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A FRICTIONAL CONTACT PROBLEM FOR AN
ELECTRO-VISCOELASTIC BODY

ZHOR LERGUET, MEIR SHILLOR, MIRCEA SOFONEA

Abstract. A mathematical model which describes the quasistatic frictional
contact between a piezoelectric body and a deformable conductive foundation

is studied. A nonlinear electro-viscoelastic constitutive law is used to model

the piezoelectric material. Contact is described with the normal compliance
condition, a version of Coulomb’s law of dry friction, and a regularized elec-

trical conductivity condition. A variational formulation of the model, in the
form of a coupled system for the displacements and the electric potential, is

derived. The existence of a unique weak solution of the model is established

under a smallness assumption on the surface conductance. The proof is based
on arguments of evolutionary variational inequalities and fixed points of oper-

ators.

1. Introduction

Considerable progress has been achieved recently in modeling, mathematical
analysis and numerical simulations of various contact processes and, as a result,
a general Mathematical Theory of Contact Mechanics (MTCM) is currently ma-
turing. It is concerned with the mathematical structures which underlie general
contact problems with different constitutive laws (i.e., different materials), varied
geometries and settings, and different contact conditions, see for instance [5, 15, 18]
and the references therein. The theory’s aim is to provide a sound, clear and rig-
orous background for the constructions of models for contact between deformable
bodies; proving existence, uniqueness and regularity results; assigning precise mean-
ing to solutions; and the necessary setting for finite element approximations of the
solutions.

There is a considerable interest in frictional or frictionless contact problems in-
volving piezoelectric materials, see for instance [2, 9, 17] and the references therein.
Indeed, many actuators and sensors in engineering controls are made of piezoelec-
tric ceramics. However, there exists virtually no mathematical results about contact
problems for such materials and there is a need to expand the MTCM to include
the coupling between the mechanical and electrical material properties.

The piezoelectric effect is characterized by such a coupling between the mechani-
cal and electrical properties of the materials. This coupling, leads to the appearance
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of electric field in the presence of a mechanical stress, and conversely, mechanical
stress is generated when electric potential is applied. The first effect is used in
sensors, and the reverse effect is used in actuators.

On a nano-scale, the piezoelectric phenomenon arises from a nonuniform charge
distribution within a crystal’s unit cell. When such a crystal is deformed mechani-
cally, the positive and negative charges are displaced by a different amount causing
the appearance of electric polarization. So, while the overall crystal remains elec-
trically neutral, an electric polarization is formed within the crystal. This electric
polarization due to mechanical stress is called piezoelectricity. A deformable mate-
rial which exhibits such a behavior is called a piezoelectric material. Piezoelectric
materials for which the mechanical properties are elastic are also called electro-
elastic materials and piezoelectric materials for which the mechanical properties
are viscoelastic are also called electro-viscoelastic materials.

Only some materials exhibit sufficient piezoelectricity to be useful in applica-
tions. These include quartz, Rochelle salt, lead titanate zirconate ceramics, barium
titanate, and polyvinylidene flouride (a polymer film), and are used extensively as
switches and actuators in many engineering systems, in radioelectronics, electroa-
coustics and in measuring equipment. General models for electro-elastic materials
can be found in [11, 12] and, more recently, in [1, 6, 13]. A static and a slip-
dependent frictional contact problems for electro-elastic materials were studied in
[2, 9] and in [16], respectively. A contact problem with normal compliance for
electro-viscoelastic materials was investigated in [17]. In the last two references the
foundation was assumed to be insulated. The variational formulations of the cor-
responding problems were derived and existence and uniqueness of weak solutions
were obtained.

Here we continue this line of research and study a quasistatic frictionless contact
problem for an electro-viscoelastic material, in the framework of the MTCM, when
the foundation is conductive; our interest is to describe a physical process in which
both contact, friction and piezoelectric effect are involved, and to show that the
resulting model leads to a well-posed mathematical problem. Taking into account
the conductivity of the foundation leads to new and nonstandard boundary condi-
tions on the contact surface, which involve a coupling between the mechanical and
the electrical unknowns, and represents the main novelty in this work.

The rest of the paper is structured as follows. In Section 2 we describe the
model of the frictional contact process between an electro-viscoelastic body and a
conductive deformable foundation. In Section 3 we introduce some notation, list the
assumptions on the problem’s data, and derive the variational formulation of the
model. It consists of a variational inequality for the displacement field coupled with
a nonlinear time-dependent variational equation for the electric potential. We state
our main result, the existence of a unique weak solution to the model in Theorem
3.1. The proof of the theorem is provided in Section 4, where it is carried out in
several steps and is based on arguments of evolutionary inequalities with monotone
operators, and a fixed point theorem. The paper concludes in Section 5.

2. The model

We consider a body made of a piezoelectric material which occupies the domain
Ω ⊂ Rd (d = 2, 3) with a smooth boundary ∂Ω = Γ and a unit outward normal ν.
The body is acted upon by body forces of density f0 and has volume free electric
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charges of density q0. It is also constrained mechanically and electrically on the
boundary. To describe these conditions, we assume a partition of Γ into three open
disjoint parts ΓD, ΓN and ΓC , on the one hand, and a partition of ΓD ∪ ΓN into
two open parts Γa and Γb, on the other hand. We assume that measΓD > 0
and measΓa > 0; these conditions allow the use of coercivity arguments which
guarantee the uniqueness of the solution for the model. The body is clamped on
ΓD and, therefore, the displacement field u = (u1, . . . , ud) vanishes there. Surface
tractions of density fN act on ΓN . We also assume that the electrical potential
vanishes on Γa and a surface free electrical charge of density qb is prescribed on
Γb. In the reference configuration the body may come in contact over ΓC with a
conductive obstacle, which is also called the foundation. The contact is frictional
and is modelled with the normal compliance condition and a version of Coulomb’s
law of dry friction. Also, there may be electrical charges on the part of the body
which is in contact with the foundation and which vanish when contact is lost.

