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NON-SYMMETRIC ELLIPTIC OPERATORS ON BOUNDED
LIPSCHITZ DOMAINS IN THE PLANE

DAVID J. RULE

Abstract. We consider divergence form elliptic operators L = div A∇ in R2

with a coefficient matrix A = A(x) of bounded measurable functions indepen-

dent of the t-direction. The aim of this note is to demonstrate how the proof

of the main theorem in [4] can be modified to bounded Lipschitz domains.
The original theorem states that the Lp Neumann and regularity problems are

solvable for 1 < p < p0 for some p0 in domains of the form {(x, t) : φ(x) < t},
where φ is a Lipschitz function. The exponent p0 depends only on the ellip-
ticity constants and the Lipschitz constant of φ. The principal modification of

the argument for the original result is to prove the boundedness of the layer

potentials on domains of the form {X = (x, t) : φ(e ·X) < e⊥ ·X}, for a fixed
unit vector e = (e1, e2) and e⊥ = (−e2, e1). This is proved in [4] only in the

case e = (1, 0). A simple localisation argument then completes the proof.

1. Definitions and Known Results

An open bounded connected set Ω ⊂ R2 is said to be a bounded Lipschitz domain
if there exists numbers ri, Lipschitz functions φi, points Zi ∈ R2 and unit vectors
ei ∈ R2 (i = 1, 2, . . . , N) such that

∂Ω =
N⋃

i=1

B2ri
(Zi) ∩ {X : φ(ei ·X) = e⊥i ·X},

where e⊥ = (−e2, e1) for e = (e1, e2), B2ri(Zi) ∩ {X : φ(ei · X) < e⊥i · X} ⊂ Ω
for each i = 1, . . . , N , and Bri

(Zi) ∩ Brj
(Zj) = ∅ for i 6= j. Along with bounded

Lipschitz domains we will also consider domains of the form

Ω = {X ∈ R2 : φ(e ·X) < e⊥ ·X} (1.1)

where φ : R → R is again a Lipschitz function, e = (e1, e2) is a fixed unit vector
and e⊥ = (−e2, e1). In the sequel we will denote by τ the tangent (e + φ′e⊥)/(1 +
(φ′)2)1/2 to ∂Ω and ∂τ = τ · ∇ the derivative along the boundary.
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With Ω being either one of the domains above, we will consider the Dirichlet
problem

Lu = 0, in Ω
u = f0, on ∂Ω

(1.2)

with boundary data f0 and the Neumann problem

Lu = 0, in Ω
ν ·A∇u = g0, on ∂Ω

(1.3)

with boundary data g0. Here ν is the outward unit normal vector to ∂Ω and
L = divA∇· is an elliptic operator in divergence form with coefficient matrix A =
(aij)ij . The matrix A is assumed to have real-valued bounded measurable entries
(maxi,j ‖aij‖L∞(Ω) = Λ <∞) and satisfy the uniform ellipticity condition

λ|ξ|2 ≤ ξ ·Aξ (1.4)

for some λ > 0 and all ξ ∈ R2, but A is not necessarily symmetric. The conormal
derivative will be ν ·A∇.

Much of the notation used here is standard and is defined in detail in [4] and [5]; in
particular we have the following. Recall that (X,Y ) 7→ ΓX(Y ) is the fundamental
solution for the elliptic operator L with pole at X and taking the gradient in
the parenthetical variable is denoted ∇ΓX(Y ) while in the subscript variable it is
denoted ∇XΓX(Y ). A non-tangential approach region is the set

Γ(Q) = {X ∈ Ω : |X −Q| ≤ (1 + a) dist(X, ∂Ω)}

for a given Q ∈ ∂Ω (a > 0 fixed). Here dist(X, ∂Ω) = infQ∈∂Ω |X −Q|. Recall the
non-tangential maximal function for a function u on Ω is a function N(u) : ∂Ω → R
given by

N(u)(Q) = sup
Γ(Q)

|u|

and the related version

Ñ(u)(Q) = sup
X∈Γ(Q)

( 1
|Bδ(X)/2(X)|

∫
Bδ(X)/2(X)

|u|2
)1/2

.

[4, Lemmata 1.1 and 1.2] provide us with the existence and uniqueness of a
solution to (1.2) and (1.3) when Ω is of the form (1.1). The following serve the
same role for bounded Lipschitz domains.

