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BOUNDARY-VALUE PROBLEMS FOR ORDINARY
DIFFERENTIAL EQUATIONS WITH MATRIX COEFFICIENTS

CONTAINING A SPECTRAL PARAMETER

MOHAMED DENCHE, AMARA GUERFI

Abstract. In the present work, we study a multi-point boundary-value prob-

lem for an ordinary differential equation with matrix coefficients containing
a spectral parameter in the boundary conditions. Assuming some regularity

conditions, we show that the characteristic determinant has an infinite num-

ber of zeros, and specify their asymptotic behavior. Using the asymptotic
behavior of Green matrix on contours expending at infinity, we establish the

series expansion formula of sufficiently smooth functions in terms of residuals

solutions to the given problem. This formula actually gives the completeness
of root functions as well as the possibility of calculating the coefficients of the

series.

1. Introduction

We study a multi-point boundary-value problem

y′ − λA(x, λ)y = f(x), −∞ < a ≤ x ≤ b <∞, (1.1)

L(y) =
P∑

k=0

λk
(
α(k)y(a, λ) + β(k)y(b, λ)

)
= 0, (1.2)

with

A(x, λ) =
∞∑

j=0

λ−jAj(x) ,

where λ� 1, Aj(x), (j = 0, 1, . . . ), α(k), β(k) are matrices of order n× n, f(x) is a
vector function of order n, which is continuous (or integrable bounded) in [a, b].

The study of the boundary-value problem (1.1)–(1.2) in the case of ordinary
differential equations originates in the papers by Birkhoff [2], [3]. Later, Tamarkin
[12] considered the same problem, under more general hypothesis, and introduced
the classes of regular and strongly regular problems.

We note that boundary-value problems with a parameter in the boundary condi-
tions have interesting applications, since many concrete problems of mathematical
physics (e.g., [13]) lead to problems of this form. This happens whenever one applies
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the method of separation of variables to solve the corresponding partial differential
equation with boundary conditions, which contain a directional derivative.

In general, the spectral properties of (1.1)–(1.2) are mainly determined not only
by the boundary conditions, but also by the highest coefficients of all the polyno-
mials in λ, A(x, λ). Hence, for the same boundary conditions, but different matrix
functions A(x, λ), the problems can be both regular and non regular.

Various questions connected with the theory of ordinary differential operators
have been studied intensively; see for example [4, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 19].
Problems of the form (1.1)–(1.2), for the case of first order systems, have been
studied in [8], where the results by Tamarkin [12] were generalized. In this paper, we
consider more general problems of the form (1.1)–(1.2), where regularity conditions
are taken to be more general than those in [6, 8], and coincide with the one in [9],
when the coefficients of the equation are independent of λ. Using the asymptotic
behavior of the system of fundamental solutions of equation (1.1) given in [14],
we formulate the regularity notion of the problem (1.1)–(1.2). For the introduced
regular problems, we show that the characteristic determinant ∆(λ) has an infinite
number of zeros. We establish that in the exterior of δ-neighboring of those zeros
the elements of the Green matrix have the uniform estimate Gpq(x, ξ, λ) = 0(1).
Using this estimate on the contours which expand at infinity, we obtain the series
expansion formula of sufficiently smooth functions in terms of solutions residuals
to the given problem. In fact, this formula gives the completeness of root functions
as well as the possibility of calculating the coefficients of the series.

2. Preliminaries

Suppose that:

(1) Aj(x) belongs to C[a, b] for j = 0, 1, . . . .
(2) For x ∈ [a, b], the roots ϕ1(x), . . . , ϕn(x) of the characteristic equation in

the sense of Birkhoff [8]

det(A0(x)− ϕE) = 0, (2.1)

are distinct, not identically zero, their arguments and the arguments of
their differences are independent of x.

Let M(x) be a matrix which transforms A0(x) to the diagonal matrix
D(x) i.e.

M−1(x)A0(x)M(x) = D(x) = diag(ϕ1(x), . . . , ϕn(x)).

We require that at least one of the matrix M ′(x), A1(x) belong to the
Holder space Hα

(3) For |λ| sufficiently large, the following matrix has rank n× 2np:
α

(1)
11 . . . α

(1)
1n . . . α

(P )
11 . . . α

(P )
1n β

(1)
11 . . . β

(1)
1n . . . β

(P )
11 . . . α

(P )
1n

...
...