We are interested in the evolution of the deformation of the body and of the elec-
tric potential on the time interval [0, T ]. The process is assumed to be isothermal,
electrically static, i.e., all radiation effects are neglected, and mechanically qua-
sistatic; i.e., the inertial terms in the momentum balance equations are neglected.
We denote by x ∈ Ω∪Γ and t ∈ [0, T ] the spatial and the time variable, respectively,
and, to simplify the notation, we do not indicate in what follows the dependence
of various functions on x and t. In this paper i, j, k, l = 1, . . . , d, summation over
two repeated indices is implied, and the index that follows a comma represents the
partial derivative with respect to the corresponding component of x. A dot over a
variable represents the time derivative.

We use the notation Sd for the space of second order symmetric tensors on Rd
and “ · ” and ‖ · ‖ represent the inner product and the Euclidean norm on Sd
and Rd, respectively, that is u · v = uivi, ‖v‖ = (v · v)1/2 for u,v ∈ Rd, and
σ ·τ = σijτij , ‖τ‖ = (τ ·τ )1/2 for σ, τ ∈ Sd. We also use the usual notation for the
normal components and the tangential parts of vectors and tensors, respectively,
by uν = u · ν, uτ = u− unν, σν = σijνiνj , and στ = σν − σνν.

The classical model for the process is as follows.

Problem P. Find a displacement field u : Ω × [0, T ] → Rd, a stress field σ :
Ω×[0, T ] → Sd, an electric potential ϕ : Ω×[0, T ] → R and an electric displacement
field D : Ω× [0, T ] → Rd such that

σ = Aε(u̇) + Bε(u)− E∗E(ϕ) in Ω× (0, T ), (2.1)

D = Eε(u) + βE(ϕ) in Ω× (0, T ), (2.2)

Div σ + f0 = 0 in Ω× (0, T ), (2.3)

div D− q0 = 0 in Ω× (0, T ), (2.4)

u = 0 on ΓD × (0, T ), (2.5)

σν = fN on ΓN × (0, T ), (2.6)

−σν = pν(uν − g) on ΓC ,×(0, T ), (2.7)

‖στ‖ ≤ pτ (uν − g),

u̇τ 6= 0 ⇒ στ = −pτ (uν − g)
u̇τ
‖u̇τ‖

on ΓC × (0, T ), (2.8)

ϕ = 0 on Γa × (0, T ), (2.9)
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D · ν = qb on Γb × (0, T ), (2.10)

D · ν = ψ(uν − g)φL(ϕ− ϕ0) on ΓC × (0, T ), (2.11)

u(0) = u0 in Ω. (2.12)

We now describe problem (2.1)–(2.12) and provide explanation of the equations
and the boundary conditions.

First, equations (2.1) and (2.2) represent the electro-viscoelastic constitutive law
in which σ = (σij) is the stress tensor, ε(u) denotes the linearized strain tensor, A
and B are the viscosity and elasticity operators, respectively, E = (eijk) represents
the third-order piezoelectric tensor, E∗ is its transpose, β = (βij) denotes the
electric permittivity tensor, and D = (D1, . . . , Dd) is the electric displacement
vector. Since we use the electrostatic approximation, the electric field satisfies
E(ϕ) = −∇ϕ, where ϕ is the electric potential.

We recall that ε(u) = (εij(u)) and εij(u) = (ui,j + uj,i)/2. The tensors E and
E∗ satisfy the equality

Eσ · v = σ · E∗v ∀σ = (σij) ∈ Sd, v ∈ Rd,

and the components of the tensor E∗ are given by e∗ijk = ekij .
A viscoelastic Kelvin-Voigt constitutive relation (see [5] for details) is given in

(2.1), in which the dependence of the stress on the electric field is takes into account.
Relation (2.2) describes a linear dependence of the electric displacement field D on
the strain and electric fields; such a relation has been frequently employed in the
literature (see, e.g., [1, 2, 13] and the references therein). In the linear case, the
constitutive laws (2.1) and (2.2) read

σij = aijklεk,l(u̇) + bijklεkl(u)− ekijϕ,k ,

Di = eijkεjk(u) + βijϕ,j ,

where aijkl, bijkl, βij are the components of the tensors A, B and β, respectively,
and ϕ,j = ∂ϕ/∂xj .

Next, equations (2.3) and (2.4) are the steady equations for the stress and
electric-displacement fields, respectively, in which “Div” and “div” denote the di-
vergence operator for tensor and vector valued functions, i.e.,

Div σ = (σij,j), div D = (Di,i).

We use these equations since the process is assumed to be mechanically quasistatic
and electrically static.

Conditions (2.5) and (2.6) are the displacement and traction boundary con-
ditions, whereas (2.9) and (2.10) represent the electric boundary conditions; the
displacement field and the electrical potential vanish on ΓD and Γa, respectively,
while the forces and free electric charges are prescribed on ΓN and Γb, respectively.
Finally, the initial displacement u0 in (2.12) is given.

We turn to the boundary conditions (2.7), (2.8), (2.11) which describe the me-
chanical and electrical conditions on the potential contact surface ΓC . The normal
compliance function pν , in (2.7), is described below, and g represents the gap in
the reference configuration between ΓC and the foundation, measured along the
direction of ν. When positive, uν − g represents the interpenetration of the surface
asperities into those of the foundation. This condition was first introduced in [10]
and used in a large number of papers, see for instance [4, 7, 8, 14] and the references
therein.
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Conditions (2.8) is the associated friction law where pτ is a given function. Ac-
cording to (2.8) the tangential shear cannot exceed the maximum frictional resis-
tance pτ (uν − g), the so-called friction bound. Moreover, when sliding commences,
the tangential shear reaches the friction bound and opposes the motion. Frictional
contact conditions of the form (2.7), (2.8) have been used in various papers, see,
e.g., [5, 14, 15] and the references therein.