Lemma 1.1. Let Ω be a bounded Lipschitz domain. For each f0 ∈W 1,2(∂Ω), there
exists a unique u ∈W 1,2(Ω) such that Tr(u) = f0 and∫

Ω

A∇u · ∇ϕ = 0

for all ϕ ∈ W 1,2
0 (Ω). Moreover, there exists a constant C, depending only on λ, Λ

and Ω, such that
‖u‖W 1,2(Ω) ≤ C‖f0‖W 1,2(∂Ω).

Proof. The proof is essentially the same as [4, Lemma 1.1]. We first construct
a function w : Ω → R with Tr(w) = f0 whose W 1,2(Ω)-norm is no more than
C‖f0‖W 1,2(∂Ω). In [4] we used the Poisson extension, and we can do the same here
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locally in each Bri
(Zi), first flattening out the boundary and using appropriate cut-

off functions. The sum of these local extensions is then the w we require. Secondly,
we can apply the Lax-Milgram theorem as before, since

(ψ,ϕ) 7→
∫

Ω

A∇ψ · ∇ϕ (1.5)

is coercive on W 1,2
0 (Ω). �

Lemma 1.2. Let Ω be a bounded Lipschitz domain. For each g0 ∈ L2(∂Ω), there
exists a unique u ∈W 1,2(Ω) (modulo constants) such that∫

Ω

A∇u · ∇ϕ =
∫

∂Ω

g0 Tr(ϕ) dσ

for all ϕ ∈ W 1,2(Ω). Moreover, there exists a constant C, depending only on λ, Λ
and Ω, such that

‖u−
∫

Ω

u‖W 1,2(Ω) ≤ C‖g0‖L2(∂Ω).

Proof. Since (1.5) is coercive on the space {u ∈ W 1,2(Ω) :
∫
Ω
u = 0} with norm

‖ · −
∫
Ω
·‖W 1,2(Ω), the proof of [4, Lemma 1.2] can be repeated once we have shown

Tr: W 1,2(Ω) → L2(∂Ω) is a bounded operator. Fix ξ : R2 → R to be a smooth
cut-off function equal to one on Bri(Zi), supported in B2ri(Zi) and such that
|∇ξ| ≤ C/ri. Then, say, if ei = (1, 0),∫

∂Ω∩Bri
(Zi)

|ϕ|2 dσ ≤
∫

∂Ω

ξ|ϕ|2

= −
∫

Ω∩B2ri
(Zi)

∂t(ξ|ϕ|2)

= −
∫

Ω∩B2ri
(Zi)

(∂tξ)|ϕ|2 −
∫

Ω∩B2ri
(Zi)

ξ(∂tϕ)ϕ(sgn(ϕ))

≤ C

ri

∫
Ω∩B2ri

(Zi)

|ϕ|2 +
1
ri

∫
Ω∩B2ri

(Zi)

|∇ϕ||ϕ|

≤ C

ri
‖ϕ‖2W 1,2(Ω),

where the last inequality follows from Hölder’s and Cauchy’s inequalities. Summing
in i gives the desired result. �

It is well known that existence of the estimates in the following definition (which
replaces [4, Definition 1.3]) enable a certain non-tangential convergence to the
boundary data to be established (see, for example, [3]).

Definition 1.3. Let Ω be a bounded Lipschitz domain.
(i) We say that the Dirichlet problem holds for p, or (D)A

p = (D)p holds, if for
any u solving (1.2) with boundary data f0 ∈ Lp(∂Ω) ∩W 1,2(∂Ω) we have

‖N(u)‖Lp(∂Ω) ≤ C(p)‖f0‖Lp(∂Ω).

(ii) We say that the Neumann problem holds for p, or (N)A
p = (N)p holds, if

for any u solving (1.3) with boundary data g0 ∈ Lp(∂Ω) ∩ L2(∂Ω) we have

‖Ñ(∇u)‖Lp(∂Ω) ≤ C(p)‖g0‖Lp(∂Ω).
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(iii) We say that the regularity problem holds for p, or (R)A
p = (R)p holds, if

for any u solving (1.2) with boundary data f0 ∈ W 1,p(∂Ω) ∩W 1,2(∂Ω) we
have

‖Ñ(∇u)‖Lp(∂Ω) ≤ C(p)‖∂τf0‖Lp(∂Ω).

In each case, the constant C(p) > 0 must depend only on λ, Λ, Ω and p.

The following theorem was proved by Kenig, Koch, Pipher and Toro [2]. This
will be used to prove our main result, Theorem 2.1.

Theorem 1.4. Let L = divA∇ be an elliptic operator in a bounded Lipschitz
domain Ω, where A = A(x) is independent of the t-variable. Then there exists a
(possibly large) p such that (D)p holds in Ω, with bound depending only on λ, Λ, p
and the Lipschitz constant of φ.

