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ALMOST SURE EXPONENTIAL STABILITY OF DELAYED
CELLULAR NEURAL NETWORKS

CHUANGXIA HUANG, YIGANG HE, LIHONG HUANG

Abstract. The stability of stochastic delayed Cellular Neural Networks (DCNN)

is investigated in this paper. Using suitable Lyapunov functional and the

semimartingale convergence theorem, we obtain some sufficient conditions for
checking the almost sure exponential stability of the DCNN.

1. Introduction

Since the seminal work for Cellular Neural Networks in[4, 5], the past nearly two
decades have witnessed the successful applications of Cellular Neural Networks in
many areas such as combinatorial optimization, signal processing and pattern recog-
nition, see e.g. [3, 9, 11, 12]. Recently, it has been realized that the axonal signal
transmission delays often occur in various neural networks, and may cause undesir-
able dynamic network behaviors such as oscillation and instability. Consequently,
the stability analysis problems for delayed Cellular neural networks(DCNN) have
gained considerable research attention. Up to now, a great deal of results have
been reported in the literature, see e.g.[2, 7, 13] and references therein, where the
DCNN has been largely restricted to deterministic differential equations. These
models do not take into account the inherent randomness that is associated with
signal transmission.

Just as pointed out by Haykin [6], in real nervous systems and in the imple-
mentation of artificial neural networks, noise is unavoidable and should be taken
into consideration in modelling. In this paper, we propose a system of stochastic
differential equations for modelling DCNN as follows

dxi(t) = −ci(t)xi(t)dt +
n∑

j=1

aij(t)fij(xj(t))dt

+
n∑

j=1

bij(t)fij(xj(t− τij))dt +
n∑

j=1

σij(xj(t))dwj(t), t ≥ 0,

(1.1)

where i = 1, . . . , n; n corresponds to the number of units in a neural network; xi(t)
denotes the potential (or voltage) of the cell i at time t; fij(·) denotes a non-linear
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output function between cell i and j; inf{ci(t)} > 0 denotes the rate with which cell
i resets its potential to the resting state when isolated from other cells and inputs at
time t; aij(t) and bij(t) denotes the strengths of connectivity between cell i and j at
time t respectively; τij is time delay and satisfies 0 ≤ τij ≤ τ . σ(t) = (σij(t))n×n is
the diffusion coefficient matrix and ω(t) = (ω1(t), . . . , ωn(t))T is an m-dimensional
Brownian motion defined on a complete probability space(Ω,F ,P) with a natural
filtration {Ft}t≥0 (i.e. Ft = σ{w(s) : 0 ≤ s ≤ t}).

There are various kinds convergence concepts to describe limiting behaviors of
stochastic differential equations. The almost sure convergence is the most useful
because it is closer to the real situation during computation than other forms of con-
vergence (see [10]). Therefore it is very important to study almost sure convergence
for stochastic DCNN.

To the best our knowledge, few authors discuss almost sure exponential stability
for stochastic DCNN. Motivated by the above discussions, under the help of suitable
Lyapunov functional and the semimartingale convergence theorem, we obtain some
sufficient criteria ensuring the almost sure exponential stability for the model.

2. Preliminaries

Let C := C([−τ, 0], Rn) be the Banach space of continuous functions which maps
[−τ, 0] into Rn with the topology of uniform convergence. For (x1(t), . . . , xn(t))T ∈
Rn , we define ‖x(t)‖ =

∑n
i=1 |xi(t)|. For any ϕ(t) ∈ C, we define ‖ϕ‖ =

∑n
i=1 |ϕi|,

where |ϕi| = sup−τ≤s≤0 |ϕi(s)|.
The initial conditions for system (1.1) are x(t) = ϕ(t), −τ ≤ t ≤ 0, ϕ ∈

L2
F0

([−τ, 0], Rn), here L2
F0

([−τ, 0], Rn) is regarded as a Rn− valued stochastic pro-
cess ϕ(t),−τ ≤ t ≤ 0, moreover, ϕ(t) is F0 measurable,

∫ 0

−τ
E|ξ(t)|2dt < ∞.