Next, (2.11) is the electrical contact condition on ΓC which is the main novelty of
this work. It represents a regularized condition which may be obtained as follows.

First, unlike previous papers on piezoelectric contact, we assume that the foun-
dation is electrically conductive and its potential is maintained at ϕ0. When there
is no contact at a point on the surface (i.e., uν < g), the gap is assumed to be an
insulator (say, it is filled with air), there are no free electrical charges on the surface
and the normal component of the electric displacement field vanishes. Thus,

uν < g ⇒ D · ν = 0. (2.13)

During the process of contact (i.e., when uν ≥ g) the normal component of the
electric displacement field or the free charge is assumed to be proportional to the
difference between the potential of the foundation and the body’s surface potential,
with k as the proportionality factor. Thus,

uν ≥ g ⇒ D · ν = k (ϕ− ϕ0). (2.14)

We combine (2.13), (2.14) to obtain

D · ν = k χ[0,∞)(uν − g) (ϕ− ϕ0), (2.15)

where χ[0,∞) is the characteristic function of the interval [0,∞), that is

χ[0,∞)(r) =

{
0 if r < 0,
1 if r ≥ 0.

Condition (2.15) describes perfect electrical contact and is somewhat similar to the
well-known Signorini contact condition. Both conditions may be over-idealizations
in many applications.

To make it more realistic, we regularize condition (2.15) and write it as (2.11)
in which k χ[0,∞)(uν − g) is replaced with ψ which is a regular function which will
be described below, and φL is the truncation function

φL(s) =


−L if s < −L,
s if − L ≤ s ≤ L,

L if s > L,

where L is a large positive constant. We note that this truncation does not pose
any practical limitations on the applicability of the model, since L may be arbi-
trarily large, higher than any possible peak voltage in the system, and therefore in
applications φL(ϕ− ϕ0) = ϕ− ϕ0.

The reasons for the regularization (2.11) of (2.15) are mathematical. First, we
need to avoid the discontinuity in the free electric charge when contact is estab-
lished and, therefore, we regularize the function k χ[0,∞) in (2.15) with a Lipschitz
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continuous function ψ. A possible choice is

ψ(r) =


0 if r < 0,
kδr if 0 ≤ r ≤ 1/δ,
k if r > δ,

(2.16)

where δ > 0 is a small parameter. This choice means that during the process
of contact the electrical conductivity increases as the contact among the surface
asperities improves, and stabilizes when the penetration uν − g reaches the value δ.
Secondly, we need the term φL(ϕ− ϕ0) to control the boundednes of ϕ− ϕ0.

Note that when ψ ≡ 0 in (2.11) then

D · ν = 0 on ΓC × (0, T ), (2.17)

which decouples the electrical and mechanical problems on the contact surface.
Condition (2.17) models the case when the obstacle is a perfect insulator and was
used in [2, 9, 16, 17]. Condition (2.11), instead of (2.17), introduces strong coupling
between the mechanical and the electric boundary conditions and leads to a new
and nonstandard mathematical model.

Because of the friction condition (2.8), which is non-smooth, we do not expect the
problem to have, in general, any classical solutions. For this reason, we derive in the
next section a variational formulation of the problem and investigate its solvability.
Moreover, variational formulations are also starting points for the construction of
finite element algorithms for this type of problems.

3. Variational formulation and the main result

We use standard notation for the Lp and the Sobolev spaces associated with Ω
and Γ and, for a function ζ ∈ H1(Ω) we still write ζ to denote its trace on Γ. We
recall that the summation convention applies to a repeated index.

For the electric displacement field we use two Hilbert spaces

W = L2(Ω)d, W1 = { D ∈ W : div D ∈ L2(Ω)},
endowed with the inner products

(D,E)W =
∫

Ω

DiEi dx, (D,E)W1 = (D,E)W + (div D,div E)L2(Ω),

and the associated norms ‖ · ‖W and ‖ · ‖W1 , respectively. The electric potential
field is to be found in

W = {ζ ∈ H1(Ω) : ζ = 0 on Γa}.
Since meas Γa > 0, the Friedrichs-Poincaré inequality holds, thus,

‖∇ζ‖W ≥ cF ‖ζ‖H1(Ω) ∀ ζ ∈W, (3.1)

where cF > 0 is a constant which depends only on Ω and Γa. On W , we use the
inner product

(ϕ, ζ)W = (∇ϕ,∇ζ)W ,
and let ‖ · ‖W be the associated norm. It follows from (3.1) that ‖ · ‖H1(Ω) and
‖ · ‖W are equivalent norms on W and therefore (W, ‖ · ‖W ) is a real Hilbert space.
Moreover, by the Sobolev trace theorem, there exists a constant c0, depending only
on Ω, Γa and ΓC , such that

‖ζ‖L2(ΓC) ≤ c0‖ζ‖W ∀ ζ ∈W. (3.2)
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We recall that when D ∈ W1 is a sufficiently regular function, the Green type
formula holds:

(D,∇ζ)L2(Ω)d + (div D, ζ)W =
∫

Γ

D · ν ζ da ∀ ζ ∈ H1(Ω). (3.3)

For the stress and strain variables, we use the real Hilbert spaces

Q = {τ = (τij) : τij = τji ∈ L2(Ω)} = L2(Ω)d×dsym,

Q1 = {σ = (σij) ∈ Q : div σ = (σij,j) ∈ W},

endowed with the respective inner products

(σ, τ )Q =
∫

Ω

σijτijdx, (σ, τ )Q1 = (σ, τ )Q + (div σ,div τ )W ,

and the associated norms ‖ · ‖Q and ‖ · ‖Q1 . For the displacement variable we use
the real Hilbert space

H1 = {u = (ui) ∈ W : ε(u) ∈ Q},

endowed with the inner product

(u,v)H1 = (u,v)W + (ε(u), ε(v))Q,

and the norm ‖ · ‖H1 .
When σ is a regular function, the following Green’s type formula holds,

(σ, ε(v))Q + (Div σ,v)L2(Ω)d =
∫

Γ

σν · v da ∀v ∈ H1. (3.4)

Next, we define the space

V = { v ∈ H1 : v = 0 on ΓD}.