2. The Main Result

Our aim is to prove the following analogue to [4, Theorem 1.4].

Theorem 2.1. Let L = divA∇ be an elliptic operator with coefficient matrix
A = A(x) independent of the t-direction in a bounded Lipschitz domain Ω. Then
(N)p and (R)p hold for some (possibly small) p > 1.

The proof follows that in [4] and we lay out the main ingredients in its proof
below, emphasising the differences. The details are contained in [5]. The main idea
is to prove a reverse of the duality statement proved in [3]. We will show that under
our hypothesis when (D)At

p holds then (R)A
p′ and (N) eA

p′ hold, where Ã = At/detA
and 1

p + 1
p′ = 1. Once this is done we may use Theorem 1.4 to obtain Theorem

2.1. The proof of this duality is split into three parts. Firstly, Theorem 2.3 shows
the required estimates for the gradient hold at the boundary, then Theorem 2.4
shows that Ñ(∇u) can be controlled in Lp(∂Ω)-norm by certain potentials of the
boundary value of ∇u, and finally we go on to show in several steps these potentials
are bounded operators on Lp(∂Ω). The proof of Theorem 2.4 is where the main
difference from [4] occurs.

We will work under the a priori assumptions that A = I for large x, A and φ are
smooth functions, ‖φ′‖L∞(R) ≤ k, φ′ ≡ α0 for large x and x 7→ φ(x)−α0x ∈ C∞0 (R).
Once our theorems have been proved under our a priori assumptions, it is a simple
matter to obtain the general case. Note that, under our a priori assumptions, if u
solves (1.2) with data f0 ∈ C∞0 (∂Ω) and Ω is of the form (1.1), then u ∈ C∞(Ω),
and u(X) = O(|X|δ−1) and ∇u(X) = O(|X|δ−2) for all δ > 0 as |X| → ∞. (See
[5, Appendix B].)

We will make use of the following lemma from [2]. We denote by Λk/2(ε0) the
set of all Lipschitz functions φ such that ‖φ′ − α0‖ ≤ ε0, with α0 ∈ [−k, k]. We
also require that 0 < ε0 ≤ k, so the Lipschitz constant of such functions is no more
than 2k.

Lemma 2.2. Given a unit vector e, suppose Ω = {X = (x, t) ∈ R2 : φ(e · X) <
e⊥ ·X} is the domain above the graph of a Lipschitz function φ ∈ Λk(ε0). Let A =
A(x) be any matrix satisfying the ellipticity condition (1.4) and with coefficients
independent of the vertical direction. Also suppose that divA∇u = 0 in Ω. Then,
for sufficiently small ε0 depending only on λ and Λ, there exists a change of variables
Φ: Ω′ → Ω such that
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(i) If v = u ◦Φ then divB∇v = 0 in Ω′, where B is lower triangular, satisfies
(1.4), is independent of the t-variable and of the form

B =
(

1 0
c d

)
(2.1)

(ii) The domain Ω′ is the domain above the graph of a Lipschitz function.
When e = (1, 0) there is no restriction on ε0.

One of the main ingredients in [4] was a conjugate ũ to a solution u to the elliptic
equation Lu = divA∇u = 0. This is defined (up to a constant) by the system(

0 1
−1 0

)
∇ũ = A∇u.

Recall firstly that ũ satisfies an elliptic equation with coefficient matrix Ã =
At/detA, and secondly that the conormal derivative of u is the tangential de-
rivative of ũ and vice versa. The following theorem can be proved exactly as in [4,
Theorem 2.9].

Theorem 2.3. Let Ω be a bounded Lipschitz domain, let Ω and A verify the a
priori assumptions, and let u solve (1.2). Suppose p′ ∈ (1,∞) is such that (D)At

p′

holds. Then there exists a constant C(p), depending only on λ, Λ, k, p and the
(D)At

p′ constant of At, such that

‖∇u‖Lp(∂Ω) ≤ C(p)‖∂τf0‖Lp(∂Ω).

Also, if u solves (1.3) with coefficient matrix A replaced by Ã = At/det(A), then
there exists a constant C(p), depending on the same quantities, such that

‖∇u‖Lp(∂Ω) ≤ C(p)‖g0‖Lp(∂Ω).

As usual 1
p + 1

p′ = 1.

