bryn

holds for any positive integer n, then
t
YA 2 I ey )A+ [ p(e) ey ()AL 4
thtn
ol POe(y) AL+ -

Using (H;) and (2.24), we obtain for s € (tk.,tk.H]T,

(2.24)

o bk+2

b2 (s) b 2(u(1) besa o 2(y(1))
= [0 D) Sy A+ ey B PO Sy At

ftk+n+1 ( )MAt + ...

bk+1bk+2 bk+n trtn 90(y<3>)

2 fstk+1 ( )At+ b ftk+2 )At+

tk+1

tetnt1
DAL+ -
o bk+1bk+2 “O4n, Joi ()AL +



Integrating it from ¢ to tx4+1 and using (2.3), we have

1 [P p(O AL+ - - } As

k1 | rlg lkt2
Jiee [ft st L e A+ L e

Tht1 yA(S) _oyet1) 1 A

=i oly(s)) 7 T ) o)

(2.25)
Using (2.19),and (Hy), (2.25) yields

tk+n

Yl Oftk+1 |:fstk+1 p(t)At + bk : fik:—f p(H)AL+ - ftk+n+1 p(t)At—l—u-]

< Ofy(tk+1 Sl )Au < f (t+ o(u)Au < oo,

- bk+1bk+2 “brgn

(2.26)
which contradicts to (2.18).
Theorem 4. Suppose that (H;) — (H4) hold and there exists a positive integer ko such
that aj > 1 for k > kg. Assume, furthermore, that p(ab) > p(a)¢(b) for any ab > 0 and

a a; a t
Zk =0 ftk“ ftkﬂ (t)At + % fttkkjf (t)At + SD( ’g;iszig"‘?) ft:jzg (t)At + -

P(ar1) (k) P(Ahin) ptiinia o _
+ bi+10k42 -+ - Opyn Juci " PIOALE | As = 00
(2.27)

Then (1.1) is oscillatory.

Proof. As before, we may assume that y(t) > 0,¢ > ¢y be a nonoscillatory solution of
(1.1) and ko = 1. According to the proof of Theorem 3, (2.19) and (2.24) hold. Furthermore,
from (H;) and Lemma 1, we obtain ¢(y) is nondecreasing and y(t) is also nondecreasing in

(tk, thp 1] B = 0,1,2,- - . Therefore, p(y(t)) is nondecreasing in (¢, ty41]p. Hence,
o (y(t1)) = elapay(ten) > eaha)eulten)),
and

o (u(th,0)) > elahiay(tira)) > oah2)e(w(tf,) > elahi)e(abo)e(y(tis)).

By induction, it can be proved that for any positive integer n

o (v(tE1) = lah)elafse) - A ) (y(te)). (2.:28)



From (2.24), (2.28) and using the fact that ¢(y(t)) is nondecreasing, we obtain, for s € (t, tg41]T

V) = L p(OR(uO)A + e [ p(b)p(u(e) AL+ -

JeErmt p(e)p(y(t)) At 4 - -

L TEY TRy T

.
> (y(s)) [+ p(t) At + W Jot 2 (B AL + -

So(y(tz_-i-n)) thtnt1
br+1bk12 - bkyn Juci " PIOALE

> o(y(s)) fstk-s-l p(t)AL + w(a2+13)k+(1 Y(tr+1)) flzcjlz P(OAL+ - -

P(ap11)P(agi2) - () PW(EE+1)) (tornia .
* bry10kt2 - Drin Jee T (AL -

Hence,

y2 (s) > [l p( )At+ elagi1) p(y(trs1)) [ p () At + - -

o(y(s)) birt oy(s)) T P
i) ) ) g

> [ p(t) At + % S 2 p(t) At + -+

k41 tk:+1

0 11)P(agy2)  ©(@hin) rtrini
* bkt 10k+2 -+ Dot Ju T ()AL +

Integrating the above inequality and using (2.19), (2.8), we obtain

Ek Oftk+1 ftk+1 ()At—i— g}kk+1) ftk+2 (t)At—l-"‘

tk+1

(04 )0(ahrn)  P(ahin) rrss
AL+ -
+ Dks10k12 - Dhan ﬁtkM p(t)At +

A
SZiooft’““ oy 53) > ke ofytkﬂ) (1)Au<f ) o(u )Au<oo

which contradicts to (2.27).

From Theorem 1-4, we have the following corollaries.

Corollary 1. Suppose that (H;) — (Hs) hold and there exists a positive integer ko such
that a}, > 1,b, <1 for k > ko. If [*° p(t)At = oo, then (1.1) is oscillatory.

Proof. Without loss of generality, let kg = 1. By b < 1, we get

tlp(t)At+Fllﬁt12 ()At+b 5 Sp(t)At + - +bb2 o ftn+1 oI
> [ p(O)AL+ [Z p(t) AL+ [ p(t )At Fe o [ p(AE = [ p(t) A,

Let n — oo, from [ p(t)At = oo, (2.29) yields (2.8) holding. By Theorem 1, we conclude that
(1.1) is oscillatory.