Since meas ΓD > 0, Korn’s inequality (e.g., [3, pp. 16–17]) holds and

‖ε(v)‖Q ≥ cK ‖v‖H1 ∀v ∈ V, (3.5)

where cK > 0 is a constant which depends only on Ω and ΓD. On the space V we
use the inner product

(u,v)V = (ε(u), ε(v))Q,

and let ‖·‖V be the associated norm. It follows from (3.5) that the norms ‖·‖H1 and
‖·‖V are equivalent on V and, therefore, the space (V, (·, ·)V ) is a real Hilbert space.
Moreover, by the Sobolev trace theorem, there exists a constant c̃0, depending only
on Ω, ΓD and ΓC , such that

‖v‖L2(ΓC)d ≤ c̃0‖v‖V ∀v ∈ V. (3.6)

Finally, for a real Banach space (X, ‖ · ‖X) we use the usual notation for the
spaces Lp(0, T ;X) and W k,p(0, T ;X) where 1 ≤ p ≤ ∞, k = 1, 2, . . . ; we also
denote by C([0, T ];X) and C1([0, T ];X) the spaces of continuous and continuously
differentiable functions on [0, T ] with values in X, with the respective norms

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X ,

‖x‖C1([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X + max
t∈[0,T ]

‖ẋ(t)‖X .

Recall that the dot represents the time derivative.
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We now list the assumptions on the problem’s data. The viscosity operator A
and the elasticity operator B are assumed to satisfy the conditions:

(a) A : Ω× Sd → Sd.
(b) There exists LA > 0 such that

‖A(x, ξ1)−A(x, ξ2)‖ ≤ LA‖ξ1 − ξ2‖
∀ ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω.

(c) There exists mA > 0 such that
(A(x, ξ1)−A(x, ξ2)) · (ξ1 − ξ2) ≥ mA‖ξ1 − ξ2‖2
∀ ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω.

(d) The mapping x 7→ A(x, ξ) is Lebesgue measurable on Ω,
for any ξ ∈ Sd.

(e) The mapping x 7→ A(x,0) belongs to Q.

(3.7)



(a) B : Ω× Sd → Sd.
(b) There exists LB > 0 such that

‖B(x, ξ1)− B(x, ξ2)‖ ≤ LB‖ξ1 − ξ2‖
∀ ξ1, ξ2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ B(x, ξ) is measurable on Ω,
for any ξ ∈ Sd.

(d) The mapping x 7→ B(x,0) belongs to Q.

(3.8)

Examples of nonlinear operators A and B which satisfy conditions (3.7) and (3.8)
can be fond in [15, 18] and the many references therein.

The piezoelectric tensor E and the electric permittivity tensor β satisfy (a) E : Ω× Sd → Rd.
(b) E(x, τ ) = (eijk(x)τjk) ∀τ = (τij) ∈ Sd, a.e. x ∈ Ω.
(c) eijk = eikj ∈ L∞(Ω).

(3.9)


(a) β : Ω× Rd → Rd.
(b) β(x,E) = (βij(x)Ej) ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.
(c) βij = βji ∈ L∞(Ω).
(d) There exists mβ > 0 such that βij(x)EiEj ≥ mβ‖E‖2

∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

. (3.10)

The normal compliance functions pr (r = ν, τ) satisfy
(a) pr : ΓC × R → R+.
(b) ∃Lr > 0 such that |pr(x, u1)− pr(x, u2)| ≤ Lr|u1 − u2|

∀u1, u2 ∈ R, a.e. x ∈ ΓC .
(c) x 7→ pr(x, u) is measurable on ΓC , for allu ∈ R.
(d) x 7→ pr(x, u) = 0, for allu ≤ 0.

(3.11)

An example of a normal compliance function pν which satisfies conditions (3.11)
is pν(u) = cνu+ where cν ∈ L∞(ΓC) is a positive surface stiffness coefficient, and
u+ = max {0, u}. The choices pτ = µpν and pτ = µpν(1 − δpν)+ in (2.8), where
µ ∈ L∞(ΓC) and δ ∈ L∞(ΓC) are positive functions, lead to the usual or to a
modified Coulomb’s law of dry friction, respectively, see [5, 14, 19] for details. Here,
µ represents the coefficient of friction and δ is a small positive material constant
related to the wear and hardness of the surface. We note that if pν satisfies condition
(3.11) then pτ satisfies it too, in both examples. Therefore, we conclude that the
results below are valid for the corresponding piezoelectric frictional contact models.
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The surface electrical conductivity function ψ satisfies:

(a) ψ : ΓC × R → R+.
(b) ∃Lψ > 0 such that |ψ(x, u1)− ψ(x, u2)| ≤ Lψ|u1 − u2|

∀u1, u2 ∈ R, a.e. x ∈ ΓC .
(c) ∃Mψ > 0 such that |ψ(x, u)| ≤Mψ ∀u ∈ R, a.e. x ∈ ΓC .
(e) x 7→ ψ(x, u) is measurable on ΓC , for allu ∈ R.
(e) x 7→ ψ(x, u) = 0, for allu ≤ 0.