[4, Theorem 3.1] must be replaced by the theorem below. We fix a unit vector e
and define the conjugate Γ̃X of ΓX to be

Γ̃X(Y ) =
∫

γ(Y0,Y )

ν(Z) ·At(Z)∇ΓX(Z) dl(Z)

on the complement of the set {Y = (y, s) : e⊥ · Y ≥ e⊥ · X, e · Y = e · X}.
Here γ(Y0, Y ) is a path from a fixed point Y0 to Y parametrised by arc length via
the function t 7→ (l1(t), l2(t)) and remaining in the complement of {Z : e⊥ · Z ≥
e⊥ ·X, e ·Z = e ·X}. Also ν(Z) = (l′2(t),−l′1(t)) is the unit normal to γ(Y0, Y ) at
Z = (l1(t), l2(t)) and dl is arc length. It is easy to see Γ̃X(Y ) solves the system

At(Y )∇ΓX(Y ) =
(

0 1
−1 0

)
∇Γ̃X(Y ). (2.2)

The function Y 7→ Γ̃X(Y ) is well-defined up to a constant (which depends on the
choice of Y0). The two vector-valued potentials I and J are defined by

I(f)(X) = lim
h↘0

∫
∂Ω

∇Γt
Y (xe + (φ(x) + h)e⊥)f(Y ) dσ(Y ),

J (f)(X) = lim
h↘0

∫
∂Ω

∇X Γ̃(xe+(φ(x)+h)e⊥)(Y )f(Y ) dσ(Y ),

where X = xe + φ(x)e⊥ ∈ ∂Ω.
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Theorem 2.4. Let Ω = {X ∈ R2 : φ(e · X) < e⊥ · X} for some Lipschitz func-
tion φ ∈ Λk/2(ε0). Let L = divA∇ be an elliptic operator satisfying (1.4) with
coefficient matrix A = A(x) of measurable functions bounded by Λ independent
of the t-variable. Then for each p > 1 there exists a constant C(p), depending
only on λ, Λ, k and p, such that any function u : Ω → R such that Lu = 0, and
u(X) = O(|X|δ−1) and |∇u(X)| = O(|X|δ−2) for all δ > 0 as |X| → ∞, we have

‖Ñ(∇u)‖Lp(∂Ω) ≤ C(p)(‖∇u‖Lp(∂Ω) + ‖I(ν ·A∇u)‖Lp(∂Ω) + ‖J (τ · ∇u)‖Lp(∂Ω)).

Proof. We will just give an outline of the proof, as the details are contained in [5].
Recall Green’s second identity: Let us write L = divA∇ and Lt = divAt∇, then
we have ∫

Ω

(Lu)v − u(Ltv) =
∫

∂Ω

(ν ·A∇u)v − (ν ·At∇v)u dσ

so, for u such that Lu = 0 and replacing v with the fundamental solution ΓX for
L, so that LtΓX = δX , the Dirac mass at X, we obtain

u(X) =
∫

∂Ω

(ν ·At∇ΓX)u− (ν ·A∇u)ΓX dσ.

Using (2.2) and integration by parts we discover

u(X) =
∫

∂Ω

(τ · ∇Γ̃X)u− (ν ·A∇u)ΓX dσ

= −
∫

∂Ω

Γ̃X(τ · ∇u) + (ν ·A∇u)ΓX dσ,

and then taking the gradient in X we find

∇u(X) = −
∫

∂Ω

(∇X Γ̃X)(τ · ∇u) + (ν ·A∇u)(∇XΓX) dσ. (2.3)

Thus we can see that to control ‖N(∇u)‖Lp(∂Ω) it would suffice to show, via stan-
dard Calderón-Zygmund theory, both terms on the right-hand side of (2.3) are
singular integral operators, acting on τ · ∇u and ν ·A∇u respectively.

To show the two right-hand terms in (2.3) are indeed singular integrals we can
follow the same procedure as [4]. It is convenient here to form matrix-valued oper-
ators from our potentials I and J . The potentials are of a slightly different form
to [4]. This leads us to consider transformations Φ, from Lemma 2.2, which lead
to lower triangular coefficient matrices rather than upper triangular, as was the
case in [4]. In addition, one more significant modification must be made. At this
point we are not assuming A is as in (2.1), so in order to obtain the correct decay
and smoothness estimates we must insert the appropriate Jacobian factor from the
change of variables of Lemma 2.2. Although we are not assuming the Lipschitz
constant of φ is small, we can still apply the transformation to obtain an elliptic
equation in non-divergence form, however, the boundary of the resulting domain
may not be the graph of a function. See [2, Lemma 3.46] for details of the transfor-
mation. Thus, since ∇XΓX(Y ) = ∇ΓY (X), the operator T acting on matrix-valued
functions formed from I (or rather we should say, from the transpose of I) has the
matrix kernel K : R2 →M with both rows being

(Φ′ ◦ Φ−1)(ye + φ(y)e⊥)∇Γt
(xe+(φ(x)+h)e⊥)(ye + φ(y)e⊥)
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and the operator T̃ corresponding to J has the kernel K̃ : R2 →M with rows

(Φ′ ◦ Φ−1)(xe + (φ(x) + h)e⊥)∇X Γ̃(xe+(φ(x)+h)e⊥)(ye + φ(y)e⊥).