α
(1)
n1 . . . α

(1)
nn . . . α

(P )
n1 . . . α

(P )
nn β

(1)
n1 . . . β

(1)
nn . . . β

(P )
n1 . . . β

(P )
nn


We first start by giving the notion of sectors that we need later on. For this purpose,
we consider the set of values λ that satisfy

Reλϕk(x) = Reλϕs(x) k 6= s x ∈ [a, b]. (2.2)



EJDE-2007/14 BOUNDARY-VALUE PROBLEMS 3

This equality determines a finite number of sectors (Σj) for which by a convenable
numeration of zeros of (2.1), we have the inequalities

Reλϕ1(x) ≤ Reλϕ2(x) ≤ · · · ≤ Reλϕn(x).

Consider now the set of values λ satisfying

Reλωs = 0 , s = 1, n , (2.3)

where ωs =
∫ b

a
ϕs(t)dt. By condition 2 the equalities (2.3) define a certain number of

straight lines coming through the origin of λ-plane, and each is applied by the origin
into two straight-half lines through this origin. We denote them by d1, d2, . . . , d2µ,
and the argument of dj by −αj + π

2 , where αj are numerated as follows:

0 ≤ α1 < α2 < · · · < α2µ < 2π.

Consider a second set of straight half lines d′j (j = 1, 2µ) distributed as

d′1, d1, d
′
2, d2, . . . , d

′
2µ, d2µ, d

′
1.

The rays d′j divided the λ-plane into 2µ sectors T1, T2, . . . , T2µ. Let us consider an
arbitrary Tj . Let ω1j , . . . , ωυjj be taken from the numbers ω1, . . . , ωp, which are
situated on a straight line issued from the origin and making an angle αj with the
real axis:

ωsj = µsje
αj

√
−1, s = 1, νj .

In addition, we can always choose a numeration of the numbers ωsj such that we
have the following inequalities hold:

µ1j < µ2j < · · · < µsjj < 0 < µsj+1j < · · · < µνjj .

If all µsj are strictly positive, then we put sj = 0. Otherwise, if µsj are strictly
negative, then sj = νj .

After excluding ωsj (1, νj) from the set {ω1, . . . , ωn}, the remaining ωs can be
divided into two groups: (ω(1)

s ), (ω(2)
s ). The first group is formed by those one for

which Reλωs → −∞, whereas the second group those for Reλωs → +∞. Hence,
in each (Tj) the roots of equation (2.1) are numerated as

ω
(1)
1 , . . . , ω(1)

κj
, ω1j , . . . , ωνjj , ω

(2)
κj+νj+1, . . . , ω

(2)
n .

The boundaries of the sectors (Σj) and (Tj) divide the whole λ-plane into a finite
number of sectors (Rj), where each of those is simultaneously situated in one of the
sectors (Tj) and in one of the sectors (Σj). So, in (Rj) we have

Reλϕ1(x) ≤ Reλϕ2(x) ≤ · · · ≤ Reλϕτj
(x) ≤ 0

≤ Reλϕτj+1(x) ≤ · · · ≤ Reλϕn(x),

where τj = κj + sj .

Definition 2.1. A sequence of curves Γν in the λ-plane is called an expanding
sequence, if there is a constant K such that, for λ ∈ Γν and all positive integer
ν, the inequalities meas Γν ≤ Krν , and |dλ| ≤ r′νdθ hold, where rν is the distance
from the origin of λ-plane to the nearest point of the Γν , r′ν is the largest distance
between points of curve Γν , and dθ is the angle subtended by the chord dλ at the
origin.
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Lemma 2.2 ([15]). Let ξ(λ, z, x) be a continuous function defined in the half-plane
Re cλ ≤ 0, with c constant not equal to zero, x ∈ [a, b], z ∈ (0, Z). Suppose that

|ξ(λ, z, x)| ≤ c/|λ|α , α >
1
2
, |λ| � 1.

Let ψ(z) be a bounded function. Then

J(ψ) =
∫ Z

0

ψ(z)dz
∫

Γν

ξ(λ, z, x)ecλZdλ

tends to zero uniformly with respect to x ∈ [a, b], as ν approaches infinity on the
contour Γν(where Γν is an expanding sequence situated in the half-plane Re cλ ≤ 0).