(3.12)

An example of a conductivity function which satisfies condition (3.12) is given by
(2.16) in which case Mψ = k. Another example is provided by ψ ≡ 0, which models
the contact with an insulated foundation, as noted in Section 2. We conclude that
our results below are valid for the corresponding piezoelectric contact models.

The forces, tractions, volume and surface free charge densities satisfy

f0 ∈W 1,p(0, T ;L2(Ω)d), (3.13)

fN ∈W 1,p(0, T ;L2(ΓN )d), (3.14)

q0 ∈W 1,p(0, T ;L2(Ω)), (3.15)

qb ∈W 1,p(0, T ;L2(Γb)). (3.16)

Here, 1 ≤ p ≤ ∞. Finally, we assume that the gap function, the given potential
and the initial displacement satisfy

g ∈ L2(ΓC), g ≥ 0 a.e. on ΓC , (3.17)

ϕ0 ∈ L2(ΓC), (3.18)

u0 ∈ V. (3.19)

Next, we define the four mappings j : V ×V → R, h : V ×W →W , f : [0, T ] → V
and q : [0, T ] →W , respectively, by

j(u,v) =
∫

ΓC

pν(uν − g)vν da+
∫

ΓC

pτ (uν − g)‖vτ‖ da, (3.20)

(h(u, ϕ), ζ)W =
∫

ΓC

ψ(uν − g)φL(ϕ− ϕ0)ζ da, (3.21)

(f(t),v)V =
∫

Ω

f0(t) · v dx+
∫

ΓN

fN (t) · v da, (3.22)

(q(t), ζ)W = −
∫

Ω

q0(t)ζ dx−
∫

Γb

qb(t)ζ da, (3.23)

for all u,v ∈ V , ϕ, ζ ∈ W and t ∈ [0, T ]. We note that the definitions of h, f
and q are based on the Riesz representation theorem, moreover, it follows from
assumptions (3.11)–(3.16) that the integrals in (3.20)–(3.23) are well-defined.

Using Green’s formulas (3.3) and (3.4), it is easy to see that if (u,σ, ϕ,D) are
sufficiently regular functions which satisfy (2.3)–(2.11) then

(σ(t), ε(v)− ε(u̇(t))Q + j(u(t),v)− j(u̇(t),v) ≥ (f(t), u̇(t)− v)V , (3.24)

(D(t),∇ζ)W + (q(t), ζ)W = (h(u(t), ϕ(t)), ζ)W , (3.25)

for all v ∈ V , ζ ∈ W and t ∈ [0, T ]. We substitute (2.1) in (3.24), (2.2) in (3.25),
note that E(ϕ) = −∇ϕ, use the initial condition (2.12) and derive a variational
formulation of problem P. It is in the terms of displacement and electric potential
fields.
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Problem PV . Find a displacement field u : [0, T ] → V and an electric potential
ϕ : [0, T ] →W such that

(Aε(u̇(t)), ε(v)− ε(u̇(t)))Q + (Bε(u(t)), ε(v)− ε(u̇(t)))Q
+ (E∗∇ϕ(t), ε(v)− ε(u̇(t)))Q + j(u(t),v)− j(u(t), u̇(t))

≥ (f(t),v − u̇(t))V ,
(3.26)

for all v ∈ V and t ∈ [0, T ],
(β∇ϕ(t),∇ζ)W − (Eε(u(t)),∇ζ)W + (h(u(t), ϕ(t)), ζ)W
= (q(t), ζ)W ,

(3.27)

for all ζ ∈W and t ∈ [0, T ], and

u(0) = u0. (3.28)

To study problem PV we make the following smallness assumption

Mψ <
mβ

c20
, (3.29)

where Mψ, c0 and mβ are given in (3.12), (3.2) and (3.10), respectively. We note
that only the trace constant, the coercivity constant of β and the bound of ψ are
involved in (3.29); therefore, this smallness assumption involves only the geometry
and the electrical part, and does not depend on the mechanical data of the problem.
Moreover, it is satisfied when the obstacle is insulated, since then ψ ≡ 0 and so
Mψ = 0.

Removing this assumption remains a task for future research, since it is made
for mathematical reasons, and does not seem to relate to any inherent physical
constraints of the problem.

Our main existence and uniqueness result that we state now and prove in the
next section is the following.

Theorem 3.1. Assume that (3.7)–(3.19) and (3.29) hold. Then there exists a
unique solution of Problem PV . Moreover, the solution satisfies

u ∈ W 2,p(0, T ;V ), ϕ ∈W 1,p(0, T ;W ). (3.30)

A quadruple of functions (u,σ, ϕ,D) which satisfies (2.1), (2.2), (3.26)–(3.28)
is called a weak solution of the piezoelectric contact problem P. It follows from
Theorem 3.1 that, under the assumptions (3.7)–(3.19), (3.29), there exists a unique
weak solution of Problem P.

To describe precisely the regularity of the weak solution, we note that the consti-
tutive relations (2.1) and (2.2), the assumptions (3.7)–(3.10) and (3.30) show that
σ ∈ W 1,p(0, T ;Q) and D ∈ W 1,p(0, T ;W). Using (2.1), (2.2), (3.26) and (3.27)
implies that (3.24) and (3.25) hold for all v ∈ V , ζ ∈ W and t ∈ [0, T ]. We choose
as a test function v = u̇(t) ± z where z ∈ C∞0 (Ω)d in (3.24) and ζ ∈ C∞0 (Ω) in
(3.25) and use the notation (3.20)–(3.23) to obtain

Div σ(t) + f0(t) = 0, div D(t) + q0(t) = 0,

for all t ∈ [0, T ]. It follows now from (3.13) and (3.15) that Div σ ∈W 1,p(0, T ;W)
and div D ∈W 1,p(0, T ;L2(Ω)) and thus

σ ∈ W 1,p(0, T ;Q1), D ∈W 1,p(0, T ;W1). (3.31)

We conclude that the weak solution (u,σ, ϕ,D) of the piezoelectric contact problem
P has the regularity implied in (3.30) and (3.31).
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4. Proof of Theorem 3.1

The proof of Theorem 3.1 is carried out in several steps and is based on the
following abstract result for evolutionary variational inequalities.