One can then show that both K and K̃ are a Calderón-Zygmund kernel using
Green’s identities and standard tools for elliptic equations. Continuing in the same
manner, one can go on to show the operator T is a continuous linear operator
from B1S to (B2S)′, where B1 is the matrix-valued function with columns (1 +
(φ′)2)1/2((Φ−1)′)tAtν and (1+ (φ′)2)1/2((Φ−1)′)tτ , and B2 is any bounded matrix-
valued function. Finally, one can also show the operator T̃ is a continuous linear
operator from B3S to (B1S)′, where B3 is the diagonal matrix-valued function with
diagonal entries both being (1+ (φ′)2)1/2τ ·κ, where κ = e+α0e⊥. The details are
contained in [5, Chapter 3]. �

We now wish to show the operators T and T̃ are bounded on Lp(R), which easily
leads to the Lp(∂Ω)-boundedness of I and J . The first step in doing this is the
following theorem.

Theorem 2.5. For each k > 0 and A of the form (2.1) there exists an ε0 > 0,
depending only on k, λ and Λ, such that, for any φ ∈ Λ

k
4 (ε0), the singular integral

operators T and T̃ admit continuous extensions to L2(R,M) and therefore also
to Lp(R,M) for all 1 < p < ∞ with norm depending only on p, λ, Λ and k.
Consequently the potentials I and J are bounded linear operators on Lp(∂Ω,R2)
(1 < p <∞).

Proof. This is proved by applying the matrix formulation of the T (B)-Theorem
[1]. It suffices to show MBt

2
TMB1 and MBt

1
T̃MB3 are weakly bounded and T (B1),

T t(B2), T̃ (B3) and T̃ t(B1) are in BMO, where now B2 is the diagonal matrix-
valued function with diagonal entries both being (1 + (φ′)2)1/2ν · Atκ⊥. This is a
repeat of the work in [4, Section 4] (for the exact details see [5, Chapter 4]). �

We now wish to remove the restrictions that A is of the form (2.1) and that ε0 is
small. First of all we can remove the restriction on ε0 by applying David’s build-up
scheme, as in [4]. With this at hand, we now consider a domain Ω as in (1.1) and
a matrix A = A(x) satisfying (1.4) and our a priori smoothness assumptions, but
not necessarily (2.1). To apply Lemma 2.2 we must again assume φ ∈ Λk/4(ε0)
and ε0 is small. Once we have applied the transformation from Lemma 2.2 we will
obtain an elliptic operator in a domain Ω′ with a matrix of the form (2.1), but no
guarantee that the Lipschitz constant of the boundary is small. However, given our
application of David’s build-up scheme above, we can conclude Lp-boundedness.
Now, a second application of David’s build-up scheme on the φ above allows us to
remove the assumption that ε0 is small.

With this result in hand, we may conclude the proof of Theorem 2.1. First of all,
given our bounded Lipschitz domain Ω we define Ωi := {X ∈ R2 : φ(ei·X) < e⊥i ·X}
and introduce a partition of unity 1 =

∑N
i=1 ηi such that ηi = 1 on ∂Ω ∩ Bri(Zi)

and supp(ηi) ⊂ ∂Ω ∩ B2ri
(Zi). Set fi = (ν · A∇u)ηi and gi = (τ · ∇u)ηi. Then,

from (2.3),

∇u(X) = −
N∑

i=1

∫
∂Ωi

(∇X Γ̃X)gi + (∇XΓX)fi dσ.
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Therefore, using Theorem 2.4 and the boundedness of I and J , we have

‖Ñ(∇u)‖Lp(∂Ω) ≤ C‖∇u‖Lp(∂Ω) +
N∑

i=1

C(‖I(gi)‖Lp(∂Ωi) + ‖J (fi)‖Lp(∂Ωi))

≤ C‖∇u‖Lp(∂Ω) +
N∑

i=1

C(‖gi‖Lp(∂Ωi) + ‖fi‖Lp(∂Ωi))

≤ CN‖∇u‖Lp(∂Ω).

This estimate when combined with Theorems 2.3 and 1.4 concludes the proof of
Theorem 2.1.
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