3. Main Results

Construction of the Green Matrix. The Green matrix of problem (1.1)–(1.2)
is

G(x, ξ, λ) = g(x, ξ, λ)− y0(x, λ)U−1(λ)L(g(x, ξ, λ)) ,
where

G(x, ξ, λ) =
(
Gpq(x, ξ, λ)

)n

p,q=1
, U(λ) = L(y0(x, λ) =

(
Upq(λ)

)n

p,q=1
,

L(g(x, ξ, λ)) =
(
Lpq(g(x, ξ, λ))

)n

p,q=1
,

y0(x, λ) is the solution of the homogeneous equation (1.1), and

Gpq(x, ξ, λ) =
∆pq(x, ξ, λ)

∆(λ)
,

where

∆pq(x, ξ, λ) = det


gpq(x, ξ, λ) y0

p1(x, λ) . . . y0
pn(x, λ)

L1q(g) U11(λ) . . . U1n(λ)
...

...
...

Lnq(g) Un1(λ) . . . Unn(λ)

 ,

gpq(x, ξ, λ) =

{
1
2

∑n
s=1 y

0
pq(x, λ)Zsq(ξ, λ) if a ≤ ξ ≤ x ≤ b

− 1
2

∑n
s=1 y

0
pq(x, λ)Zsq(ξ, λ) if a ≤ x ≤ ξ ≤ b,

Z(x, λ) = T (x, λ)/W (x, λ), where T (x, λ) is the matrix of order n × n when we
take the transposed of the matrix made up using the co-factors of the elements of
the matrix y0(x, λ), and W (x, λ) = det y0(x, λ),

Lpq(g(x, ξ, λ)) =
n∑

s=1

P∑
k=0

λk
(
α(k)

ps gsq(a, ξ, λ) + β(k)
ps gsq(b, ξ, λ)

)
,

Upq(λ) =
n∑

s=1

P∑
k=0

λk
(
α(k)

ps y
0
sq(a, λ) + β(k)

ps y
0
sq(b, λ)

)
,

where
∆(λ) = detU(λ) (3.1)

is the characteristic determinant of problem (1.1)–(1.2). Thus, the general solution
of problem (1.1)–(1.2) is

y(x, λ, f) =
∫ b

a

G(x, ξ, λ)f(ξ)dξ,
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for x ∈ [a, b].

Asymptotic Representation of the Zeros of the Characteristic Determi-
nant. According to the Vagabov theorem [14], the fundamental system of solutions
for the homogeneous equation corresponding to (1.1), have in each sector (Σj) the
asymptotic behavior

y0(x, λ) =
(
M(x) + 0

( 1
|λ|α

))
exp

(
λ

∫ x

a

D(ξ)dξ
)
, (3.2)

where 0 < α ≤ 1, x ∈ [a, b], and M(x) = (Mpq(x))n
p,q=1 is one of the matrix

indicated in condition 2. Using the notation

Φ̂(x) = Φ(x) + 0
( 1
|λ|α

)
,

and substituting (3.2) from the boundary conditions (1.2), we obtain

Upq(λ) = Apq(λ) +Bpq(λ)eλωq , p, q = 1, n, (3.3)

where

Apq(λ) =
n∑

s=1

P∑
k=0

λkα(k)
ps M̂sq(a) , (3.4)

and

Bpq(λ) =
n∑

s=1

P∑
k=0

λkβ(k)
ps M̂sq(b). (3.5)

On the other hand, if we denote

A(q) =

A1q

...
Anq

 , B(q) =

B1q

...
Bnq

 ,

then ∆(λ) can be written in the form

∆(λ) = det
(
A(1) +B(1)eλω1 . . . A(n) +B(n)eλωn

)
. (3.6)

Using (3.1), (3.3), (3.4), and (3.5) we conclude from (3.6) that the following as-
ymptotic relations hold:

∆(λ)e−λ
Pn

s=κj+νj+1 ω(2)
s = M̂1j(λ)em1jZ + · · ·+ M̂σjj(λ)emσjjZ , (3.7)

where m1j < m2j < · · · < mσjj , Z = λeexp(αj

√
−1), and

m1j =

{∑sj

s=1 µsj for sj > 0
0 for sj = 0,

mσjj =

{∑νj

s=sj+1 µsj for sj < νj

0 for sj = νj ,

M1j(λ) = det
(
A(1) . . . A(κj)B(κj+1) . . . B(κj+sj)A(κj+sj+1) . . .

A(κj+νj)B(κj+νj+1) . . . B(n)
)
,

Mσjj = det
(
A(1) . . . A(κj+sj)B(κj+sj+1) . . . B(n)

)
.