Throughout this paper, we always assume that fij(0) = σij(0) = 0 and fij , σij

are globally Lipschitz, and ci(·), aij(·), bij(·) are bounded functions. We also as-
sume there exist positive constants pij , i, j = 1, . . . , n, such that |fij(u)− fij(v)| ≤
pij |u−v|, ∀u, v ∈ R. This implies that (1.1) has a unique global solution on t ≥ 0
for the initial conditions[10]. Clearly, (1.1) admit an equilibrium solution x(t) ≡ 0.

Definition 2.1 ([10]). The trivial solution of (1.1) is said to be almost surely
exponentially stable if for almost all sample paths of the solution x(t), we have

lim sup
t→∞

1
t

log ‖x(t)‖ < 0.

Lemma 2.2 (Semimartingale convergence theorem [10]). Let A(t) and U(t) be two
continuous adapted increasing processes on t ≥ 0 with A(0) = U(0) = 0 a.s. Let
M(t) be a real-valued continuous local martingale with M(0) = 0 a.s. Let ξ be a
nonnegative F0-measurable random variable. Define

X(t) = ξ + A(t)− U(t) + M(t), for t ≥ 0

If X(t) is nonnegative, then

{ lim
t→∞

A(t) < ∞} ⊂ { lim
t→∞

X(t) < ∞} ∩ { lim
t→∞

U(t) < ∞}, a.s.,

where B ⊂ D a.s. means P (B ∩Dc) = 0. In particular, If limt→∞A(t) < ∞ a.s.,
then for almost all ω ∈ Ω

lim
t→∞

X(t) < ∞ and lim
t→∞

U(t) < ∞,
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that is both X(t) and U(t) converge to finite random variables.

Lemma 2.3 ([8]). If ρ(K) < 1 for matrix K = (kij)n×n ≥ 0, then (E−K)−1 ≥ 0,
where E denotes the identity matrix of size n.

3. Main results

Theorem 3.1. Let kij = c−1
i (aji + bji)pji, K = (kij)n×n, where, ci = inf{ci(t)},

aji = sup{|aji(t)|}, bji = sup{|bji(t)|}. If ρ(K) < 1, then the equilibrium point O
of system (1.1) is almost surely exponentially stable.

Proof. From ρ(K) < 1, it follows that (E−K) is an M-matrix[1], where E denotes
an identity matrix of size n. Therefore, using Lemma 2.3, there exists a diagonal
matrix M =diag(m1, . . . ,mn) with positive diagonal elements such that the product
(E −K)M is strictly diagonally dominant with positive diagonal entries. Namely,

mi >
n∑

j=1

mjc
−1
i (aji + bji)pji, i = 1, 2, . . . , n. (3.1)

Then, there exists a constant µ > 0 such that

−mici +
n∑

j=1

mj(aji + bji)pji < −µ, i = 1, 2, . . . , n. (3.2)

Thus, we can choose a constant 0 < λ � 1 such that

mi(λ− ci) +
n∑

j=1

mj(aji + bji)pjie
λτ < 0, i = 1, 2, . . . , n. (3.3)

We define a positive definite Lyapunov function V (x(t), t) = eλt
∑n

i=1 mi|xi(t)|. By
Itô formula, we can calculate the upper right differential D+V of V along (1.1) as
follows

D+V (x(t), t) = λeλt
n∑

i=1

mi|xi(t)|dt + eλt
n∑

i=1

misign(xi(t))dxi(t)

≤ eλt{
n∑

i=1

mi[(λ− ci)|xi(t)|+
n∑

j=1

aijpij |xj(t)|dt

+
n∑

j=1

bijpij |xj(t− τij)|]dt}+ eλt
n∑

i=1

mi

n∑
j=1

|σij(xj(t))|dwj(t),

(3.4)
On the other hand, for T > 0, it is easy to see that∫ T

0

eλt|xj(t− τij)|dt =
∫ T−τij

−τij

eλ+τij |xj(t)|dt

≤ eλτ

∫ 0

−τ

eλt|xj(t)|dt + eλτ

∫ T

0

eλt|xj(t)|dt.