Let X be a real Hilbert space with the inner product (·, ·)X and the associated
norm ‖ · ‖X , and consider the problem of finding u : [0, T ] → X such that

(Au̇(t), v − u̇(t))X + (Bu(t), v − u̇(t))X + j(u(t), v)− j(u(t), u̇(t))

≥ (f(t), v − u̇(t))X ∀ v ∈ X, t ∈ [0, T ],
(4.1)

u(0) = u0. (4.2)

To study problem (4.1) and (4.2) we need the following assumptions: The oper-
ator A : X → X is strongly monotone and Lipschitz continuous, i.e.,

(a) There exists mA > 0 such that
(Au1 −Au2, u1 − u2)X ≥ mA‖u1 − u2‖2X ∀u1, u2 ∈ X.

(b) There exists LA > 0 such that
‖Au1 −Au2‖X ≤ LA‖u1 − u2‖X ∀u1, u2 ∈ X.

(4.3)

The nonlinear operator B : X → X is Lipschitz continuous, i.e., there exists LB > 0
such that

‖Bu1 −Bu2‖X ≤ LB ‖u1 − u2‖X ∀u1, u2 ∈ X. (4.4)

The functional j : X ×X → R satisfies:
(a) j(u, ·) is convex and l.s.c. on X for all u ∈ X.
(b) There exists m > 0 such that

j(u1, v2)− j(u1, v1) + j(u2, v1)− j(u2, v2)
≤ m ‖u1 − u2‖X ‖v1 − v2‖X ∀u1, u2, v1, v2 ∈ X.

(4.5)

Finally, we assume that
f ∈ C([0, T ];X), (4.6)

and
u0 ∈ X. (4.7)

The following existence, uniqueness and regularity result was proved in [4] and
may be found in [5, p. 230–234].

Theorem 4.1. Let (4.3)–(4.7) hold. Then:
(1) There exists a unique solution u ∈ C1([0, T ];X) of problem (4.1) and (4.2).
(2) If u1 and u2 are two solutions of (4.1) and (4.2) corresponding to the data

f1, f2 ∈ C([0, T ];X), then there exists c > 0 such that

‖u̇1(t)− u̇2(t)‖X ≤ c (‖f1(t)− f2(t)‖X + ‖u1(t)− u2(t)‖X) ∀ t ∈ [0, T ]. (4.8)

(3) If, moreover, f ∈ W 1,p(0, T ;X), for some p ∈ [1,∞], then the solution
satisfies u ∈W 2,p(0, T ;X).

We turn now to the proof of Theorem 3.1. To that end we assume in what fol-
lows that (3.7)–(3.19) hold and, everywhere below, we denote by c various positive
constants which are independent of time and whose value may change from line to
line.

Let η ∈ C([0, T ], Q) be given, and in the first step consider the following inter-
mediate mechanical problem in which η = E∗∇ϕ is known.
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Problem P1
η . Find a displacement field uη : [0, T ] → V such that

(Aε(u̇η(t)), ε(v)− ε(u̇η(t)))Q + (Bε(uη(t)), ε(v)− ε(u̇η(t)))Q
+ (η(t), ε(v)− ε(u̇η(t)))Q + j(uη(t),v)− j(uη(t), u̇η(t))

≥ (f(t),v − u̇η(t))V ∀v ∈ V, t ∈ [0, T ],
(4.9)

uη(0) = u0. (4.10)

We have the following result for P1
η .

Lemma 4.2. (1) There exists a unique solution uη ∈ C1([0, T ];V ) to the prob-
lem (4.9) and (4.10).

(2) If u1 and u2 are two solutions of (4.9) and (4.10) corresponding to the data
η1, η2 ∈ C([0, T ];Q), then there exists c > 0 such that

‖u̇1(t)− u̇2(t)‖V ≤ c (‖η1(t)− η2(t)‖Q + ‖u1(t)− u2(t)‖V ) ∀ t ∈ [0, T ]. (4.11)

(3) If, moreover, η ∈ W 1,p(0, T ;Q) for some p ∈ [1,∞], then the solution
satisfies uη ∈W 2,p(0, T ;V ).

Proof. We apply Theorem 4.1 where X = V , with the inner product (·, ·)V and
the associated norm ‖ · ‖V . We use the Riesz representation theorem to define the
operators A : V → V , B : V → V and the function fη : [0, T ] → V by

(Au,v)V = (Aε(u), ε(v))Q, (4.12)

(Bu,v)V = (Bε(u), ε(v))Q, (4.13)

(fη(t),v)V = (f(t),v)V − (η(t), ε(v))Q, (4.14)

for all u,v ∈ V and t ∈ [0, T ]. Assumptions (3.7) and (3.8) imply that the operators
A and B satisfy conditions (4.3) and (4.4), respectively.