Definition 3.1. A function f(λ) is called an asymptotic power function of degree
κ, if there exist a ∈ C\{0}, 0 < α ≤ 1 and κ ∈ Z such that

f(λ) = λκ
(
a+ 0

( 1
|λ|α

))
, |λ| → ∞.
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A similar definition is given in [1] and [5] for α = 1.

Definition 3.2 (Regularity). The boundary-value problem (1.1)–(1.2) is said to
be regular if in all sectors Rj , the functions M1j(λ) are asymptotic power functions
of degree κ where κ is a positive integer, and all the other determinants built by
different columns of the matrix (A(1) . . . A(n)B(1) . . . B(n)) are asymptotic power
functions of degree ≤ κ.

Theorem 3.3. Suppose that the boundary-value problem (1.1)–(1.2) is regular, and
the conditions 1, 2, 3, of section 2 are satisfied, then in each sector (Tj) we have

(1) ∆(λ) admits an infinite number of zeros which can be divided into 2µ groups.
The values of jth− group are contained in the strip (Dj) of finite width and
parallel to rays dj which is inside (Dj).

(2) If the interiors of circles of sufficiently small radius δ with centers at zeros
of ∆(λ) are removed, then in the remained plane, we get

∣∣λ−κ∆(λ) exp
(
− λ

n∑
s=κj+νj+1

ω(2)
s

)∣∣ ≥ kδ ,

where kδ is a positive number depending only on δ.
(3) The number of zeros of ∆(λ) which are near to the origin is finite. The

zeros λ(j)
N of jth-group have the asymptotic representation

|λ(j)
N | = 2Nπ

mσjj −m1j

(
1 + 0

( 1
N

))
.

(4) Each zero of ∆(λ) is a pole of the solution of problem (1.1))–(1.2).

The proof of this theorem can be done as in [9, Theorem 4, page 205].

Asymptotic Representation of a Solution of Boundary Value Problem
(1.1)–(1.2). According to condition 2 of section 2, the root arguments of the char-
acteristic equation (2.1) are independent of x. So, we can write

ϕs(x) = πsqs(x), x ∈ [a, b], s = 1, n ,

where πsis in general a complex constant, qs(x) > 0, hence from (3.2) it results

Reλπ1 ≤ Reλπ2 ≤ · · · ≤ Reλπτj
≤ 0 ≤ Reλπτj+1 ≤ · · · ≤ Reλπn . (3.8)

Let us set

xs =
∫ x

a

qs(t)dt, ξs =
∫ ξ

a

qs(t)dt, x0s =
∫ b

a

qs(x)dt.

By appropriate transformations, the matrix G(x, ξ, λ) can be written, in each sector
Rj(δ) (where Rj(δ) denotes the remaining part of sector Rj after removing the
interior of the circle of sufficiently small rays δ centered in the zeros of ∆(λ)), in



EJDE-2007/14 BOUNDARY-VALUE PROBLEMS 7

the following form

Gpq(x, ξ, λ) = g0
pq(x, ξ, λ) +

( τj∑
l=1

n∑
s=τj+1

Pls(λ)M̂pl(x)V̂sq(ξ)eλπlxl−λπsξs

+
n∑

l=τj+1

n∑
s=τj+1

Pls(λ)M̂pl(x)V̂sq(ξ)eλπl(xl−x0l)−λπsξs

+
τj∑

l=1

τj∑
s=1

Qls(λ)M̂pl(x)V̂sq(ξ)eλπlxl−λπs(ξs−x0s)

+
n∑

l=τj+1

τj∑
s=1

Qls(λ)M̂pl(x)V̂sq(ξ)eλπl(xl−x0l)−λπs(ξs−x0s)
)
,

(3.9)

where

Pls(λ) =


λ−κe−λW

Pn
m=1 Ams(λ)∆ml(λ)

λ−κe−λW ∆(λ)
if l ≤ τj

λ−κe−λW+λπlx0l

Pn
m=1 Ams(λ)∆ml(λ)

λ−κe−λW ∆(λ)
if l ≥ τj + 1

(3.10)

Qls(λ) =


λ−κe−λW

Pn
m=1 Bms(λ)∆ml(λ)

λ−κe−λW ∆(λ)
if l ≤ τj

λ−κe−λW+λπlx0l

Pn
m=1 Bms(λ)∆ml(λ)

λ−κe−λW ∆(λ)
if l ≥ τj + 1,

(3.11)

where

g0
pq(x, ξ, λ) =

{∑τj

s=1 M̂ps(x)V̂sq(ξ)eλπs(xs−ξs) if a ≤ ξ ≤ x ≤ b

−
∑n

s=τj+1 M̂ps(x)V̂sq(ξ)eλπs(xs−ξs) if a ≤ x ≤ ξ ≤ b,
(3.12)

W =
∑n

s=κj+νj+1 ω
(2)
s , the Vsq(ξ) is the element of the matrix V (x) which verifies

M(x)V (x) = I, ∆ms(λ) is the complement algebraic of the element (m, s) in ∆(λ).