(2.29)

Corollary 2. Assume that (H;) — (Hy) hold and there exists a positive integer ko such
that a} > 1,b, <1 for k > ko. If [*° [7° p(t)AtAs = oo, then (1.1) is oscillatory.



Similar to the proof of Corollary 1 and using Theorem 3 can prove it, so we omit it.
Corollary 3. Suppose that (H;) — (Hs) hold and there exist a positive integer kg and a

constant o > 0 such that

1 [t \®
af>1, — > (’““) . for k> k. (2.30)
b tr
It
/ (0 At = oo, (2.31)

Then (1.1) is oscillatory.
Proof. As before, let kg = 1, (2.30) yields

S p(O)AL+ L 2 p(t) AL+ o [5 p)AL -+ L [ A

> b | [2 5PN+ [ t§p(O)AL + -+ [t p(t) At
! (2.32)

v

gl [0 0D () AT 4 [ ()AL 4o [y 2p(e) A

t"‘ S ep(t) At

Let n — oo and use (2.31), (2.32) yields (2.8) holds, By Theorem 1, we obtain (1.1) is oscillatory.
Corollary 4.  Assume that (H;) — (Hs) hold and ¢(ab) > ¢(a)p(b) for any ab > 0.

Suppose there exist a positive integer ky and a constant o > 0 such that

If [*°t*p(t)At = oo, then (1.1) is oscillatory.

Corollary 4 can be deduced from Theorem 2. Its proof is similar to that of Corollary 3.

) , for k> k.

Here we omit it.
Corollary 5. Suppose that (H;) — (H4) hold and there exist a positive integer ko and a

constant o > 0 such that )

ap > 1, b >t for k> ko. (2.33)
If -

> (e — tk)/ t*p(t) At = oco. (2.34)

k=0 brt1

Then (1.1) is oscillatory.
Proof. As before, we assume kg = 1,¢; > 1. From (2.33), we get
1

1
> tlocé—I—Qv > t%+2t%+3> ) b b b
k+19k+2 ° * * Uk+4n

b1 br41br42

> t%+2t%+3 T t%+n+17 e
Similar to the proof of Corollary 3, we have

t tr t
St (AL + bk 1 ftkﬁ bk+1bk+2 ftkff t)At + -

lktn
ft::nH p(t)At

bk+1bk+2 “bktn
() At

tk+1

10



Let n — oo, we have
t
fstk+1 p(t)At + bk f:jf p(t) At +

ftk+n+1 p(t)At 4. (235)

tk+n

ftk+3 PAAE+ -

bk+1 Doya M P

bk:—i-lbk:—i-Q “bktn
> [ top()At,

Using (2.34) and (2.35), we get

[P p(t) At + - | As

tk+2

tet1 tht1 tit2
Zk Of f ( )At + b ftk+1 ( ) t+ bk+1bk+2

> SR S S p(ALAS = SRt — 1) [, °p() At = oc.

By Theorem 3, we obtain that (1.1) is oscillatory.
Corollary 6. Suppose that (H;) — (H4) hold and there exists a positive integer ko and a

constant o > 0 such that

Suppose that ¢(ab) > p(a)p(b) for any ab > 0 and

> (tesr — tk)/ p(t)At = co.
k=0 tht1

Then (1.1) is oscillatory.

The proof is similar to that of Corollary 5, so we omit it.

4. Example

Example 1. Consider the the following second order impulsive dynamic equation

yAA(t)+t021(t)y7(J(t)) :07 tz 17t7ék7k: 17257
y(k+) = %y(k)vyA(k+) = yA(k)7 k= 1727 Tty (41)
y(1) = yo,y™ (1) = y5-

where v > 3 and p(t) < Kt, where K is a positive constant. Since a = aj = %,bk =b; =

1,p(t) = ﬁ,tk =k and ¢(y) = y". it is easy to see that (H;) — (Hs) hold. Let kg = 1, = 3,
hence
plag) _ (k+ 1>7 _ (75k+1)7 S (tk+1)3
bi k tr - tr ’

/Ootap(t)At:/Oot3t021(t)At:/Oo (Uzt)fm.

and




Since u(t) < Kt, we get
t t 1

o) t+p) - 14K

[ Go) sz [ e

By Corollary 3, we obtain that (4.1) is oscillatory. But by [3] we know that the dynamic equation

YA () + 21 y7(c(t)) = 0 is nonoscillatory.
to“(t)

In the above example, it is noticing that the dynamic equation without impulses is nonoscil-

hence

latory, but when some impulses are added to it, it all become oscillatory. Therefore, this example

shows that impulses play an important part in oscillations of dynamic equations on time scales.
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