It follows from (3.6) that the functional j, (3.20), satisfies condition (4.5)(a). We
use again (3.11) and (3.6) to find

j(u1,v2)− j(u2,v1) + j(u2,v1)− j(u2,v2)

≤ c̃20(Lν + Lτ )‖u1 − u2‖V ‖v1 − v2‖V ,

for all u1,u2,v1,v2 ∈ V , which shows that the functional j satisfies condition
(4.5)(b) on X = V . Moreover, using (3.13) and (3.14) it is easy to see that the
function f defined by (3.22) satisfies f ∈ W 1,p(0, T ;V ) and, keeping in mind that
η ∈ C([0, T ];Q), we deduce from (4.14) that fη ∈ C([0, T ];V ), i.e., fη satisfies (4.6).
Finally, we note that (3.19) shows that condition (4.7) is satisfied, too, and (4.14)
shows that if η ∈ W 1,p(0, T ;Q) then fη ∈ W 1,p(0, T ;V ). Using now (4.12)–(4.14)
we find that Lemma 4.2 is a direct consequence of Theorem 4.1. �

In the next step we use the solution uη ∈ C1([0, T ], V ), obtained in Lemma 4.2,
to construct the following variational problem for the electrical potential.

Problem P2
η . Find an electrical potential ϕη : [0, T ] →W such that

(β∇ϕη(t),∇ζ)W − (Eε(uη(t)),∇ζ)W + (h(uη(t), ϕη(t)), ζ)W
= (q(t), ζ)W ,

(4.15)

for all ζ ∈W , t ∈ [0, T ].

The well-posedness of problem P2
η follows.
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Lemma 4.3. There exists a unique solution ϕη ∈ W 1,p(0, T ;W ) which satisfies
(4.15).

Moreover, if ϕη1 and ϕη2 are the solutions of (4.15) corresponding to η1, η2 ∈
C([0, T ];Q) then, there exists c > 0, such that

‖ϕη1(t)− ϕη2(t)‖W ≤ c ‖uη1(t)− uη2(t)‖V ∀ t ∈ [0, T ]. (4.16)

Proof. Let t ∈ [0, T ]. We use the Riesz representation theorem to define the oper-
ator Aη(t) : W →W by

(Aη(t)ϕ, ζ)W = (β∇ϕ,∇ζ)W − (Eε(uη(t)),∇ζ)W + (h(uη(t), ϕ), ζ)W , (4.17)

for all ϕ, ζ ∈W . Let ϕ1, ϕ2 ∈W , then assumptions (3.10) and (3.21) imply

(Aη(t)ϕ1 −Aη(t)ϕ2, ϕ1 − ϕ2)W

≥ mβ ‖ϕ1 − ϕ2‖2W +
∫

ΓC

ψ(uην(t)− g)
(
φL(ϕ1 − ϕ0)− φL(ϕ2 − ϕ0)

)
(ϕ1 − ϕ2) da

and, by (3.12)(a) combined with the monotonicity of the function φL, we obtain

(Aη(t)ϕ1 −Aη(t)ϕ2, ϕ1 − ϕ2)W ≥ mβ ‖ϕ1 − ϕ2‖2W . (4.18)

On the other hand, using again (3.9), (3.10), (3.12) and (3.21) we have

(Aη(t)ϕ1 −Aη(t)ϕ2, ζ)W

≤ cβ‖ϕ1 − ϕ2‖W ‖ζ‖W +
∫

ΓC

Mψ|ϕ1 − ϕ2| |ζ| da ∀ζ ∈W,
(4.19)

where cβ is a positive constant which depends on β. It follows from (4.19) and
(3.2) that

(Aη(t)ϕ1 −Aη(t), ζ)W ≤ (cβ +Mψc
2
0)‖ϕ1 − ϕ2‖W ‖ζ‖W ,

thus,
‖Aη(t)ϕ1 −Aη(t)‖W ≤ (cβ +Mψc

2
0)‖ϕ1 − ϕ2‖W . (4.20)

Inequalities (4.18) and (4.20) show that the operator Aη(t) is a strongly monotone
Lipschitz continuous operator on W and, therefore, there exists a unique element
ϕη(t) ∈W such that

Aη(t)ϕη(t) = q(t). (4.21)
We combine now (4.17) and (4.21) and find that ϕη(t) ∈ W is the unique solution
of the nonlinear variational equation (4.15).

We show next that ϕη ∈ W 1,p(0, T ;W ). To this end, let t1, t2 ∈ [0, T ] and, for
the sake of simplicity, we write ϕη(ti) = ϕi, uην(ti) = ui, qb(ti) = qi, for i = 1, 2.
Using (4.15), (3.9), (3.10) and (3.21) we find

mβ ‖ϕ1 − ϕ2‖2W
≤ cE‖u1 − u2‖V ‖ϕ1 − ϕ2‖W + ‖q1 − q2‖W ‖ϕ1 − ϕ2‖W

+
∫

ΓC

|ψ(u1 − g)φL(ϕ1 − ϕ0)− ψ(u2 − g)φL(ϕ2 − ϕ0)| |ϕ1 − ϕ2| da,
(4.22)

where cE is a positive constant which depends on the piezoelectric tensor E .
We use the bounds |ψ(ui−g)| ≤Mψ, |φL(ϕ1−ϕ0)| ≤ L, the Lipschitz continuity

of the functions ψ and φL, and inequality (3.2) to obtain∫
ΓC

|ψ(u1 − g)φL(ϕ1 − ϕ0)− ψ(u2 − g)φL(ϕ2 − ϕ0)| |ϕ1 − ϕ2| da
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≤Mψ

∫
ΓC

|ϕ1 − ϕ2|2 da+ LψL

∫
ΓC

|u1 − u2| |ϕ1 − ϕ2| da

≤Mψ c
2
0‖ϕ1 − ϕ2‖2W + Lψ Lc0c̃0‖u1 − u2‖V ‖ϕ1 − ϕ2‖W .

