\documentclass[reqno]{amsart} \usepackage{hyperref} \AtBeginDocument{{\noindent\small {\em Electronic Journal of Differential Equations}, Vol. 2007(2007), No. 25, pp. 1--7.\newline ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu \newline ftp ejde.math.txstate.edu (login: ftp)} \thanks{\copyright 2007 Texas State University - San Marcos.} \vspace{9mm}} \begin{document} \title[\hfilneg EJDE-2007/25\hfil Positive solutions] {Positive solutions of a nonlinear problem involving the $p$-Laplacian with nonhomogeneous boundary conditions} \author[A. Lakmeche, A. Lakmeche, M. Yebdri\hfil EJDE-2007/25\hfilneg] {Ahmed Lakmeche, Abdelkader Lakmeche, Mustapha Yebdri} % in alphabetical order \address{Ahmed Lakmeche \newline D\'epartement de math\'ematiques, Facult\'e des sciences, Universit\'e Djillali Liabes, BP. 89, 22000 Sidi Bel Abbes, Algeria} \email{lakahmed2000@yahoo.fr} \address{Abdelkader Lakmeche \newline $^{\dag}$ D\'epartement de math\'ematiques, Facult\'e des sciences, Universit\'e Djillali Liabes, BP. 89, 22000 Sidi Bel Abbes, Algeria} \email{lakmeche@yahoo.fr} \address{Mustapha Yebdri \newline D\'epartement de math\'ematiques, Facult\'e des sciences, Universit\'e Aboubakr Belkaid, BP. 119, 13000 Tlemcen, Algeria} \email{yebdri@yahoo.com} \thanks{Submitted July 13, 2006. Published February 12, 2007.} \subjclass[2000]{35J65} \keywords{$p$-Laplacian; positive solutions; positone problem; \hfill\break\indent quadrature method, nonhomogeneous boundary conditions} \begin{abstract} In this work we consider a boundary-value problem involving the p-Laplacian with nonhomogeneous boundary conditions. We prove the existence of multiple solutions using the quadrature method. \end{abstract} \maketitle \numberwithin{equation}{section} \newtheorem{theorem}{Theorem}[section] \newtheorem{corollary}[theorem]{Corollary} \newtheorem{lemma}[theorem]{Lemma} \newtheorem{definition}[theorem]{Definition} \newtheorem{remark}[theorem]{Remark} \section{Introduction} The $p$-Laplacian operator arises in the modelling of physical and natural phenomena \cite{d2,e1,g1,l4,l5,o1,o2}, and has has been considered in many papers; see for example \cite{a1,a3,a5,b1,d1,d2,d3,d4,d5,e1,g1,j1,l2,l5,r1}. In this work we consider the boundary-value problem \begin{gather} -(|u'(x)|^{p-2}u'(x))'=\lambda f(u(x)), \quad\text{a.e. } 0< x< 1, \label{e1}\\ u(0)=u(1)+k(u(1))u'(1)=0 \label{e2} \end{gather} where $\lambda \geq 0$, $p\in (1,2]$, $k:\mathbb{R}_+\to \mathbb{R}_{+}^{*}$, and $f:\mathbb{R}_+\to \mathbb{R}_{+}^{*}$ smooth enough. Problem \eqref{e1}--\eqref{e2} was considered by Lakmeche and Hammoudi \cite{l2} for $k$ constant, in Anuradha et al. \cite{a2}[2] and Lakmeche \cite{l3} for $p=2$ and $k$ constant. In this work we generalize \cite{l2} by considering the nonhomogeneous boundary conditions. Our aim in this work is to prove existence of solutions of \eqref{e1}, \eqref{e2} and their multiplicity, using the quadrature method \cite{b3,c1,d3,l1}. In section 2, we give some preliminaries and definitions, in section 3 we give our main results, and we conclude by some remarks in the last section. \section{Preliminaries} In this section we give some definitions and preliminaries. \begin{definition}\label{def1} \rm A pair $(u,\lambda)\in \mathrm{C^{1}}([0,1];\mathbb{R}_+)\times [0,+\infty[$ is called a solution of \eqref{e1}-\eqref{e2}, if \begin{itemize} \item $(|u'|^{p-2}u')$ is absolutely continuous, and \item $-(|u'|^{p-2}u')'=\lambda f(u)$ a.e. in $(0,1)$, and $u(0)=u(1)+k(u(1))u'(1)=0$. \end{itemize} \end{definition} Note that the pair $(0,0)$ is a solution of \eqref{e1}, \eqref{e2}. Let $F:\mathbb{R}_+\to \mathbb{R}_+$ be defined by $F(u)=\int_{0}^{\rho}f(s)ds,$ and $g:\mathbb{R_{+}}\to \mathbb{R_{+}}$ be defined by $$ g(\rho)=\begin{cases} 2\big(\frac{p-1}{p}\big)^{1/p} \int_{0}^{\rho} \frac{ds}{[F(\rho)-F(s)]^{1/p}}, &\text{for }\rho>0,\\ 0 &\text{for }\rho=0. \end{cases} $$ Let $n\geq 0$. Define $h_n:[n,+\infty)\to \mathbb{R}_{+}^{*}$, by $$ h_n(\rho)= \big(\frac{p-1}{p}\big)^{1/p} \Big[\int_{0}^{\rho} \frac{ds}{[F(\rho)-F(s)]^{1/p}}+\int_{n}^{\rho} \frac{ds}{[F(\rho)-F(s)]^{1/p}}\Big]. $$ Note that $g\equiv h_0$. % Remark 2 \begin{lemma} \label{lem1} The functions $g$ and $h_n$ are continuous, and $g(\rho)\leq 2h_n(\rho)\leq 2g(\rho)$, for all $\rho \geq n\geq 0$. \end{lemma} The proof of the lemma above can be found in \cite[Theorem 7]{b2}. For $u\in \mathrm{C^{1}}([0,1];\mathbb{R}_+)$, we define $\|u\|:=\sup \{ u(s); s\in (0,1)\}$. \begin{lemma} \label{lem2} If $(u,\lambda)$ is a solution of \eqref{e1}, \eqref{e2} with $\lambda>0$, then \begin{enumerate} \item $u'(1)<0$, $u(1)>0$, and \item $\lambda^{1/p}=h_n(\|u\|)$, where $n=u(1)$. \end{enumerate} \end{lemma} \begin{proof} Let $(u,\lambda)$ be a positive solution of \eqref{e1}, \eqref{e2} with $\lambda>0$, then $u\neq 0$. Using the maximum principle \cite{v1}, we obtain $u>0$ in $(0,1)$, then $u(1)\geq 0$, which implies $$ u'(1)=-\frac{u(1)}{k(u(1))}\leq0. $$ Since $f(0)>0$, then $u'(1)<0$ and $u(1)>0$. Also there exists a unique $x_0\in (0,1)$ such that $u'(x_0)=0$, $u(x_0)=\|u\|$, $u'(x)>0$ for $x\in(0,x_0)$, and $u'(x)<0$ for $x\in (x_0,1)$. Let $(u,\lambda )$ be a solution of \eqref{e1}, \eqref{e2}, and $u(1)=n$ with $00$. \end{theorem} \begin{proof} From lemma \ref{lem3} we have $\lim_{s\to +\infty} g(s)=+\infty$ and $ g(0)=0$. \end{proof} \begin{theorem}[\cite{l2}] \label{thm2} If $\lim_{s\to +\infty}f(s)/s^{p-1}=+\infty$, then there exist $\lambda^{*}>0$ such that the problem \eqref{e1}, \eqref{e13} has at least two positive solutions for $\lambda\in (0,\lambda^{*})$, and no positive solution for $\lambda>\lambda^{*}$. \end{theorem} \begin{proof} From lemma \ref{lem3}, we have $\lim_{s\to +\infty}g(s)=g(0)=0$. Then $g$ is bounded and reaches its maximum at some point $\rho_0>0$. Further $\lambda^{*}=(g(\rho_0))^{p}$. \end{proof} \section{Main results} Let $( u,\lambda ) $ be a solution of \eqref{e1}, \eqref{e2}, and $u(1)=n$ with $00$, then \begin{enumerate} \item there exist at least $n^* \in(0,\rho)$, such that \eqref{e16} is satisfied for $n=n^{*}$; \item for each $n^{*}$ satisfying \eqref{e16}, there is a unique $\lambda=\lambda(\rho,n^{*})$ given by \eqref{e12} or \eqref{e15} such that \eqref{e1}, \eqref{e2} has exactly one solution $(u,\lambda)$, with $\|u\|=\rho$, $u(1)=n^{*}$, $u'(1)=-\frac{n^{*}}{h(n^{*})}$ and $$ x_0=\big(\frac{p-1}{p}\big)^{1/p}\lambda^{-\frac{1}{p}} \int_{0}^{\rho}\frac{ds}{[F(\rho)-F(s)]^{1/p}}; $$ \item if $k$ is decreasing, $n^*$ is unique. \end{enumerate} \end{theorem} \begin{proof} Equation \eqref{e16} is equivalent to \begin{equation} \label{e17} k(n)=\Big(\int_{0}^{\rho}\frac{ds }{[F(\rho)-F(s)]^{1/p}}+\int_{n}^{\rho}\frac{ds }{[F(\rho)-F(s)]^{1/p}}\Big)^{-1} \frac{n}{[F(\rho)-F(n)]^{1/p}}. \end{equation} Let $\gamma:[0,\rho)\to \mathbb{R}_+$ be defined by \begin{equation} \label{e18} \gamma(n):=\Big(\int_{0}^{\rho}\frac{ds }{[F(\rho)-F(s)]^{1/p}}+\int_{n}^{\rho}\frac{ds }{[F(\rho)-F(s)]^{1/p}}\Big)^{-1} \frac{n}{[F(\rho)-F(n)]^{1/p}}. \end{equation} We have $\gamma(0)=0$, $\lim_{n\to \rho^{-}}\gamma(n)=+\infty$ and $\gamma$ is differentiable on $(0,\rho)$, with \begin{align*} \gamma'(n) &:=\frac{p[F(\rho)-F(n)]+nf(n)}{p[F(\rho)-F(n)]^{1+\frac{1}{p}} \big(\int_{0}^{\rho}\frac{ds}{[F(\rho)-F(s)]^{1/p}}+ \int_{n}^{\rho}\frac{ds}{[F(\rho)-F(s)]^{1/p}}\big)} \\ &\quad +\frac{n}{[F(\rho)-F(n)]^{1/p} \big(\int_{0}^{\rho}\frac{ds}{[F(\rho)-F(s)]^{1/p}} +\int_{n}^{\rho}\frac{ds}{[F(\rho)-F(s)]^{1/p}}\big)^{2}}>0. \end{align*} % 19 Then $\gamma$ increases from $0$ to $+\infty$ on $(0,\rho)$. Since $k:\mathbb{R}_+\to \mathbb{R_+^*}$ is continuous and $k(0)>0$, $k(\rho)<\infty$, then there exist at least $n^{*}\in (0,\rho)$ such that $k(n^{*})=\gamma(n^{*})$. If $k$ decreases, we have $0n_1$. Finally, we deduce that $n_0=n_1$. \end{proof} \begin{corollary} \label{coro1} Assume that $k\in \mathrm{C(\mathbb{R}_+;\mathbb{R_+^*})}$. Let $\rho>0$, then the bifurcation diagram $(\lambda,\rho)$ of the positive solutions of \eqref{e1}, \eqref{e2} is given by $$ \lambda(\rho)^{1/p}=\big(\frac{p-1}{p}\big)^{1/p} \Big[\int_{0}^{\rho}\frac{ds}{[F(\rho)-F(s)]^{1/p}} +\int_{n^{*}}^{\rho}\frac{ds}{[F(\rho)-F(s)]^{1/p}}\Big], $$ where $n^*$ is the solution of \eqref{e16}. \end{corollary} \begin{remark} \label{rmk3} \rm If $k$ is not decreasing, then the solution $n^{*}$ of \eqref{e16} is not necessarily unique, in some cases it could be infinite. This is one of different results with respect to precedent works \cite{a2,l1,l2}. \end{remark} \begin{theorem} \label{thm4} Assume that $k\in \mathrm{C^{1}(\mathbb{R}_+;\mathbb{R_+^*})}$. Let $\rho>0$, and $k$ decreasing, then there exists a unique $n^{*}(\rho)\in(0,\rho)$ such that $k(n^{*})=\gamma(n^{*})$. Further $n^*$ is continuously differentiable. \end{theorem} \begin{proof} Because $k$ is decreasing, $k'\leq 0$; further $\gamma'>0$, hence $k'-\gamma'<0$. From the implicit function theorem, there exists a unique $n^{*}(\rho)\in(0,\rho)$ such that $k(n^{*})=\gamma(n^{*})$, and $n^*(\rho)$ is continuously differentiable. \end{proof} \begin{theorem} \label{thm5} Assume that $k\in\mathrm{C(\mathbb{R}_+;\mathbb{R}_{+}^{*})}$. Let $\rho>0$ and $k$ decreasing. Then there exists a unique $n^{*}(\rho)\in(0,\rho)$, such that \eqref{e16} is satisfied for $n=n^{*}$. Also there exists a unique $\lambda=\lambda(\rho)$ given by \eqref{e12} or \eqref{e15} for which \eqref{e1}, \eqref{e2} has a unique solution $(u,\lambda)$, with $\|u\|=\rho$, $u(1)=n^{*}(\rho)$, $$ u'(1)=-\frac{n^{*}(\rho)}{h(n^{*}(\rho))}\quad{and}\quad x_0=\big(\frac{p-1}{p}\big)^{1/p}\lambda^{-\frac{1}{p}} \int_{0}^{\rho}\frac{ds }{[F(\rho)-F(s)]^{1/p}}. $$ \end{theorem} The result is easily deduced from Theorems \ref{thm3} and \ref{thm4}. \begin{corollary} \label{coro2} Assume that $k\in\mathrm{C(\mathbb{R}_+;\mathbb{R_+^*})}$. If $k$ is decreasing, then the bifurcation diagram $(\lambda,\rho)$ of positive solutions of \eqref{e1}, \eqref{e2} is given by $$ \lambda(\rho)^{1/p}=\big(\frac{p-1}{p}\big)^{1/p} \Big[\int_{0}^{\rho}\frac{ds }{[F(\rho)-F(s)]^{1/p}}+\int_{n^{*}(\rho)}^{\rho}\frac{ds }{[F(\rho)-F(s)]^{1/p}}\Big], $$ where $n^*(\rho)$ is the unique solution of \eqref{e16}. \end{corollary} \begin{theorem} Assume that $k\in\mathrm{C(\mathbb{R}_+;\mathbb{R_+^*})}$. If $k$ is decreasing, then \begin{itemize} \item[(1)] when $\lim_{s\to +\infty} f(s)/s^{p-1}=0$, \eqref{e1}, \eqref{e2} has at least one positive solution for all $\lambda >0$; and \item[(2)] when $\lim_{s\to +\infty}f(s)/ s^{p-1}=+\infty$, there exist $$ \lambda _0^* = \left(\sup \{ h_{n^*(s)}( s ); s\in ( 0, +\infty)\}\right) ^p $$ such that \eqref{e1}, \eqref{e2} has at least two positive solutions for $\lambda\in ( 0, \lambda _0^*)$, and zero positive solution for $\lambda > \lambda _0^*$. \end{itemize} \end{theorem} \begin{proof} We have $g(\rho )\le 2h_{n^{*}(\rho) }(\rho )\le 2g(\rho )$, for all $\rho > 0$. From theorems \ref{thm1} and \ref{thm2}, we deduce the results. \end{proof} \section*{Concluding remarks} In this work we have studied a boundary value problem of the one-dimensional $p$-Laplacian with nonhomogeneous boundary conditions. We have proved existence of positive solutions using quadrature method, also we have proved the multiplicity of the solutions for $\lim_{s\to +\infty}\frac{f(s)} {s^{p-1}}=+\infty$. In the case where the nonhomogeneous term $k$ is a decreasing function, we proved the uniqueness of the solution $(u,\lambda)$ for each $\|u\|=\rho >0$. Our results generalize the works \cite{a2,l2}. When $k$ is not a decreasing function we can find, some examples in which the solution $n^*$ of \eqref{e17} is not unique, for example for $k$ given as it follows $$ k(n)=\begin{cases} \gamma (\rho_1),& \text{for } 0\leq n<\rho_1,\\ \gamma (n),&\text{for } \rho_1 \leq n<\rho_2,\\ \gamma (\rho_2),& \text{for } \rho_2 \leq n, \end{cases} $$ where $0<\rho_1<\rho_2<\rho$, we have an infinite number of solutions of equation \eqref{e17} ($k(n)=\gamma (n)$) which constitutes exactly the interval $[\rho_1 , \rho_2]$. It will be interesting to analyze the ramification of solutions for concrete and simple examples with boundary conditions cited above. In this work we have considered un autonomous problem, it will be interesting to consider the non-autonomous problem using the fixed point method as the Avery and Peterson fixed point theorem \cite{a4}. \begin{thebibliography}{00} \bibitem{a1} G. Anello and G. Cordaro, \emph{Existence of solutions of the Newmann problem for a class of equations involving the $p$-Laplacian via a variational principle of Ricceri}, Arch. Math. (Basel) 79 (2002) 274-287. \bibitem{a2} V. Anuradha, R. Shivaji and J. Zhu, \emph{On S-shaped bifurcation curves for multiparameter positone problem}, Applied Mathematics and Computation, 65 (1994), 171-182. \bibitem{a3} C. Aranda and T. Godoy, \emph{Existence and multiplicity of positive solutions for a singular problem associated to the $p$-Laplacian operator}, Electron J. Diff. Eqns., Vol. 2004 (2004), 132, 1-15. \bibitem{a4} R. I. Avery and A. C. Peterson, \emph{Three positive fixed points of nonlinear operators on ordred Banach spaces}, Comput. Math. Appl., 42 (2001), 313-322. \bibitem{a5} J. G. Azorero and I. Peral, \emph{Multiplicity results for some nonlinear elliptic equations}, J. Func. Anal. 137 (1996) 1, 219-241. \bibitem{b1} J. Bouchala, \emph{Strong resonnance problems for the one-dimensional $p$-Laplacian}, Electron. J. Diff. Eqns., Vol. 2005 (2005), 08, 1-10. \bibitem{b2} S. M. Bouguima and A. Lakmeche, \emph{Multiple solutions of a nonlinear problem involving the $p$-Laplacian}, Comm. Appl. Nonl. Anal., 7 (2000) 3, 83-96. \bibitem{b3} K. J. Brown, M. M. A. Ibrahim and R. Shivaji, \emph{S-shaped bifurcation curves}, Nonl. Anal. The. Meth. Appli., 5 (1981) 5, 475-486. \bibitem{c1} A. Castro and R. Shivaji, \emph{Non-negative solutions for a class of non-positone problems}, Proc. Roy. Soc. Edinbourgh, 108A (1988), 291-302. \bibitem{d1} C. De Coster, \emph{Pairs of positive solutions for the one-dimensionnal $p$-Laplacian}, Nonl. Anal. 23 (1994) 5, 669-681. \bibitem{d2} J. I. Diaz and F. de Thelin, \emph{On a nonlinear parabolic problem arising in some models related to turbulent flows}, SIAM J. Math. Anal., 25 (1994) 4, 1085-1111. \bibitem{d3} J. Douchet, \emph{The number of positive solutions of a nonlinear problem with a discontinuous nonlinearity}, Proc. Roy. Soc: Edinbourg, 90A (1981), 281-291. \bibitem{d4} P. Drabek, P. Girg, P. Takac and U. Ulm, \emph{The Fredholm alternative for the $p$-Laplacian: bifurcation from infinity, existence and multiplicity of solutions}, Indiana Univ. Math. J., 53 (2004) 433-482. \bibitem{d5} P. Drabek and J. Hernandez, \emph{Existence and uniqueness of positive solutions for some quasilinear elliptic problem}, Nonl. Anal., 44 (2001) 189-204. \bibitem{e1} L. C. Evans and W. Gangbo, \emph{Differential equations methods for the Monge-Kantorovich mass transfer problem}, Mem. Amer. Math. Soc., 137 (1999) 653, viii+66pp. \bibitem{g1} R. Glowinski and J. Rappaz, \emph{Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology}, Math. Model. Numer. Anal., 37 (2003) 1, 175- 186. \bibitem{j1} U. Janfalk, \emph{On certain problem concerning the $p$-Laplace operator}, Likoping Studies in sciences and Technology, Dissertations 326, 1993. \bibitem{l1} T. Laetsch, \emph{The number of solutions of a nonlinear two point boundary value problem}, Indiana Univ. Math. J. 20 (1970) 1-13. \bibitem{l2} A. Lakmeche and A. Hammoudi, \emph{Multiple positive solutions of the one-dimensional $p$-Laplacian}, Journal of Math. Anal. Appl., 317 (2006) 1, 43-49. \bibitem{l3} A. Lakmeche, \emph{Contributions to ordinary differential equations and impulsive effects}, Doctorate theses, Univ. Sidi Bel Abbes, Algeria 2000. \bibitem{l4} C. Liu, \emph{Weak solutions for a viscous $p$-Laplacian equation}, Electron. J. Diff. Eqns., 2003 (2003) 63, 1-11. \bibitem{l5} I. Ly and D. Seck, \emph{Isoperimetric inequality for an interior free boundary problem with $p$-Laplacian operator}, Electron. J. Diff. Eqns., 2004 (2004) 109, 1-12. \bibitem{o1} S. Oruganti, J. Shi and R. Shivaji, \emph{Diffusive logistic equation with constant yield harvesting, I}: steady-states, Trans. Math. Soc., 354 (2002) 9, 3601-3619. \bibitem{o2} S. Oruganti, J. Shi and R. Shivaji, \emph{Logistic equation with $p$-Laplacian and constant yield harvesting}, Abstr. Appl. Anal., (2004) 9, 723-727. \bibitem{r1} M. Ramaswamy and R. Shivaji, \emph{Multiple positive solutions for classes of $p$-Laplacian equations}, Diff. Int. Equ., 17 (2004) 11-12, 1255-1261. \bibitem{v1} J. L. Vasquez, \emph{A strong maximum principle for quasilinear elliptic equations}, Appl. Math. Optim. 12 (1984), 191-202. \end{thebibliography} \end{document}