(3.5)
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Calculating the integral of inequality (3.4) from 0 to T and noticing inequality (3.3)
and inequality (3.5), we have

V (x(T ), T ) ≤ V (x(0), 0) +
∫ T

0

eλt
n∑

i=1

n∑
j=1

mi|σij(xj(t))|dwj(t)

+
∫ T

0

eλt{
n∑

i=1

mi[(λ− ci)|xi(t)|+
n∑

j=1

aijpij |xj(t)|dt

+
n∑

j=1

bijpij |xj(t− τij)|]dt}dt

≤
n∑

i=1

mi|ϕi(0)|+
∫ T

0

eλt
n∑

i=1

n∑
j=1

mi|σij(xj(t))|dwj(t)

+
∫ T

0

eλt{
n∑

i=1

mi[(λ− ci)|xi(t)|+
n∑

j=1

eλτ (aij + bij)pij |xj(t))|]dt

+
∫ 0

−τ

n∑
i=1

n∑
j=1

eλτmibijpij |xj(t))|}dt

≤
n∑

i=1

mi|ϕi(0)|+
∫ T

0

eλt
n∑

i=1

n∑
j=1

mi|σij(xj(t))|dwj(t)

+
∫ T

0

eλt{
n∑

i=1

[mi(λ− ci) +
n∑

j=1

eλτmj(aji + bji)pji]|xi(t))|}dt

+
∫ 0

−τ

n∑
i=1

n∑
j=1

eλτmibijpij |xj(t))|dt

≤
n∑

i=1

mi|ϕi(0)|+
∫ T

0

eλt
n∑

i=1

n∑
j=1

mi|σij(xj(t))|dwj(t)

+
∫ 0

−τ

n∑
i=1

n∑
j=1

eλτmibijpij |xj(t))|dt.

The right hand of the above expression is a nonnegative martingale, and Lemma
2.2 shows

lim
T→∞

X(T ) < ∞ a.s.,

where

X(T ) =
n∑

i=1

mi|ϕi(0)|+
∫ T

0

eλt
n∑

i=1

n∑
j=1

mi|σij(xj(t))|dwj(t)

+
∫ 0

−τ

n∑
i=1

n∑
j=1

eλτmibijpij |xj(t))|dt.

It follows that limT→∞(eλt
∑n

i=1 mi|xi(t)|) < ∞, which implies

lim
T→∞

(eλt
n∑

i=1

|xi(t)|) < ∞ a.s.
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That is, lim supT→∞
1
t log ‖x(T )‖ < −λ. This completes the proof. �

Remark 3.2. Note that for a given matrix M , its spectral radius ρ(M) is equal to
the minimum of its all matrix norms of M , i.e., for any norm ‖ · ‖, ρ(M) ≤ ‖M‖.
Therefore, we have the following corollary.

Corollary 3.3. Suppose that there exist positive real numbers mi (i = 1, 2, . . . , n)
such that one of the following inequalities is satisfied:

(1) mici >
∑n

j=1 mj(aji + bji)pji, i = 1, 2, . . . , n.
(2) mici >

∑n
j=1 mj(aij + bij)pij, i = 1, 2, . . . , n.

(3)
∑n

i=1 mj(aij + bij)pij/(cimi), i = 1, 2, . . . , n.
(4)

∑
i=1

∑n
j=1((aij + bij)pijmj/(cimi))2,

then the equilibrium point O of system (1.1) is almost surely exponentially stable.

Remark 3.4. By Theorem 3.1 and Corollary 3.3, we conclude if the delay neural
network satisfy the conditions, the stability of system (1.1) are independent of the
magnitude of noise, and therefore, the noise fluctuations is harmless.
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