Inserting the last inequality in (4.22) yields

mβ ‖ϕ1 − ϕ2‖W
≤ (cE + LψLc0c̃0) ‖u1 − u2‖V + ‖q1 − q2‖W +Mψ c

2
0‖ϕ1 − ϕ2‖W . (4.23)

It follows from inequality (4.23) and assumption (3.29) that

‖ϕ1 − ϕ2‖W ≤ c(‖u1 − u2‖V + ‖q1 − q2‖W ). (4.24)

We also note that assumptions (3.15) and (3.16), combined with definition (3.23)
imply that q ∈ W 1,p(0, T ;W ). Since uη ∈ C1([0, T ];X), inequality (4.24) implies
that ϕη ∈W 1,p(0, T ;W ).

Let η1,η2 ∈ C([0, T ];Q) and let ϕηi = ϕi, uηi = ui, for i = 1, 2. We use (4.15)
and arguments similar to those used in the proof of (4.23) to obtain

mβ ‖ϕ1(t)− ϕ2(t)‖W ≤ (cE + LψLc0c̃0) ‖u1(t)− u2(t)‖V +Mψc
2
0‖ϕ1(t)− ϕ2(t)‖W

for all t ∈ [0, T ]. This inequality, combined with assumption (3.29) leads to (4.16),
which concludes the proof. �

We now consider the operator Λ : C([0, T ];Q) → C([0, T ];Q) defined by

Λη(t) = E∗∇ϕη(t) ∀η ∈ C([0, T ];Q), t ∈ [0, T ]. (4.25)

We show that Λ has a unique fixed point.

Lemma 4.4. There exists a unique η̃ ∈W 1,p(0, T ;Q) such that Λη̃ = η̃.

Proof. Let η1, η2 ∈ C([0, T ];Q) and denote by ui and ϕi the functions uηi
and ϕηi

obtained in Lemmas 4.2 and 4.3, for i = 1, 2. Let t ∈ [0, T ]. Using (4.25) and (3.9)
we obtain

‖Λη1(t)− Λη2(t)‖Q ≤ c ‖ϕ1(t)− ϕ2(t)‖W ,
and, keeping in mind (4.16), we find

‖Λη1(t)− Λη2(t)‖Q ≤ c ‖u1(t)− u2(t)‖V . (4.26)

On the other hand, since ui(t) = u0 +
∫ t

0

u̇i(s) ds, we have

‖u1(t)− u2(t)‖V ≤
∫ t

0

‖u̇1(s)− u̇2(s)‖V ds, (4.27)

and using this inequality in (4.11) yields

‖u̇1(t)− u̇2(t)‖V ≤ c
(
‖η1(t)− η2(t)‖Q +

∫ t

0

‖u̇1(s)− u̇2(s)‖V ds
)
.

It follows now from a Gronwall-type argument that∫ t

0

‖u̇1(s)− u̇2(s)‖V ds ≤ c

∫ t

0

‖η1(t)− η2(t)‖Q ds. (4.28)

Combining (4.26)–(4.28) leads to

‖Λη1(t)− Λη2(t)‖Q ≤ c

∫ t

0

‖η1(t)− η2(t)‖Q ds.
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Reiterating this inequality n times results in

‖Λnη1(t)− Λnη2(t)‖Q ≤
cn

n!
‖η1(t)− η2(t)‖C([0,T ];Q).

This inequality shows that for a sufficiently large n the operator Λn is a contraction
on the Banach space C([0, T ];Q) and, therefore, there exists a unique element
η̃ ∈ C([0, T ];Q) such that Λη̃ = η̃. The regularity η̃ ∈ W 1,p(0, T ;Q) follows
from the fact that ϕeη ∈W 1,p(0, T ;W ), obtained in Lemma 4.3, combined with the
definition (4.25) of the operator Λ. �

We have now all the ingredient to prove the Theorem 3.1 which we complete
now.

Existence. Let η̃ ∈W 1,p(0, T ;Q) be the fixed point of the operator Λ, and let ueη,
ϕeη be the solutions of problems P1

η and P2
η , respectively, for η = η̃. It follows from

(4.25) that E∗∇ϕeη = η̃ and, therefore, (4.9), (4.10) and (4.15) imply that (ueη, ϕeη)
is a solution of problem PV . Property (3.30) follows from Lemmas 4.2 (3) and 4.3.

Uniqueness. The uniqueness of the solution follows from the uniqueness of the
fixed point of the operator Λ. It can also be obtained by using arguments similar
as those used in [14].

5. Conclusions

We presented a model for the quasistatic process of frictional contact between
a deformable body made of a piezoelectric material, more precisely, an electro-
viscoelastic material, and a conductive reactive foundation. The contact was mod-
eled with the normal compliance condition and the associated Coulomb’s law of dry
friction. The new feature in the model was the electrical conduction of the foun-
dation, which leads to a new boundary condition on the contact surface, (2.11),
in which the normal component of the electric displacement vector is related to
the penetration uν − g and the potential drop ϕ − ϕ0. This condition provides a
nonlinear coupling of the system on the contact boundary, and is a regularization
of the perfect electric contact, (2.15).

The problem was set as a variational inequality for the displacements and a vari-
ational equality for the electric potential. The existence of the unique weak solution
for the problem was established by using arguments from the theory of evolutionary
variational inequalities involving nonlinear strongly monotone Lipschitz continuous
operators, and a fixed-point theorem. It was obtained under a smallness assump-
tion, (3.29), which involves only the electrical data of the problem and which is
satisfied in the case of a contact with an insulated obstacle. This smallness as-
sumption seems to be an artifact of the mathematical method, and in the future
we plan to remove it, as it does not seem to represent any physical constraint on
the system.

This work opens the way to study further problems with other conditions for
electrically conductive or dielectric foundations.
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