Theorem 3.4. Suppose that the boundary-value problem (1.1)–(1.2) is regular, and
the conditions 1, 2, 3, of section 2 are satisfied. Then, in each sector Rj(δ) the
elements Gpq(x, ξ, λ) of the Green matrix admits the estimate

Gpq(x, ξ, λ) = 0(1) . (3.13)

Proof. Numerators in (3.10), (3.11) are bounded in Rj(δ) for large λ. It follows
from Theorem 3.3 that the denominators are bounded below by a positive number
in Rj(δ). In other words, the functions Pls(λ) and Qls(λ) are uniformly bounded
outside δ-neighborhoods of the zeros. Then (3.13) follows directly from (3.9)–
(3.12). �

An Expansion Formula.

Theorem 3.5. If the boundary-value problem (1.1)–(1.2) is regular, the Holder
power satisfies 1

2 < α ≤ 1, and the conditions 1, 2, 3, of section 2, are satisfied,
then for all f(x) ∈ L2[a, b], the following expansion formula holds in the sense of
L2[a, b]:

−1
2π
√
−1

∑
ν

∫
Γν

y(x, λ, f)dλ =
∑

ν

Res y(x, λ, f) = D−1(x)f(x) , (3.14)
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where Γν is a simple closed contour containing only one pole λν of the integrand,
and the sum over ν is extended to all poles of this function. Here, Reszν F (z)
denotes the residual of F (z) at zν .

Proof. Theorem 3.3 implies that the distance between the zeros of ∆(λ) is larger
than some sufficiently small positive number 2δ. Then, we can choose a sequence of
closed expanding contours Γν , which does not intersect circles of radius δ centered
at the zeros of ∆(λ). Since each Γν is the union of its parts in the sectors Rj , we
can conclude from (3.9), that∫

Γν

dλ
n∑

q=1

∫ b

a

Gpq(x, ξ, λ)fq(ξ)dξ

=
∑

j

∫
Γν∩Rj

dλ
( n∑

q=1

∫ b

a

g0
pq(x, ξ, λ)fq(ξ)dξ

+
n∑

q=1

∫ b

a

( τj∑
l=1

n∑
s=τj+1

Pls(λ)M̂pl(x)V̂sq(ξ)eλπlxl−λπsξs)

+
n∑

l=τj+1

n∑
s=τj+1

Pls(λ)M̂pl(x)V̂sq(ξ)eλπl(xl−x0l)−λπsξs)

+
τj∑

l=1

τj∑
s=1

Qls(λ)M̂pl(x)V̂sq(ξ)eλπlxl−λπs(ξs−x0s)

+
n∑

l=τj+1

τj∑
s=1

Qls(λ)M̂pl(x)V̂sq(ξ)eλπl(xl−x0l)−λπs(ξs−x0s)
))
,

(3.15)

here,
∑

j denotes the sum over all Rj . From (3.10)-(3.11), the regularity of problem
(1.1)–(1.2) and the choice of Γν , it follows that the Pls(λ), Qls(λ) are uniformly
bounded on all Γν . Inequalities (3.8) imply that the real parts of all exponents in
the right side of (3.15) are non-positive. Using [9, Lemma 1], [9, Lemma 3] and
Lemma 2.2, it follows that

lim
ν→+∞

∫
Γν

dλ
n∑

q=1

∫ b

a

Gpq(x, ξ, λ)fq(ξ)dξ

= lim
ν→+∞

∑
j

∫
Γν∩Rj

dλ
n∑

q=1

∫ b

a

g0
pq(x, ξ, λ)fq(ξ)dξ.

(3.16)

By substituting the expression (3.12) into (3.16), and using Lemma 2.2, appropriate
transformations yield∑

ν

∫
Γν

y(x, λ, f)dλ =
∑

ν

Res
∫ b

a

G(x, ξ, λ)f(ξ)dξ = −2π
√
−1D−1(x)f(x).

�
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